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Abstract. In this work, the consistent sampling requirement of signals is
studied. We establish how this notion is related with certain set of projectors
which are selfadjoint with respect to a semi-inner product. We extend previous
results and present some new problems related with sampling theory.

1. Introduction

In signal processing language, sampling is an operation which converts a con-
tinuous time (or space) signal (i.e., function) into a discrete time one. This is a
previous step which allows the analysis of a signal in the computer. The clas-
sical sampling scheme is based on the Whittaker-Kotelnikov-Shannon theorem.
Recall that the Paley-Wiener space of band-limited functions is the space PW
of all f ∈ L2(R) which can be written as f(t) =

∫ π
−π g(ω)eiωtdω, t ∈ R for

some g ∈ L2(R). The Whittaker-Kotelnikov-Shannon theorem establishes that
it is possible to reconstruct any signal f ∈ PW from its values at the integers

{f(n)}n∈Z. More precisely, the series
∑

n∈Z f(n) sin(π(t−n))
π(t−n)

converges uniformly

to f(t). If a signal f ∈ L2(R) does not belong to the Paley-Wiener space, a
common strategy in signal processing applications is to apply a low pass filter

(i.e., the operator mapping f 7→
〈
f, sin(π(.−t))

π(.−t)

〉
) to the signal f , obtaining a

new one g. Although the signal recovered from the samples {g(n)}n∈Z in general
does not coincide with the original signal f , it turns out that it is always a good
approximation of it. In fact, the recovered signal is the orthogonal projection of
the original signal in PW . For a detailed exposition of these facts see [17]. An
usual way of representing the samples of a signal f is the following: given vectors
{vn}n ∈ N which spans a closed subspace S (sampling subspace), these samples
are given by {fn}n∈N = {〈 f, vn 〉}n∈N [17]. On the other hand, given samples

{fn}n∈N, the reconstructed signal f̂ is given by f̂ =
∑

n∈N fnwn, where {wn}n∈N
spans a closed subspace R (reconstruction subspace).

In the classical sampling scheme the reconstruction and the sampling subspaces
are assumed to be the same. However, in many applications, this not the case,
and then it is not always possible to recover the best approximation of the original
signal. Thus, different sampling techniques must be used. In [18], M. Unser and
A. Aldroubi introduced the idea of consistent sampling. Here, the reconstructed
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signal f̂ is not generally the best approximation of the original signal, but f and
f̂ are forced to have the same samples.

Originally, this idea has been studied in shift invariant spaces. Later, in [7,
8], the consistent sampling has been studied in abstract Hilbert spaces by Y.
Eldar for finite dimensional spaces and by Y. Eldar and T. Werther for infinite
dimensional spaces, respectively. An underlying assumption in these works is that
the Hilbert space H of signals can be decomposed as H = R u S⊥ (where u is
the direct sum). Under this assumption, it is shown that the consistent sampling
requirement is related with the (unique) projection P with range R(P ) = R and

nullspace N(P ) = S⊥. More precisely, the unique signal f̂ ∈ R that satisfies〈
f̂ , vn

〉
=
〈
f̂ , vn

〉
, for every n ∈ N, is given by f̂ = Pf . However, in some

signal applications the hypothesis R∩ S⊥ = {0} is not satisfied. A. Hirabayashi
and M. Unser, in [9], proved that in this case there are infinite projections P such

that f̂ = Pf satisfies the consistent sampling requirement.
The main goal of this paper is to give an interpretation of the consistent sam-

pling in terms of the notion of compatibility between a closed subspace S of
a Hilbert space H and a positive semidefinite operator A acting on H. This
notion, defined in [4] and developed later in [1, 2, 3, 5], has a completely differ-
ent origin. In [15], Z. Pasternak-Winiarski studied, for a fixed subspace S, the
analiticity of the map A → PA,S which associates to each positive invertible op-
erator A the orthogonal projection onto S under the (equivalent) inner product
〈 f, g 〉A = 〈Af, g 〉, for f, g ∈ H. These perturbations of the inner product occur
quite frequently, the reader is referred to [12, 13, 14] for many applications. The
notion of compatibility appears when A is allowed to be any positive semidefi-
nite operator, not necessarily invertible (and even, a selfadjoint bounded linear
operator). More precisely, A and S are said to be compatible if there exists a
(bounded linear) projection Q with range S which satisfies AQ = Q∗A (i.e., Q
is Hermitian with respect to the semi-inner product 〈 , 〉A). Unlike for invertible
A’s, it may happen that there is no such Q or that there is an infinite number
of them. However, there exists an angle condition between S⊥ and A(S) which
determines the existence of such projections.

As far as we know, with the exception of [8], the consistent sampling require-
ment has not been studied in the context of perturbed inner spaces. In [8], the
assumption R ∩ S⊥ = {0} forces the perturbations of the inner product to be
defined by positive invertible operators, i.e., the consistent sampling idea is stud-
ied in an equivalent Hilbert space. But, as we show in this work, the consistent
sampling requirement in semi-inner product spaces allows a simpler and more
general way for studying this problem.

For instance, it is easy to characterize, in infinite dimensional spaces, the set of
(possibly infinite) oblique projections related with the consistent sampling idea.
It is important to remark that, although some of the results given in [9] can
be directly extended to infinite dimensional spaces, by means of Moore-Penrose
pseudo inverses, for some others results this is not possible. In fact, there is an
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angle condition that must be fulfilled. Here the notion of compatibility plays an
important role because, as we show below, this notion is closely related with the
notion of angle condition between subspaces. If S⊥∩R 6= {0}; by this reason there
are infinite oblique projections related with the consistent sampling requirement,
in [9] criteria for selecting one among these projections have been considered.
These criteria are motivated by signal processing applications. Let C be the set
of all projections that satisfies the consistent sampling requirement. In [9], given
a subspaceM⊆ R all projections Q ∈ C such thatM⊆ R(Q) are characterized.
In this paper, we study a more general problem: given a subspace M ⊆ R, we
give necessary and sufficient conditions for the existence of a projection Q0 ∈ C
such that ‖f − Q0f‖ ≤ ‖f − Qf‖ for every f ∈ M and every Q ∈ P , and, if
those conditions hold, we characterize the set of all these Q0. As a corollary we
study the case Q0f = f , for every f ∈ M. Also motivated by signal processing
applications, we characterize those projectors in C which minimize the so called
aliasing norm [7, 10, 11].

The paper is organized as follows: Section 2 contains the preliminaries. In Sec-
tion 3 we present some variational problems in the set P(A,S). These problems
are related with two sampling problems presented in Section 5. In Section 4, we
present the notion of consistent sampling and the link with the compatibility. We
characterize the set of operators satisfying a consistent sampling requirement and
characterize some operators with particular properties. In Section 5, we study
when it is possible to impose to the consistent sampling requirement the addi-
tional property of recovering the best approximation of a signal, for certain set
of signals. Finally, in Section 6 a problem related with the sampling of perturbed
signals is presented.

2. Oblique projections and compatibility

In this section, we present a survey of useful results concerning the existence of
projections which are orthogonal, in some sense, with respect to a fixed positive
semidefinite operator. We start with some notation.

Along this work H denotes a (complex, separable) Hilbert space with inner
product 〈 , 〉. Given Hilbert spaces H and K, L(H,K) denotes the space of
bounded linear operators from H into K and L(H) = L(H,H). If T ∈ L(H) then
T ∗ denotes the adjoint operator of T , R(T ) stands for the range of T and N(T )
for its nullspace. If S is a closed subspace of H and T is a closed subspace of
K, then L(S, T ) will be identified with the subspace of L(H,K) consisting of all
T ∈ L(H,K) such that R(T ) ⊆ T and S⊥ ⊆ N(T ).

Let GL(H) denote the group of invertible operators of L(H), L(H)+ the cone
of (semidefinite) positive operators of L(H), GL(H)+ = L(H)+ ∩GL(H) and Q
the set of projections of L(H), i.e., Q = {Q ∈ L(H) : Q2 = Q}.

If S and T are two (closed) subspaces of H, denote by SuT the direct sum of
S and T , S ⊕T the (direct) orthogonal sum of them and S 	T = S ∩ (S ∩T )⊥.
If H = S u T , the (oblique) projection PS//T onto S along T is the projection
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uniquely determined by R(PS//T ) = S and N(PS//T ) = T . In particular, PS =
PS//S⊥ is the orthogonal projection onto S.

Given two subspaces S, T , the cosine of the Friedrichs angle θ(S, T ) ∈ [0, π/2]
between them is defined by

c(S, T ) = sup{| 〈 f, g 〉 | : f ∈ S 	 T , ‖f‖ < 1, g ∈ T 	 S, ‖g‖ < 1}.

Remark 2.1. The following conditions are equivalent:

(1) c(S, T ) < 1;
(2) S + T is closed;
(3) S⊥ + T ⊥ is closed;
(4) c(S⊥, T ⊥) < 1.

The Dixmier angle between S and T is the angle in [0, π/2] whose cosine is
defined by

c0(S, T ) = sup{| 〈 f, g 〉 | : f ∈ S, ‖f‖ < 1, g ∈ T , ‖g‖ < 1}.

Observe that, in general c(S, T ) ≤ c0(S, T ) and if S ∩T = {0} then the equality
holds. Notice that c0(S, T ) < 1 ⇐⇒ S ∩T = {0} and S + T is closed. Observe
that, by its definition, c0(S, T ) is monotone in each variable: if S ⊆ S ′ and
T ⊆ T ′ then c0(S, T ) ≤ c0(S ′, T ′). However, this is not true, in general, for
Friedrichs cosine.

In [18], Unser and Aldroubi introduced a notion of largest angle or uniform
cosine angle between two subspaces S and T : this is the angle in [0, π/2] whose
cosine is

R(S, T ) = inf{‖PT s‖, s ∈ S, ‖s‖ = 1}.
This notion, widely used in signal processing literature, is related with the

Dixmier angle. In fact, R(S, T ) =
√

1− c0
2(S, T ⊥), and all relevant properties

of R can be easily deduced from those of c0.

Given A ∈ L(H)+ consider 〈 f, g 〉A = 〈Ax, y 〉, for every f, g ∈ H. Then 〈 , 〉A
defines a semi-inner product on H. There is also a seminorm associated to 〈 , 〉A,

namely ‖f‖A = 〈Af, f 〉1/2 for every f ∈ H.
An operator T ∈ L(H) is A-selfadjoint if 〈Tf, g 〉A = 〈 f, Tg 〉A, for every

f, g ∈ H. The following lemma characterizes the A-selfadjoint projections.

Lemma 2.2. (Krein, [4]) Let A ∈ L(H)+ and Q ∈ Q. Then the following
conditions are equivalent:

a. AQ = Q∗A, i.e., Q is A-selfadjoint,
b. N(Q) ⊆ A−1(R(Q)⊥).

Definition 1. If A ∈ L(H)+ and S is a closed subspace of H, the pair (A,S) is
said to be compatible if there exists a projection Q ∈ L(H) such that R(Q) = S
and AQ = Q∗A. The following result gives a list of equivalent conditions to the
compatibility.
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Lemma 2.3. [4] Let A ∈ L(H)+ and S be a closed subspace of H. The following
conditions are equivalent:

(1) The pair (A,S) is compatible,
(2) H = S + A−1(S⊥),
(3) c0(S⊥, AS) < 1.

The next theorem, due to R. G. Douglas [6] plays a relevant role in what follows.

Theorem 2.4. (Douglas, [6]) Let A,B ∈ L(H). Then the following conditions
are equivalent:

(1) R(A) ⊆ R(B).
(2) There exists a positive number λ such that AA∗ ≤ λBB∗.
(3) There exists D ∈ L(H) such that A = BD.

Moreover, in this case there exists a unique solution D of the equation AX = B
such that R(D) ⊆ N(A)⊥. D is called the reduced solution of the equation
AX = B. If A† denotes the Moore-Penrose inverse of A, then D = A†B. It also
satisfies that ‖D‖2 = inf{λ : AA∗ ≤ λBB∗}.

Corollary 2.5. [4] Let S be a closed subspace of H and write A ∈ L(H)+, in
terms of the decomposition H = S ⊕ S⊥, as

A =

[
a b
b∗ c

]
(1)

Then the pair (A,S) is compatible if and only if R(b) ⊆ R(a).

Denote P(A,S) = {Q ∈ Q : R(Q) = S and AQ = Q∗A}, i.e., P(A,S) is the
set of A-selfadjoint projections with range S.

From now on, denote N = S ∩N(A). If N = {0} then P(A,S) is a singleton
(see Theorem 2.7).

Remark 2.6. Using the decomposition given in equation (1), we can write P(A,S) =

{Q =

[
I x
0 0

]
: x ∈ L(S⊥,S) and ax = b}.

The set P(A,S) can be empty, a singleton (for example, if A is positive definite)
or an infinite set. Indeed, this set is an affine manifold. The next theorem provides
a parametrization of P(A,S), if A and S are compatible.

Let PA,S =

[
I d
0 0

]
, where d is the reduced solution of the equation ax = b.

Theorem 2.7. [4, 5] Let A ∈ L(H)+ and S be a closed subspace of H such that
(A,S) is compatible. Then PA,S ∈ P(A,S) is the projection onto S with nullspace
A−1(S⊥)	N . The set P(A,S) is an affine manifold and it can be parametrized
as

P(A,S) = PA,S + L(S⊥,N ),
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or, in terms of the matrix decomposition given above,

P(A,S) =

[
I d+ z
0 0

]
,

with R(z) ⊆ N(a). Moreover PA,S has minimal norm in P(A,S), but it is not
the unique with this property, in general.

If f ∈ H then (I − PA,S)f is the unique minimal norm element in the set

(2) {(I −Q)f : Q ∈ P(A,S)}.

In the following, we recall basic definitions and results related to frames of
closed subspaces.

Definition 2. Let S be a closed subspace of H. The set V = {vn}n∈N ⊆ S is a
frame for S if there exist numbers γ1, γ2 > 0 such that

γ1‖f‖2 ≤
∑
n∈N

| 〈 f, vn 〉 |2 ≤ γ2‖f‖2, for every f ∈ S.(3)

If the set V = {vn}n∈N is also linearly independent then it is called a Riesz
basis of S.

Let S be a closed subspace of H and let V = {vn}n∈N be a frame for S. Let
B = {en}n∈N be the canonical orthonormal basis of `2. The unique operator
F ∈ L(`2,H) such that Fen = vn, for every n ∈ N is called the synthesis operator
of V . The adjoint operator F ∗ ∈ L(H, `2) is called the analysis operator of V , and
it is given by F ∗f =

∑
n∈N 〈 f, vn 〉 en. Finally, the operator T = FF ∗ ∈ L(H)

is called the frame operator of V and, from equation (3), it satisfies: γ1PS ≤
PSTPS ≤ γ2PS and then 1/γ1PS ≤ PST

†PS ≤ 1/γ2PS , where T † denotes the
Moore-Penrose inverse of T .

3. Minimization problems in the set P(A,S)

The purpose of this section is to study the following problem which, as will be
shown below, is related with some signal processing applications.

As it was stated in Section 2, the reduced solution of ax = b gives the element
PA,S ∈ P(A,S). In [3], another interesting characterization of the element PA,S is
given in terms of the solution of a variational problem. If S is a closed subspace,
it is easy to see that the orthogonal projection PS is the unique solution of the
problem

minQ∈Q,R(Q)=SQQ
∗.

In a similar way, PS⊥ is the unique solution of

minQ∈Q,N(Q)=SQ
∗Q;

In [3] the following results are proven. LetA = {Q ∈ Q : R(Q) ⊆M⊥, N(Q) =
S}.
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Proposition 3.1. Let S and M be two closed subspaces of H such that H =
S +M⊥. Then P0 = PM⊥	S//S is the unique solution of

minQ∈AQ
∗Q.

Corollary 3.2. Let A ∈ L(H)+ and S be a closed subspace of H such that the
pair (A,S) is compatible. Then PA,S ∈ P(A,S) is the unique solution of

minQ∈P(A,S)(I −Q)∗(I −Q)

Problem 3.3. Let A ∈ L(H)+ and S be a closed subspace of H, such that the
pair (A,S) is compatible. Characterize the closed subspaces M for which there
exists Q0 ∈ P(A,S) such that

(4) ‖Q0f‖ ≤ ‖Qf‖, for every Q ∈ P(A,S), f ∈M
For each such M, determine the set of all Q0.

Observe that, if ‖Q0f‖ ≤ ‖Qf‖, for every f ∈M, Q ∈ P(A,S) then 〈PMQ∗0Q0PMf, f 〉 ≤
〈PMQ∗QPMf, f 〉, for every f ∈ H, i.e., Q0 ∈ P(A,S) is a solution of

minQ∈P(A,S)PMQ
∗QPM.

The following Theorem gives necessary and sufficient conditions for the exis-
tence of solutions of Problem 3.3. Furthermore, it is shown that the solutions of
Problem 3.3 can be related with the solution of certain operator equations.

Theorem 3.4. Let A ∈ L(H)+ and S be a closed subspace of H, such that
the pair (A,S) is compatible. Given a closed subspace M of H, there exists
Q0 ∈ P(A,S) satisfying equation (4) if and only if M⊥ + N ⊆ M⊥ + S⊥.
Moreover, Q0 = PA,S +W0PS⊥, where W ∗

0 ∈ L(H) is a solution of the equation,

(5) PMPS⊥X = PMPN .

Proof. By Theorem 2.7, any Q ∈ P(A,S) can be written as Q = PA,S + WPS⊥ ,
with R(W ) ⊆ N = N(A) ∩ S = A−1(S⊥) ∩ S. Observe that, if Q0 ∈ P(A,S) is
decomposed as Q0 = PA,S + W0PS⊥ , with R(W0) ⊆ N , then Q0 is a solution of
(4) if and only if W0 ∈ L(H,N ) is such that,

(6) ‖PA,SPMf −W0PS⊥PMf‖ ≤ ‖PA,SPMf −WPS⊥PMf‖,
for every f ∈ H and for every bounded linear operator W with R(W ) ⊆ N .

Given f ∈ H, observe that if f ∈ N(PS⊥PM), then equation (6) holds for
every W ∈ L(H,N ). By the other hand, if f /∈ N(PS⊥PM), given η ∈ N , let
W ∈ L(H,N ) such that η = WPS⊥PMf . Then, W0 ∈ L(H,N ) satisfies (6) if
and only if

(7) ‖PA,SPMf −W0PS⊥PMf‖ ≤ ‖PA,SPMf − η‖,
for every η ∈ N . Then W0PS⊥PMf ∈ N it is the best approximation of PA,SPMf
in the subspace N , i.e., W0PS⊥PMf = PNPA,SPMf = PNPM, since PNPA,S =
PN . Thus, we look for those W0 ∈ L(H) such that,

PMPS⊥W
∗
0 = PMPN .
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By Theorem 2.4, the above equation has a solution if and only if R(PMPN ) ⊆
R(PMPS⊥) or, analogously if and only if M⊥ +N ⊆M⊥ + S⊥. �

Observe that the set of solutions of (5) is the affine manifold:

(PMPS⊥)†PMPN + L(H, N(PMPS⊥))

Examples. The following are sufficient conditions for the existence of solutions
of (4).

(1) If N = {0} easily follows that M⊥ +N ⊆M⊥ + S⊥. Recall that, in this
case, P(A,S) = {PA,S}, so that (4) has solution for every M.

(2) If S and M are closed subspaces such that c0(S,M) < 1, then H = S⊥+
M⊥. Thus M⊥+N ⊆M⊥+ S⊥, and there exists a solution of equation
(4). In this case, if X is a solution of (5) then X ∈ (PMPS⊥)†PN +
L(H,S + S⊥ ∩M⊥), since N((PMPS⊥)†) =M⊥.

Proposition 3.5. Let (A,S) be a compatible pair. Then there exists Q0 ∈
P(A,S) such that Q0PM = 0 if and only if M⊆ A−1(S⊥) and c0(M,S) < 1.

Proof. Suppose that M ⊆ A−1(S⊥) and c0(M,S) < 1, it follows that M∩ S =
{0} andMuS is closed. Let T = A−1(S⊥)	 (S uM), by Lemma 2.3 it follows
that H = S u T uM. Define Q0 = PS//M+T , by Lemma 2.2 it follows that
Q0 ∈ P(A,S). Furthermore, for every f ∈M, Q0f = 0.

Conversely, if there exists Q0 ∈ P(A,S) such that Q0PM = 0, then M ⊆
N(Q0) ⊆ A−1(S⊥). Furthermore, since c(N(Q0),S) = c0(N(Q0),S) < 1, it
follows that the Dixmier cosine c0(N(Q0),S) < 1, then c0(M,S) < 1. �

The following result characterizes the set of projections Q ∈ P(A,S) that
satisfies QPM = 0.

Proposition 3.6. Let A ∈ L(H)+ and S be a closed subspace of H, such that the
pair (A,S) is compatible. Let M⊆ A−1(S⊥) be a closed subspace of H such that
c0(M,S) < 1. Then, the set of projections Q ∈ P(A,S) satisfying QPM = 0,
is the affine manifold PS//M+T + L(S⊥ ∩M⊥,N ), where the (closed) subspace
T ⊆ A−1(S⊥) is any complement of N uM in A−1(S⊥).

Proof. Since M ⊆ A−1(S⊥) satisfies c0(M,S) < 1 it follows that c0(M,N ) < 1
thenMuN ⊆ A−1(S⊥) is closed. Let T be a complementary subspace ofMuN
in A−1(S⊥), and let Q0 = PS//MuT . By Lemma 2.3, it follows that Q0 ∈ P(A,S)
and for every f ∈ M, Q0f = 0. Let T ∈ L(S⊥ ∩ M⊥,N ), then, since T ∈
L(S⊥,N ), it follows that Q = Q0 + T ∈ P(A,S). Furthermore, if f ∈ M, it is
easy to see that Qf = 0. Then every Q ∈ Q0 +L(S⊥ ∩M⊥) ⊆ P(A,S), satisfies
QPM = 0.

Conversely, suppose that Q,P ∈ P(A,S) satisfy QPM = 0. Then, by Theorem
2.7, Q − P ∈ L(S⊥,N ). If f ∈ M, it follows that Qf = Pf = (Q − P )f = 0,
i.e., M+ S ⊆ N(Q− P ). Then, Q− P ∈ L(S⊥ ∩M⊥,N ). �
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4. Consistent sampling

In this section we study a generalization of a sampling problem proposed by
Unser and Aldroubi in [18] and generalized in [7, 8, 9]. More specifically, let f be a
signal (a vector) of a suitable Hilbert space H, S and R be two (closed) subspace
of H, called respectively, the sampling and reconstruction subspaces. Given Vs =
{vn}n∈N, a frame of S, with synthesis operator H, g = H∗f =

∑
N 〈 f, vn 〉 en is

called the samples of f . As an inverse procedure, we have the reconstruction
process. Given Vr = {wn}n∈N, a frame of R with synthesis operator F , given
the samples g ∈ `2, the reconstructed signal associated to them, is f = Fg. In
some signal applications we deal with the problem of, given the synthesis and the
analysis operators, find a filter (a bounded linear operator) X ∈ L(`2) such that
the signal reconstructed from the filtered samples i.e., the signal reconstructed
from the samples h = Xg, have good (in some sense) approximation properties.
Particularly, the consistent sampling condition imposes that, given the samples
g = H∗f , the reconstructed signal f̃ = FXg = FXH∗f has the same samples as
f , for every f ∈ H (i.e., H∗f = H∗f̃). From the point of view of its samples, the
original signal and the reconstructed one are undistinguished.

Observe that, if the consistent sampling condition is satisfied then, for every
f ∈ H, H∗f = H∗f̃ , so that

(FXH∗)2f = FXH∗(FXH∗f) = FXH∗f̃ = FXH∗f,

it follows that FXH∗ is a projection. Moreover, if f ∈ N(FXH∗), then FXH∗f =

0 = H∗FXH∗f = H∗f̃ = H∗f , thus f ∈ N(H∗) = R(H)⊥ = S⊥. Fur-
thermore, since S⊥ ⊆ N(FXH∗), it follows that FXH∗ is a projection with
N(FXH∗) = S⊥. Based on this idea we give the following definition.

Definition 3. Given H,F ∈ L(K,H), the operator X ∈ L(K) satisfies the con-
sistent sampling requirement for H and F if X ∈ CS(F,H) = {X ∈ L(K) :
FXH∗ ∈ Q, N(FXH∗) = N(H∗)}.

Since R(FXH∗) ⊆ R(F ), notice that, if there exists an operator X ∈ L(K) sat-
isfying the consistent sampling requirement, then H = R(F ) +N(H∗). The con-
verse is also true since, ifH = R(F )+N(H∗) thenX = F †PR(F )	N(H∗)//N(H∗)H

∗† ∈
L(K) is well defined and it is easy to see that satisfies the consistent sampling
requirement.

In [7, 8, 18] the consistent sampling requirement have been studied under the
condition that H = N(H∗)uR(F ). Recently, in [9], this notion has been studied
(for finite dimensional spaces) without the assumption R(F ) ∩ N(H∗) = {0},
and it was shown that in this case, the set of projections of the type FXH∗

with N(FXH∗) = N(H∗) can be infinite. In this work we relate the consistent
sampling condition in infinite dimensional spaces with the notion of compatibility
introduced in [4] and developed in [3, 4, 5]. We show that the results given in [9]
can be easily obtained using some characterizations of the set P(A,N(H∗)), for
an appropriate A ∈ L(H)+.
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The following set will be useful to characterize, in terms of the compatibility,
the projections associated with the consistent sampling requirement. Given a
closed range operator H ∈ L(H,K), and a closed subspace W of K let

AH(W) := {A ∈ L(H)+ : A−1(R(H)) =W}

Observe that, if R is a closed subspace of H such that H = N(H∗) + R,
then PR⊥ ∈ AH(R), because P−1

R⊥(R(H)) = R(PR⊥PN(H∗))
⊥ = N(PN(H∗)PR⊥) =

RuR⊥ ∩R(H) = R. Also notice that, in this case, for any A ∈ AH(R) the pair
(A,N(H∗)) is compatible (see Lemma 2.3).

Lemma 4.1. Consider operators F,H ∈ L(K,H) with closed range such that
H = R(F ) + N(H∗) and A ∈ AH(R(F )). Then X ∈ CS(F,H) if and only if
FXH∗ = I −Q, for some Q ∈ P(A,N(H∗)).

Proof. Suppose that X ∈ L(K) is such that I − FXH∗ ∈ P(A,N(H∗)). Then,
R(I − FXH∗) = N(FXH∗) = N(H∗), and therefore X ∈ CS(F,H).

Conversely, if X ∈ CS(F,H) then E = FXH∗ is a projection with N(E) =
N(H∗). Furthermore N(I − E) = R(E) ⊆ R(F ) = A−1(R(H)). Then Q =

I − E ∈ P(A,N(H∗)), since R(H) = R(H) = N(H∗)⊥ �

The above Lemma allows us to give a parameterization of the operators that
satisfies a consistent sampling requirement. A similar result, for finite dimensional
spaces, can be found in [9].

Theorem 4.2. Let F,H ∈ L(K,H) be closed range operators such that H =
R(F ) +N(H∗), T = R(F )	N(H∗) and R = R(F ∗) ∩ F−1(N(H∗)). Then,

CS(F,H) = F †PT //N(H∗)H
∗† + L(R(H∗),R) + L(K, N(F )) + L(N(H),K)

Moreover, the operator X0 = F †PT //N(H∗)H
∗† ∈ CS(F,H) satisfies that, given

f ∈ H, it holds ‖FX0H
∗f‖ ≤ ‖FXH∗f‖ for every X ∈ CS(F,H).

Proof. Let A ∈ AH(R(F )) so that R(F ) = A−1(R(H)), since H = R(F )+N(H∗)
it follows that the pair (A,N(H∗)) is compatible. Suppose that X ∈ L(K) ∈
CS(F,H), by Proposition 4.1, I − FXH∗ ∈ P(A,N(H∗)). Then, by Theorem
2.7, I − FXH∗ = PA,N(H∗) + W , for some W ∈ L(R(H), N(H∗) ∩ A−1(R(H)))
(i.e., for some W ∈ L(R(H), N(H∗)∩R(F ))). Recall that PA,N(H∗) = PN(H∗)//T ,
where T = A−1(R(H))	N(H∗) = R(F )	N(H∗); then

PN(F )⊥XPN(H)⊥ = F †FXH∗H∗† = F †(I − PN(H∗)//T )H∗† − F †WH∗†.

Furthermore, since R(H∗†) = N(H∗)⊥ = R(H) and N(H∗†)⊥ = R(H∗), it follows
that

PN(F )⊥XPN(H)⊥ = F †PT //N(H∗)H
∗† + F †W̃ ,

with W̃ ∈ L(R(H∗), N(H∗) ∩R(F )). Then,

X ∈ H†PT //N(H∗)F
∗† + L(K, N(F )) + L(N(H),K) + L(R(H∗),R),(8)

since R(F †) = N(F )⊥ = R(F ∗).
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Conversely, if X satisfies equation (8), then

FXH∗ = PR(F )PT //N(H∗)PR(H) + FWH∗,

for some W ∈ L(R(H∗),R).
Since R(PT //N(H∗)) ⊆ R(F ), R(H)⊥ = N(PT //N(H∗)) and R(FW ) ⊆ N(H∗) ∩

R(F ), then it holds I−FXH∗ = PN(H∗)//T+W̃ , for some W̃ ∈ L(N(H∗)⊥, N(H∗)∩
R(F )) i.e., I − FXH∗ ∈ P(A,N(H∗)), for any A ∈ AH(R(F )) and, in virtue of
Proposition 4.1, X ∈ L(K) ∈ CS(F,H).

Now, letA ∈ AH(R(F )) andX ∈ F †PT //N(H∗)H
∗†+L(K, N(H))+L(N(H),K)+

L(R(H∗),R), from the paragraph above it follows that FXH∗ = I −Q for some
Q ∈ P(A,N(H∗)). Observe that FX0H

∗ = I − PA,N(H∗) and, by equation (2), it
follows that ‖FX0H

∗f‖ ≤ ‖FXH∗f‖, for every f ∈ H.
�

Observe that, if N(F ) = {0} and N(H) = {0} then

CS(F,H) = F †PR(F )	N(H∗)//N(H∗)H
∗† + L(K, F−1(N(H∗))).

Remark 4.3. Assume that, according to equation (1), A ∈ AH(R(F )) has a

decomposition A =

[
a b
b∗ c

]
. Then X0 =

[
0 d
0 0

]
, where d is the Douglas

solution of the equation ax = b.

An important magnitude related with signal processing applications is the
aliasing norm (see [11, 10, 7]): suppose that T ∈ L(H) is the operator that

assign to every signal f ∈ H the reconstructed signal f̂ = Tf . The aliasing
norm is given by ‖TPR(T )⊥‖. Given X ∈ CS(F,H), let aX be the aliasing norm

corresponding to FXH∗. Then, by Theorem 4.2, X0 = F †PR(F )	N(H∗)//N(H∗)H
∗†,

satisfies aX0 ≤ aX , for every X ∈ CS(F,H).

Suppose that F, F ′ ∈ L(K,H) and H,H ′ ∈ L(K,H) satisfy R(F ) = R(F ′) and
R(H) = R(H ′). Although, in general CS(F,H) 6= CS(F ′, H ′), it is possible to
establish a relation between these sets.

Lemma 4.4. Let F,H ∈ L(K,H) be closed range operators such that H = R(F )+
N(H∗) and let A ∈ AH(R(F )). Given Q ∈ P(A,N(H∗)) there is a unique
X ∈ CS(F,H) ∩ L(R(H∗), R(F ∗)) such that Q = I − FXH∗.

Proof. Given Q ∈ P(A,N(H∗)), it is easy to see that F †(I −Q)H∗† ∈ CS(F,H)∩
L(R(H∗), R(F ∗)). Suppose that Q = I − FXH∗ = I − FX ′H∗, with X,X ′ ∈
CS(F,H) ∩ L(R(H∗), R(F ∗)) then 0 = F (X −X ′)H∗ = F †F (X −X ′)H∗H∗† =
PR(F ∗)(X −X ′)PR(H∗) = X −X ′. �

Proposition 4.5. Let F,H ∈ L(K,H) be closed range operators such that H =
R(F ) + N(H∗). Suppose that H ′ ∈ L(K,H), F ′ ∈ L(K,H) satisfy R(F ) =
R(F ′) and R(H) = R(H ′). Then, there is a bijection between CS(F,H) ∩
L(R(H∗), R(F ∗)) and CS(F ′, H ′) ∩ L(R(H ′∗), R(F ′∗)).
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Proof. Let S = R(H)⊥ = R(H ′)⊥, T = R(F ) = R(F ′) and A ∈ AH(T ). Given
X ∈ CS(F,H)∩L(R(H∗), R(F ∗)), by Proposition 4.1 Q = I−FXH∗ ∈ P(A,S)
and by Lemma 4.4, there exists a unique X ′ ∈ CS(F ′, H ′) ∩ L(R(H ′∗), R(F ′∗))
such that Q = I−F ′X ′H ′∗. Let F(X ′) = F †F ′X ′H ′∗H∗†, it follows that F is a bi-
jection between CS(F,H)∩L(R(H∗), R(F ∗)) and CS(F ′, H ′)∩L(R(H ′∗), R(F ′∗)),

and F−1(X) = F ′†FXH∗H ′∗†. �

5. Best approximation of signals with consistency requirement

As it was mentioned in the introduction, when we can not recover signals by
its samples (i.e., f /∈ PW), a common strategy in signal processing is to apply a
filter and thus recover the orthogonal projection of f in PW .

Although in the consistent sampling requirement there is a projection Q in-
volved, the situation is different. Given F,H ∈ L(K,H) such that H = R(F ) +
N(H∗), Proposition 4.1 establishes that, for a signal f ∈ H, the reconstructed

signal f̃ ∈ R(F ) is given by f̃ = (I − Q)f , for some Q ∈ P(A,N(H∗)),
with A ∈ AH(R(F )). Since, generally, Q is not selfadjoint, the reconstructed
signal is not the best approximation of the signal f ∈ H in R(F ). When
R(F )∩N(H∗) 6= {0}, there is a certain degree of freedom in choosing the projec-
tion Q ∈ P(A,N(H∗)). It is an interesting question if for certain signals belong-
ing to a given (closed) subspace M, it is possible to find a Q0 ∈ P(A,N(H∗)),
such that the recovered signal (I −Q0)f be the best approximation of the signal
f , over all possible reconstructed signals that satisfies the consistent sampling
requirement. In other words, we are interested in finding Q0 ∈ P(A,N(H∗))
such that ‖f − (I − Q0)f‖ ≤ ‖f − (I − Q)f‖, for every f ∈ M and for every
Q ∈ P(A,N(H∗)). The solution of this problem is based on Theorem 3.4.

Theorem 5.1. Let F,H ∈ L(K,H) be two closed range operators such that H =
R(F ) + N(H∗), and let M be a closed subspace of H. Then, there exists X0 ∈
CS(F,H) such that ‖f−FX0H

∗f‖ ≤ ‖f−FXH∗f‖, for every X ∈ CS(F,H) and
for every f ∈M, if and only if M⊥+N(H∗)∩R(F ) ⊆M⊥+R(H). Moreover,
FX0H

∗ = PR(F )	N(H∗)//N(H∗) + W0PR(H), where W ∗
0 ∈ L(H) is a solution of the

equation PMPR(H)X = PMPN(H∗)∩R(F ).

Proof. It is a consequence of Theorem 3.4 and Proposition 4.1. �

In [9], the following problem is studied in finite dimensional spaces. Given a
closed subspace M of H, find an operator X ∈ L(K) satisfying the consistent
sampling requirement and such that every signal f ∈ M be perfectly recovered.
This problem can be restated as, finding Q ∈ P(A,N(F ∗)) (with A ∈ AF (R(H)))
such that f − (I −Q)f = Qf = 0, for every f ∈M. Notice that this problem is
a particular case of Theorem 5.1 (see Proposition 3.5).

Corollary 5.2. Let F,H ∈ L(K,H) be a closed range operator such that H =
R(F ) + N(H∗), and let M be a closed subspace of H. Then, there exists X0 ∈
CS(F,H) such that every f ∈ M is perfectly recovered (i.e., f − FX0H

∗f = 0),
if and only if M⊆ R(F ) and c0(M, N(H∗)) < 1.
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Proof. It is a consequence of Proposition 3.5 and Proposition 4.1. �

LetM⊆ R(F ) be a closed subspace such that c0(M, N(H∗)) < 1, and suppose
that T is a closed subspace such thatMuT uN(H∗) = H. Let A ∈ AH(T uM);
observe that, P(A,N(H∗)) is a singleton becauseN = N(H∗)∩A−1(R(H)) = {0}
(see Theorem 2.7). Also notice that Q ∈ P(A,N(H∗)) satisfies that every f ∈M
is perfectly recovered, since N(Q) = A−1(R(H)) =Mu T .

Based on Proposition 3.6, given a closed subspace M of H, it is possible to
characterize the operators X ∈ CS(F,H) that perfectly recover the signals f ∈
M.

Proposition 5.3. Consider closed range operators F,H ∈ L(K,H) such that
H = R(F ) + N(H∗), and a closed subspace M ⊆ R(F ). Then, X ∈ CS(F,H)
satisfies f −FXH∗f = 0 for every f ∈M if and only if, given a complementary
subspace T ofM+N(H∗)∩R(F ) in R(F ) and T ∈ L(R(H)∩M⊥, N(H∗)∩R(F )),

PN(F )⊥XPN(H)⊥ = F †PMuT //N(H∗)H
∗† − F †TH∗†.

Proof. Let A ∈ AH(R(F )), since H = R(F ) + N(H∗) it follows that the pair
(A,N(H∗)) is compatible. Suppose that X ∈ L(K) ∈ CS(F,H). By Proposition
4.1, if holds I − FXH∗ ∈ P(A,N(H∗)), and by Proposition 3.6 we get I −
FXH∗ = PN(H∗)//MuT + T , where T is a closed subspace such that, R(F ) =
T uMuN(H∗) ∩ R(F ) and T ∈ L(R(H) ∩M⊥, R(H) ∩ R(F )), since R(H) is
a closed subspace. Then, PN(F )⊥XPN(H)⊥ = F †PMuT //N(H∗)H

∗† − F †TH∗†.
Conversely, let X ∈ L(K) such that, PN(F )⊥XPN(H)⊥ = F †PMuT //N(H∗)H

∗† −
F †TH∗†, with T ∈ L(R(H) ∩M⊥, R(H) ∩ R(F )). Then, it is easy to see that
I − FXH∗ = PMuT //N(H∗) + T , i.e., I − FXH∗ ∈ P(A,N(H∗)), for any A ∈
AH(R(F )). Then, by Proposition 4.1, X ∈ L(K) ∈ CS(F,H). Furthermore, if
f ∈M, (I−FXH∗)f = PMuT //N(H∗)f = f , i.e., every signal f ∈M is perfectly
recovered.

�

6. Consistent sampling of perturbed signals

Given a signal f ∈ L2(R), perturbed by a stochastic process δf (see below for a
proper definition), in this section, we are interested in studying the existence of a
consistent sampling requirement which is unbiased for a certain family of signals,
and the influence of the perturbation δf on the reconstructed signal is minimal.

In order to be more precise, we fix some terminology. Let µ be a Lebesgue-
Stieltjes measure on R and let H be the Hilbert space L2(µ). Suppose that
(Ω,F , P ) is a probability space; if z : Ω→ R is P -measurable then the expectation
of z is E(z) =

∫
Ω
z(ω)dP (ω).

Let δx : R× Ω→ R be a µ× P -measurable function such that:

(1) for almost every t ∈ R, E(δx(t, .)) = 0,
(2) for almost every ω ∈ Ω, δx(., ω) ∈ H,
(3) E(‖δx‖2) =

∫
Ω

∫
R |δx(ω, t)|2dµ(t)dP (ω) <∞.
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The variance operator A ∈ L(H)+ of δx is defined by

Ax = E(〈x, δx 〉 δx) =

∫
Ω

δx(ω, .)

∫
R
δx(ω, t)x(t)dµ(t)dP (ω),

for every x ∈ H. As it is shown in [16, Lemma 2], the variance operator A is
positive trace class operator.

Problem 6.1. Let H = L2(R), F,H ∈ L(K,H) be closed range operators such
that H = R(F ) + N(H∗). Given a closed subspace M of H, let J = {X ∈
CS(F,H) : E(FXH∗(f + δf)) = f for every f ∈ M}. Find X0 ∈ J such that
E(‖FX0H

∗δf‖2) ≤ E(‖FX0H
∗δf‖2) for every X ∈ J .

Remark 6.2. Observe that, since E(FXH∗(f+δf)) = FXH∗f+E(FXH∗δf) =
FXH∗f , Problem 6.1 has a solution if every signal in M can be perfectly recov-
ered. Then, by Corollary 5.2, a necessary condition is that M ⊆ R(F ) and
c0(M, R(F ) ∩N(H∗)) < 1.

Problem 6.1 is related with the V-approximation processes studied by A. Sard
in [16] and generalized in [1]:

Definition 4. Given a closed subspace M of H and δf with the above assump-
tions and variance operator V ∈ L(H)+, let U = {T ∈ L(H) : E(T (f + δf) =
f, for every f ∈ M}. Then T ∈ U is a V -approximation process over M if
E‖Tδf‖2 ≤ E‖Uδf‖2 for every U ∈ U .

In [1, Theorem 3.4], it is shown that T ∈ L(H) is a V -approximation process
over M if and only if T can be decomposed as T = I − P ∗ + W , for some
P ∈ P(V,M⊥) and W ∈ L(N(V ) ∩M⊥,M⊥). In the following we will assume
that N(V ) = {0}, then T is a V -approximation process over M if and only if
T = I − P ∗, for some P ∈ P(V,M⊥).

Theorem 6.3. Let F,H ∈ L(K,H) be closed range operators such that H =
R(F )+N(H∗) and letM⊆ R(F ) be a closed subspace such that c0(M, N(H∗)) <
1. Suppose that δf is a stochastic process (with the above assumptions) and
variance V ∈ L(H)+, with N(V ) = {0}. Then Problem 6.1 has a solution if
MuN(H∗) = H and R(H) ⊆ V −1(M).

Proof. Since M⊆ R(F ) and c0(M, N(H∗)) < 1, by Corollary 5.2 it follows that
there exists X ∈ CS(F,H) such that M ⊆ R(FXH∗), i.e., for every f ∈ M,
FXH∗f = f . Then, by Remark 6.2, it follows that E(FXH∗(f + δf)) = f ,
for every f ∈ M. Furthermore, by Proposition 4.1, I − FXH∗ ∈ P(A,N(H∗))
with A ∈ AH(R(F )). Then, it follows that FXH∗ = PM//N(H∗), because M u
N(H∗) = H.

On the other hand, Q = I − (FXH∗)∗ = I − PR(H)//M⊥ = PM⊥//R(H). Since

R(H) ⊆ V −1(M), by Lemma 2.2 it follows that Q ∈ P(V,M⊥); then FXH∗ =
I − Q∗ with Q ∈ P(V,M⊥) and by [1, Theorem 3.4] the projection FXH∗ is a
V -approximation process over M⊥. Therefore FXH∗ is a solution of Problem
6.1.

�
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