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BOREL REDUCIBILITY AND CLASSIFICATION OF VON NEUMANN

ALGEBRAS

ROMÁN SASYK AND ASGER TÖRNQUIST

Abstract. Weannounce somenew results regarding the classificationproblem for separable

von Neumann algebras. Our results are obtained by applying the notion of Borel reducibility

and Hjorth’s theory of turbulence to the isomorphism relation for separable von Neumann

algebras.

§1. Introduction. Let H be an infinite dimensional separable complex
Hilbert space and denote by B(H) the space of bounded operators on H,
which we give the weak topology. A separable von Neumann algebra is a
weakly closed self-adjoint subalgebra of B(H). A von Neumann algebra is
called a factor if its center consists of the scalar multiples of the identity.
The factors make up the building blocks of von Neumann algebra theory:
Any von Neumann algebra can be represented as a direct integral of factors
(see [3, III.1.6]). A central problem in the theory of von Neumann algebras
is to classify factors up to isomorphism (see [7]). The first steps towards
a classification were obtained by Murray and von Neumann, [25], when
they introduced the notion of the type of a von Neumann algebra and gave
examples of factors in each of the classes. Another major advance towards
classifying factors was A. Connes’ thesis [5] where he further extended the
notion of type to split the type III case in the subtypes IIIë, 0 ≤ ë ≤ 1.
Denote by vN(H) the set of von Neumann algebras on H. E. Effros [11],
[12] defined a Borel structure on vN(H) and proved that this structure is
standard and that the set of factors F(H) is Borel. One of Effros’s goals
was to show that the set of isomorphism classes of factors endowed with the
quotient Borel structure was not standard, which would imply the existence
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of uncountably many non-isomorphic von Neumann factors. At that time
only few examples were known of non-isomorphic infinite dimensional fac-
tors, thus a solution of this problem was of major importance. The existence
of a continuum of non-isomorphic factors was finally shown by Powers in
1967 for the type III case and by McDuff in 1969 for the type II1 case. In
1971 J. Woods solved Effros’s problem: The isomorphism relation for fac-
tors is not smooth. In modern terminology, what Woods proved was that
E0, the equivalence relation on 2

N of eventual equality, is Borel reducible
to isomorphism of so-called ITPFI factors (see §4.2 or [3, III.3.1] for a
definition).
Until recently, Woods’s result was one of the few theorems of its kind in
the study of von Neumann algebras. For example, it remained an open
problem to show that isomorphism of factors of type II1 is not smooth.
In a forthcoming paper [33] we apply the notion of Borel reducibility from
descriptive set theory to obtain information about the classification problem
for separable von Neumann factors.
Let us briefly recall the key notions surrounding Borel reducibility, but
otherwise refer to the excellent introduction in [20], or the survey [23]. If
E and F are equivalence relations on standard Borel spaces X and Y ,
respectively, then we say that E is Borel reducible to F , written E ≤B F , if
there is a Borel f: X → Y such that

x E y ⇐⇒ f(x) F f(y).

Thus if E ≤B F then the points of X can be classified up to E equivalence
by a Borel assignment of invariants that we may think of as F -equivalence
classes. E is smooth if it is Borel reducible to the equality relation onR. While
smoothness is desirable, it is most often too much to ask for: As mentioned
above, E0 is not smooth. A more generous class of invariants which seem
natural to consider are countable groups, graphs, fields, or other countable
structures, considered up to isomorphism. Thus, following [20], we will say
that an equivalence relation E is classifiable by countable structures if there
is a countable language L such that E ≤B ≃Mod(L), where ≃Mod(L) denotes
isomorphism in Mod(L), the Polish space of countable models of L with
universe N. We note that E0 may be seen to be classifiable by countable
structures.
It turns out that even allowing this more generous class of invariants is
not enough: There are many natural classification problems in mathematics
where countable structures do not suffice as invariants. Hjorth conceived
of his theory of turbulence (see again [20]) as a general tool to prove that
various equivalence relations are not classifiable by countable structures.
One of the early applications of this theory was due to Foreman and Weiss
[14], who showed that the measure preserving ergodic transformations on
the unit interval are not classifiable, up to conjugacy, by countable structures.
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Subsequently, similar results have been achieved for the weaker notion of
orbit equivalence (see §2) of measure preserving actions of non-amenable
groups, see [35], [21].
Our main results are

Theorem 1. The isomorphism relation for factors of type II1, II∞ and IIIë,
0 ≤ ë ≤ 1 is not classifiable by countable structures.

Theorem 2. If L is a countable language, then ≃Mod(L) <B ≃FII1 , where
≃FII1 denotes the isomorphism relation for factors of type II1.

Since it is known that the isomorphism relation for countable graphs, say,
is complete analytic, we obtain the following as a consequence of Theorem 2:

Theorem 3. The isomorphism relation ≃FII1 of factors of type II1 is a com-
plete analytic subset of FII1 × FII1 , where FII1 denotes the Borel set of II1
factors.

The proofs of these results rely heavily on results obtained by Popa’s
novel “deformation rigidity techniques”, in particular on the class of HT
factors (discussed below) introduced in [27], as well as Hjorth’s theory of
turbulence. In this paper we will first in §2 give some background regarding
von Neumann algebra factors, in particular regarding the group-measure
space construction, which plays the starring role in all the proofs above. In §3
we give an outline of the proofs. In §4 we discuss some of the open problems
and questions that remain.

§2. Von Neumann algebras. A separable vonNeumannAlgebra is a weak-
ly closed self-adjoint algebra of operators on a separable complex Hilbert
space. A von Neumann algebra is called a factor if its center only consists of
the scalar multiples of the identity. A von Neumann algebra N is said to be
finite if it admits a finite faithful normal tracial state, i.e., a linear functional
ô : N → C such that: ô(x∗x) ≥ 0, ô(x∗x) = 0 iff x = 0, ô(1) = 1 ,
ô(xy) = ô(yx) and the unit ball of N is complete with respect to the norm
given by the trace ‖x‖ô = ô(x

∗x). If such a trace exists it need not to be
unique, however, a fundamental fact is that if a finite von Neumann algebra
is also a factor, then it has a unique trace.
Some basic examples of finite von Neumann algebras are:

1. L∞(X,ì), the set of essentially bounded measurable functions on a
standard Borel probability space (X,ì). They act by multiplication on
L2(X,ì). Here the trace is given by the integral. The Borel functional
calculus yields that any separable Abelian finite von Neumann algebra
is of this form.

2. Mn(C), the set of n × n complex matrices with the normalized trace
TrMn(C). Any finite dimensional von Neumann factor is of this form.
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3.
⊕k
i=1Mni (C) with the trace given by

∑k
i=1 ci TrMni (C); ci > 0,

∑k
i=1 ci = 1. Moreover any finite dimensional von Neumann alge-

bra is of this form.

Von Neumann algebras are categorized into types according to the behav-
ior of the lattice of projections. The types are called I, II1, II∞ and IIIë, 0 ≤
ë ≤ 1 , see [3, III.1.4] or [32] for an introduction. A von Neumann algebra is
of type II1 if it is finite and it doesn’t have minimal projections (a projection
p in a von Neumann algebra M ⊆ B(H) is said to minimal if there is no
projection q ∈ M with 0 < q < p, where q < p means im(q)  im(p).)
IfM is a II1 factor and ô is the normalized trace onM then

{ô(p) : p ∈M is a projection} = [0, 1].

Factors of type II∞ are of the form

M ⊗ B(H)

where M is a factor of type II1 and H is an infinite dimensional Hilbert
space. A factor of type II∞ has a semifinite trace which is unique up to
scaling.
Murray and von Neumann already exhibited examples of factors of
type II1. This was done using two fundamental constructions, the group
von Neumann algebra and the group-measure space construction. Since both
constructions still play a preponderant role in the theory and they are at the
core of some of our arguments, we give here a more or less detailed account
of how they are constructed.

2.1. The group von Neumann algebra. Let G be an infinite discrete group.
ℓ2(G) is the infinite dimensional Hilbert space with orthonormal basis
{îg : g ∈ G}. The group G acts on ℓ2(G) by the left regular represen-
tation ug(îh) = îgh . The group von Neumann algebra L(G) is the von

Neumann algebra generated by the unitary operators ug ∈ B(ℓ2(G)), that

is, L(G) = 〈ug : g ∈ G〉
wo
, the closure in the weak operator topology of

the algebra generated by the ug . The trace is given by ô(ug) = 〈ug(îe), îe〉,
where e denotes the identity of G . It is easy to show that L(G) is a factor iff
the group G is ICC (infinite conjugacy classes) i.e., for each g ∈ G\{e} the
conjugacy class {hgh−1 : h ∈ G} is infinite.
Let GP denote the Polish space of all countable groups with universe N,
and consider the equivalence relation ∼vN in GP defined by

G ∼vN H ⇐⇒ L(G) is isomorphic to L(H ).

We do not know how complex this equivalence relation is (cf. Problem 7
below.) Two outstanding (yet seemingly unrelated) open problems in the
theory are concerned with this equivalence relation:
(a) Is it true that Fn ≁vN Fm when n 6= m, n,m ≥ 2? That is, when is
L(Fn) isomorphic toL(Fm)? HereFn denotes the free group on n generators.
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Free probability was first envisioned by Voiculescu as an attempt to solve
this problem (see [38], [39] for an overview.)
(b) If G and H are countably infinite ICC property (T) groups, does
G ∼vN H imply that G is isomorphic to H ? This problem is known as
Connes’s conjecture.1

The first appearance of property (T) in the context of operator algebras
is Connes result [8] stating that the fundamental group of the group von
Neumann algebra of an ICC property (T) group is countable. Recall that
the fundamental group of a II1 factorM is defined as

F (M ) = {ô(p)/ô(q) | pMp ≃ qMq}

where p, q ∈M are non-zero projections and ô denotes the trace onM . The
fundamental group is a subgroup of R>0. As a consequence of his work
on HT factors, Popa gave in [27] the first example of a type II1 factor with
trivial fundamental group, solving a longstanding problem in the theory.
Going back to Connes’s conjecture, in [28] Popa gave what may be seen as a
partial affirmative answer to the conjecture but for actions of property (T)
groups. In §3 we explain some aspects of Popa’s work that are pertinent to
our results while for a more thorough introduction to Popa’s theory and its
many applications we refer the reader to the survey papers [10], [29] and [36].
It is worth mentioning that in sharp contrast with these two problems,
Connes’s seminal work on injective factors [6] shows that if a groupG is ICC
and amenable, L(G) is isomorphic to the unique hyperfinite II1 factor R.

2.2. The group-measure space construction. Let G be a countably infinite
discrete group which acts in a measure preserving way on a Borel probability
space (X,ì). For each g ∈ G and æ ∈ L2(X,ì) the formula

óg(æ)(x) = æ(g
−1 · x)

defines a unitary operator on L2(X,ì).
We identify the Hilbert spaceH = L2(G,L2(X,ì)) with the Hilbert space
of formal sums

∑

g∈G ægîg , where the coefficients æg are inL
2(X,ì) and sat-

isfy
∑

g ‖æg‖
2
L2(X,ì)

<∞, and îg are indeterminates indexed by the elements

of G . The inner product onH is given by

〈
∑

g∈G

æg(x)îg ,
∑

g∈G

æ ′g(x)îg〉 =
∑

g∈G

〈æg , æ
′
g〉L2(X,ì).

Both L∞(X,ì) and G act by left multiplication onH by the formulas

f(æg(x)îg) = ((f(x)æg(x))îg ,

uh(æg(x)îg) = óh(æg)(x)îhg ,

1See [2] for more information regarding Kazhdan’s property (T).
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where f ∈ L∞(X,ì), æg(x) ∈ L
2(X,ì) and g, h ∈ G . Thus if we denote

by FS the set of finite sums,

FS = {
∑

g∈G

fgug : fg ∈ L
∞(X,ì), fg = 0, except for finitely many g},

then each element in FS defines a bounded operator on H. Moreover,
multiplication and involution in FS satisfy the formulas

(fgug)(fhuh) = fgóg(fh)ugh

and

(fug)
∗ = óg−1(f

∗)ug−1

and so FS is a ∗-algebra. By definition, the group-measure space von Neu-
mann algebra is the weak operator closure of FS on B(H) and it is denoted
by L∞(X,ì) ⋊ó G . The trace on FS, defined by

ô(
∑

g∈G

fgug) =

∫

X
fe dì,

extends to a faithful normal tracial state in L∞(X ) ⋊ó G by the formula
ô(T ) = 〈T (îe), îe〉, where e represents the identity of G . Observe that
L∞(X,ì) embeds into L∞(X ) ⋊ó G via the map f 7→ fue and has the
property that its normalizer inside L∞(X ) ⋊ó G ,

NL∞(X )⋊óG(L
∞(X,ì)) =

{u ∈ U(L∞(X )⋊ó G) : u L
∞(X,ì) u∗ = L∞(X,ì)}

generates a weakly dense subalgebra in L∞(X ) ⋊ó G .
If ó is a free action, then L∞(X,ì) is a MASA (maximal abelian sub-
algebra) ofM , in which case it is called aCartan subalgebra ofL∞(X )⋊óG ,
(i.e., aMASAwith aweakly dense normalizer). If ó is free thenL∞(X )⋊óG
is a factor (of type II1, sinceG is infinite) if and only if ó is an ergodic action.
There is an important connection between the notion of orbit equivalence
and certain isomorphisms between group-measure space von Neumann al-
gebras. Recall that if ó and ô are measure preserving actions on standard
Borel probability spaces (X,ì) and (Y, í), respectively, of possibly different
groupsG andH , we say that ó and ô are orbit equivalent if there is a measure
preserving bijection è : X → Y such that

x Eó x
′ ⇐⇒ è(x) Eô è(x

′) (a.e.),

i.e., if ó and ô generate “isomorphic” orbit equivalence relations Eó and
Eô . Feldman and Moore showed in [13] that two free ergodic measure
preserving actions ó and ô are orbit equivalent if and only if their corre-
sponding inclusions of Cartan subalgebras L∞(X ) ⊂ L∞(X ) ⋊ó G and
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L∞(Y ) ⊂ L∞(Y ) ⋊ô H are isomorphic. Thus the study of orbit equiva-
lence of measure preserving group actions can be translated into a problem
regarding inclusions of finite von Neumann algebras.

§3. Outline of the proofs.

3.1. Theorem 1. Let a : SL(2,Z) y Z2 be the natural linear action of
SL(2,Z) on Z2. Consider the natural measure preserving ergodic a.e. free
action ó0 of SL(2,Z) on X = T

2 equipped with the Haar measure ì and
given by

ó0(g)(÷)(h) = ÷(a(g
−1)(h)),

where we identify T2 with the character group of Z2. The matrices

A =

(

1 2
0 1

)

, B =

(

1 0
2 1

)

generate a copy of F2 as a finite index subgroup of SL(2,Z), and so we get
an action ó : F2 y T2 by letting ó = ó0 | F2. This action is still ergodic, see
for instance [34, §2]. The group measure space factor L∞(X,ì) ⋊ó F2 was
studied in detail by Sorin Popa in [27], where it was shown that L∞(X,ì) ⊂
L∞(X,ì)⋊óF2 is a so-calledHTs Cartan subalgebra (see below), and that it
is the uniqueHTs Cartan subalgebra inL

∞(X,ì)⋊óF2 up to conjugation by
a unitary. In effect this means that the unitary conjugacy class of L∞(X,ì)
is definable inside of L∞(X,ì)⋊ó F2 and depends only on the isomorphism
type of L∞(X,ì)⋊ó F2.
We refer to [27, Definition 6.1] for the exact definition of HTs , but in
short, the H stands for Haagerup property, meaning that L∞(X,ì) has the
relative Haagerup property in L∞(X,ì)⋊ó F2, and the T means that it also
has the relative property (T), that is, L∞(X,ì) ⊂ L∞(X,ì)⋊ó F2 is a rigid
inclusion in the sense defined by Popa. These are von Neumann algebra
generalizations of the corresponding properties for discrete groups. Rather
than explaining the technical definition of theHaagerup property for groups,
we refer the reader to the monograph [4], and to the recent survey paper [26]
in this journal for applications and open questions regarding property H.
Here we just mention that amenable groups and the free groups Fn have
the Haagerup property [17], and hence by [27, Theorem 3.1] the inclusion
L∞(X,ì) ⊂ L∞(X,ì) ⋊ó F2 has the relative property H. For groups, the
property H and the property (T) are mutually exclusive, in the sense that a
discrete group that satisfies both properties must be finite. A remarkable fact
is that the inclusion of groups Z2 ⊂ Z2 ⋊ SL(2,Z) satisfies both the relative
property (T) and the property H. It is the combination of deformation (i.e.,
the Haagerup property) and rigidity (i.e., property (T)), in particular the
inclusionZ2 ⊂ Z2⋊SL(2,Z), that is the engine behind Popa’s results in [27],
and in turn, the engine behind our results.
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Returning to the proof, we now proceed as in [34]: Let a, b be generators
forF2, and letTa , Tb ∈ Aut(X,ì) be themeasure preserving transformations
corresponding to the action of a and b according to ó. (Here Aut(X,ì)
denotes the group of measure preserving transformations, equipped with
Polish group topology it inherits when naturally identified with a weakly
closed subgroup of the unitary group of L2(X,ì).) It was shown in [34, §3]
that the set

Ext(ó) = {S ∈ Aut(X,ì) : Ta , Tb and S generate an a.e. free action of F3}

forms a dense Gä in Aut(X,ì) and that if we, for S ∈ Ext(ó), denote by
óS : F3 y (X,ì) the resulting a.e. free ergodic F3-action, then the equiva-
lence relation

S1 ∼oe S2 ⇐⇒ óS1 is orbit equivalent to óS2

has meagre classes and the set of transformations with dense ∼oe-class is
comeagre. It was pointed out by Kechris in [22, Theorem 17.1] that this
equivalence relation is generically S∞-ergodic, meaning that if Y is a Polish
S∞ space and f: Aut(X,ì)→ Y is a Baire measurable map which satisfies

S1 ∼oe S2=⇒ (∃g ∈ S∞)g · f(S1) = f(S2)

then f must be constant on a comeagre set. Since ≃Mod(L) is induced by a
continuous S∞ action, this shows that ∼oe is not classifiable by countable
structures.
For S ∈ Ext(ó), let

MS = L
∞(X,ì)⋊óS F3.

The fact that F3 has the Haagerup property and that L
∞(X,ì) ⋊ó F2 ⊆

L∞(X,ì) ⋊óS F3 can be seen to imply that L
∞(X,ì) is the unique (up to

perturbation by a unitary) HTs Cartan subalgebra of L
∞(X,ì)⋊óS F3.

One now shows that the map S 7→ MS is Borel. Further, if S ∼oe S
′

then MS ≃ MS′ by Feldman and Moore’s Theorem. On the other hand,
if MS ≃ MS′ then any isomorphism ϕ : MS → MS′ must, after possibly
perturbing it with a unitary, map L∞(X,ì) ⊂MS to L

∞(X,ì) ⊂MS′ . But
then by Feldman–Moore, we must have that óS is orbit equivalent to óS′ .
Thus S 7→ MS provides a Borel reduction of ∼oe to ≃

FII1 . Consequently,
since ∼oe is not classifiable by countable structures, neither is ≃

FII1 .
The II∞ and IIIë cases are consequences of the II1 case, but this requires
more sophisticated use of the rigidity properties of the factors MS above.
For the II∞ case, one shows that the map

S 7→MS ⊗ B(l 2(N)),

whereB(l 2(N)) denotes the bounded operators on l 2(N), is a Borel reduction
of ∼oe to ≃

II∞ . For the IIIë case, the map

S 7→MS ⊗Rë
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provides a Borel reduction of ∼oe to ≃IIIë , where Rë is a (fixed) injective
factor of type IIIë.

3.2. Theorem 2. Theorem 2 relies on another deformation-rigidity result
of Sorin Popa. Recall that if G is a countably infinite group then the (left)
Bernoulli shift â : G y [0, 1]G is defined by

â(g)(x)(h) = x(g−1h).

The Bernoulli shift is ergodic and preserves the product measure.
Theorem (Popa, [28, 7.1]). Suppose G1 and G2 are countably infinite
discrete groups, â1 and â2 are the corresponding Bernoulli shifts on X1 =
[0, 1]G1 and X2 = [0, 1]

G2 , respectively, andM1 = L
2(X1) ⋊â1 G1 andM2 =

L2(X2)⋊â2G2 are the corresponding group-measure space II1 factors. Suppose
further that G1 and G2 are ICC groups having the relative property (T) over
an infinite normal subgroup. ThenM1 ≃M2 iff G1 ≃ G2.
The group SL(3,Z) has property (T) outright (see [2]) and is ICC, and so
any group of the formH ×SL(3,Z), whereH is ICC, satisfies the hypotheses
of Popa’s Theorem. Thus, to prove Theorem 2, it suffices to show that if L
is a countable language, then ≃Mod(L) is Borel reducible to isomorphism of
groups of the form H × SL(3,Z), H ICC, i.e., that isomorphism of groups
of the form H × SL(3,Z) is Borel complete for countable structures, in the
sense of [15].
To this end, we modify a construction by Mekler, [24]. Mekler defines a
notion of ‘nice graph’, and proves (in effect) that the isomorphism relation of
countable connected nice graphs is Borel complete for countable structures.
Mekler then defines from a given countable nice graph Γ (and a prime p,
which we shall keep fixed here) a countable group G(Γ), which we will call
theMekler group of Γ, and shows that for nice graphs, Γ1 ≃ Γ2 iff G(Γ1) ≃
G(Γ2). The association Γ 7→ G(Γ) is Borel, and moreover, for every graph
automorphism of Γ there is a corresponding group automorphism of G(Γ).
However, the groups G(Γ) are generally not ICC.
To remedy this, we consider for each connected nice graph Γ the nice
graph ΓF2

, defined by

(m, g) ΓF2
(n, h) ⇐⇒ m Γ n ∧ g = h,

consisting of F2 copies of Γ. (ΓF2
is not connected, but still nice.) Clearly,

F2 acts by graph automorphisms on ΓF2
. Going to the corresponding

Mekler group G(ΓF2
), we have a corresponding action of F2 by group

automorphisms on G(ΓF2
). Thus we may form the semi-direct product

G(ΓF2
) ⋊ F2. One now checks that this groups is indeed ICC. Thus the

group

GΓ = SL(3,Z)×G(ΓF2
)⋊ F2,

is an ICC group with the relative property (T) over SL(3,Z). The argument
is finished by arguing that SL(3,Z), as a subgroup of GΓ, consists exactly of
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the elements of GΓ which commutes with all elements of

{g ∈ GΓ : (∃÷ ∈ Char(GΓ)) ÷(g) 6= 1}.

Supposing now thatGΓ1 andGΓ2 are isomorphic, it follows thatG(Γ
1
F2
)⋊F2

is isomorphic to G(Γ2
F2
) ⋊ F2, from which it may in turn be deduced that

G(Γ1
F2
) is isomorphic toG(Γ2

F2
). Then byMekler’s construction, Γ1

F2
≃ Γ2

F2
,

so if Γ1 and Γ2 are connected nice graphs then Γ1 ≃ Γ2. Thus the isomor-
phism relation of connected nice graphs is Borel reducible to isomorphism
of countable groups with the relative property (T) over an infinite normal
subgroup, which by Popa’s Theorem is all we needed to show.

§4. Some open problems. In this section we briefly discuss some open
problems related to the results stated above that we find may be of interest
to logicians.

4.1. The Effros–Maréchal topology. The space vN(H) has a natural Polish
topology, called the Effros–Maréchal topology. It is most easily defined as
follows: Let L1(H) denote the unit ball in B(H), which is compact in the
weak topology. Then the map

M 7→M ∩ L1(H)

is 1-1, and so wemay identify vN(H) with a subset ofK(L1(H)), the space of
compact subsets of L1(H). The Effros–Maréchal topology is the topology
vN(H) inherits under this identification. It may be shown that vN(H) is
Polish in this topology, see [18, Theorem 2.8]. The set of factors F forms
a dense Gä set in vN(H), see [19, p. 402]. The most fundamental open
problem seems to be:

Problem 1. Are the isomorphism classes in vN(H) (equivalently, F)
meagre? Are the unitary conjugacy classes meagre?

If either part of problem 1 is answered in the affirmative, the next natural
question to ask is:

Problem 2. Does the unitary group act turbulently on vN(H)?

Even though the subsets of II1, II∞ or III factors are not Polish in the
Effros–Maréchal topology, they all form Borel sets, and it is tempting to ask
if one can find ‘natural’ topologies on these spaces in which Problem 1 and 2
would make sense. We remark that by [1, 5.2.1], it is possible to find a Polish
topology (with the same Borel structure) on the subsets II1, II∞ and III
such that the conjugation action of the unitary group becomes a continuous
action, but by the same token, [1, 5.1.6], applying this too crudely might
make a conjugacy class clopen. Thus what we are really asking is if these
sets can be given Polish topologies where Problem 1 and 2 have affirmative
answers.
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It shouldbe noted thatProblem1 is strongly related to the so-calledConnes
embedding conjecture (see for instance [26]) for separable von Neumann
algebras, which states that every separable type II1 factor can be embedded
into the ultrapower RN/U , where R is the injective type II1 factor, and U
is an ultrafilter in N. (RN/U is usually denoted Rù in the von Neumann
algebra literature, since it is convention there to use ù to denote the ultra-
filter.) Indeed, an affirmative answer to Problem 1 is tantamount to refuting
this conjecture, by the work of Haagerup and Winsløw in [19]. Namely,
Haagerup andWinsløw have shown that the Connes’ embedding conjecture
is equivalent to the statement that the injective factors are dense in F. Since
the set of injective factors isGä , Connes’ embedding conjecture is equivalent
to that the generic element in F is injective. On the other hand, Haagerup
and Winsløw have also shown that the type III1 factors form a dense Gä
subset of F . Hence the Connes embedding conjecture is equivalent to the
assertion that the isomorphism class of the (unique) injective type III1 factor
forms a dense Gä set.

4.2. ITPFI factors andT -sets. AfactorM is called an ITPFI factor (short
for Infinite Tensor Product of Factors of type I, also called an Araki–Woods
factor), if it has the form

M =
∞

⊗

k=1

(Mnk (C), φk)

whereMnk (C) denotes the algebra of nk×nk matrices and the φk are faithful
normal states. (We refer the reader to [3, III.3.1] for the necessary basics
regarding infinite tensor products.). Among the ITPFI factors, the Powers
factors Rë, 0 < ë < 1, are defined by taking nk = 2 for all k and φk(x) =
Tr(ñëx) where

ñë =

( 1
1+ë 0

0 ë
1+ë

)

.

Historically, the importance of the Powers factors is twofold: they provided
the first example of uncountablymanynon isomorphic vonNeumann factors
(all of type III) [31]. They were also the starting point of the asymptotic
analysis of factors carried on in the late sixties and early seventies that
culminated with Connes classification of type III factors [5] and of injective
factors [6]. Since ITPFI factors are in particular injective factors, a corollary
of Connes work is that up to isomorphism there is only one ITPFI factor
of type IIIë, for each ë 6= 0. At the same time, Woods proved [40] that the
classification problem for ITPFI factors is not smooth by showing that E0 is
Borel reducible to isomorphism of ITPFI factors. (see [41] for an historical
overview of ITPFI factors and chapter §5 of [9] for an overview of Connes
work.) Of course, the factors analyzed by Woods in [40] are of type III0 and
injective. In §4 of our forthcoming paper [33] we show
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Theorem 4. The isomorphism relation for injective factors of type III0 is
not classifiable by countable structures.

However the following remains open:

Problem 3. Are ITPFI factors classifiable by countable structures?

Woods uses an invariant ñ(M ), defined as

ñ(M ) = {ë ∈ (0, 1): M ⊗Rë ≃ Rë}

to distinguish the factors constructed there up to isomorphism. (Here Rë,
ë ∈ (0, 1), denotes the Powers factors, see [3, III.3.1.7]). The invariant ñ
has been replaced by the Connes invariant T (M ), called the T -set of M ,
the general definition of which is rather intricate. In the context of ITPFI
factors, T (M ) is given by

T (M ) = {t ∈ R :
∞
∑

i=1

(

1− |
∑

k

(α(i)k )
1+it |

)

<∞},

where α(i)k denotes kth eigenvalue of φi , see [3, III.4.6.9]. From this it can
be deduced that the T -set is a Kó subgroup of R. It has been shown that all
countable subgroups of R and many uncountable subgroups are realizable
as T -sets of an ITPFI factor (see [16]), but the following seems to be open:

Problem 4. Is every Kó subgroup of R the T -set of some ITPFI factor?

The most natural approach to this problem would be to try to construct
from a given Kó subgroup G ≤ R a corresponding ITPFI factor M with
T (M ) = G . Can such a construction be natural? More precisely, let

Só(R) = {(Kn) ∈ K(R)
N : (∀n)Kn = −Kn ∧Kn ⊆ Kn+1

∧Kn +Kn ⊆ Kn+1}

and let

(Kn) ∼ (K
′
n) ⇐⇒

⋃

Kn =
⋃

K ′
n.

Then we can identify a Kó subgroup of R with an equivalence class in
Só(R)/ ∼.

Problem 5. Is there a Borel f: Só(R)→ ITPFI such that

T (f(Kn)) =
⋃

Kn

and if (Kn) ∼ (K
′
n) then f(Kn) ≃ f(K

′
n)?

4.3. Group von Neumann algebras vs. group-measure space von Neumann

algebras. It is clear from the outline of the proof of Theorem 1 that what
we have really shown is that II1 factors that arise from the group measure
space construction are not classifiable by countable structures. Even more
specifically, we are dealing with those that arise from an F3-action. The
proof may be adapted to show that for any n ≥ 2, the group measure space
von Neumann algebras arising from an Fn action are not classifiable by
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countable structures. However, in the light of the results of [21], it is natural
to ask:

Problem 6. If G is a countably infinite non-amenable group, is it true that
the group measure space II1 factors arising from probability measure pre-
serving ergodic G-actions are not classifiable up to isomorphism by countable
structures?

Our last problem is about the contrasting situation for groupvonNeumann
algebras. It is generally known that group vonNeumann algebras and group
measure spaces von Neumann algebras can be rather different. Indeed, one
of the most striking applications of free probability theory is Voiculescu’s
Theorem [37] stating that the group von Neumann algebras L(Fn) of free
groups on n generators n ≥ 2, don’t have Cartan subalgebras, thus they are
not groupmeasure space vonNeumann algebras. This result was generalized
recently on [30] without using free probability theory.
Recall the equivalence∼vN fromour discussion of the group vonNeumann
algebra (§2.1):

G ∼vN H ⇐⇒ L(G) is isomorphic to L(H ).

In light of Theorem 1, it is natural to ask:

Problem 7. Is the isomorphism relation for group von Neumann algebras of
countable groups classifiable by countable structures? That is, is ∼vN classifi-
able by countable structures?

One could consider Problem 7 more narrowly and ask if a “weak” version
of Connes’ conjecture, discussed in §2.1, is true: Is the relation∼vN restricted
to the class of ICC property (T) groups classifiable by countable structures?
A negative answer to this would of course refute Connes’ conjecture in a
very strong way.
On the other hand one could, more broadly, ask if the classification prob-
lem for group von Neumann algebras is as difficult as the one for group-
measure space von Neumann algebras. More precisely, what is the relation-
ship between ∼vN and the isomorphism relation for group-measure space
factors in the Borel reducibility hierarchy?
All of these questions are, to our knowledge, wide open and quite interest-
ing, since their solution may shed some light on Connes’ conjecture and the
general relationship between a group and its group von Neumann algebra.
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