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On the Papoulis sampling theorem: Some General
Conditions.
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Abstract—Some general conditions for multichannel sampling
are established for wide sense stationary sequences with spectral
density. First, necessary and sufficient conditions are given for
these processes so that they are linearly determined by the
samples obtained from a multichannel sampling scheme. Some
results are studied for stationary sequences, and then applied to
the problem of sampling, not necessarily band limited, wide sense
stationary processes. Conditions are also given for the existence
of a frame sequence of the samples. In the case of frames, the
condition that the spectral measure is absolutely continuous is
proved to be necessary.

Index Terms—Multi-channel sampling, stationary sequences,
frames, Hilbert spaces.

I. INTRODUCTION

Papoulis showed [21] that a band-limited function f ∈
L2(R) can be recovered from m output signals/functions
obtained by filtering f with m appropriate time invariant
linear filters, and then sampling these outputs at 1

m the
Nyquist sampling rate associated to the input f . That paper
explored sufficient conditions for a Shannon like recovery
series expansion to hold. This original work extended an idea
of Shannon and others of reconstructing a signal considering
the samples of the signal and its derivatives. The novelty of this
sampling scheme relied on that more general conditions on the
m linear filters (or channels) were given, hence generalizing
the derivation operations. However, Papoulis’ conditions are
more than sufficient. They are given in terms of interpolating
formulas which involve the time and frequency domains at the
same time, and stability conditions are not mentioned. Also,
in in [22], straightforward extensions are given for wide-sense
stationary (w.s.s.) random processes. Brown, in [5] gave a
more detailed study of this result for L2(R) band limited sig-
nals. He realized that the conditions can be given in a clearer
matrix form in the frequency domain. With this formulation,
some sufficient stability conditions in terms of the spectrum
of these matrices arise in a natural way. The formulation of
Brown, given in terms of the eigenvalues, more specifically
the determinant, of these functional matrices resembles and
is related to the theory of shift invariant subspaces (SIS) of
L2(R) with a finite number of generators and Riesz bases [7].
This relationship between Papoulis and Brown’s results and the
theory of Riesz bases is treated explicitly in [28], where a more
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general result for shift invariant subspaces (SIS) is obtained
(see also [8]). There, the results are given in terms of some
sufficient conditions, and those results are extended for some
classes of non band limited L2(R) functions. In [8], some
simple extensions for the case of w.s.s. random processes are
mentioned. Finally, another interesting extension of Papoulis’
work is Hoskins’ et al., [13], where some general conditions
for the convergence of the sampling expansions of Lp(R)
(p 6= 2) for generalized, band limited, functions are given.
The problem is also closely related to U-invariant sampling
[9], [10], [23].
In this line, here we study some necessary and sufficient
conditions for multichannel sampling of wide sense stationary
(w.s.s.) sequences, and then we relate these results to the
problem of sampling multi-band w.s.s. processes. We also
study conditions for stability in terms of Hilbert space frames.

II. PRELIMINARIES

In this section, some known results and notation are intro-
duced in order to make this presentation self-contained.

A. Stationary Processes

This brief description follows closely [25], [26]. Let X =
{Xk}k∈Z ⊂ L2(Ω,F ,P) be a zero mean, complex, w.s.s.
random sequence over a probability space (Ω,F ,P). In this
case, it is known by Bochner’s Theorem that for some finite
Borel measure ν (spectral measure) the correlation function
can be written as:

〈Xk, Xj〉L2(Ω,F,P) = E(XkXj) =

∫
[−π,π]

eiλ(k−j)dν(λ) .

In the case that ν is absolutely continuous with respect to the
Lebesgue measure, then, there exists its Radon-Nikodym (RN)
derivative φ, i.e. the spectral density of X , such that for any
measurable subset A we have ν(A) =

∫
A
φ(λ)dλ. For this

and other measure theoretical aspects of this paper we refer
the reader to [12].
If H(X ) = spanX ⊂ L2(Ω,F ,P), the mean square esti-
mation theory for stationary sequences is mainly based on
Kolmogorov’s isomorphism:

I : L2([−π, π], dν) −→ H(X ) (1)

given by the formula:

I(f) =

∫
[−π,π]

f(λ)dM(λ) ,
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where M is the (orthogonal) random measure associated to X .
Finally, if A is a Borel subset, then ν, M , and Xk are related
by the following formulas:

E|I(1A)|2 = E|M(A)|2 = ν(A)

and
Xk =

∫
[−π,π]

eikλdM(λ) . (2)

Analogous results hold for {Xt}t∈R a w.s.s. random pro-
cess with index time t ∈ R but with the integrals being
taken over the whole real line R. Indeed, with appropriate
restrictions, the whole theory can be constructed for stationary
processes indexed over more general Locally Compact Abelian
(LCA) Groups. Moreover, from the spectral theory of unitary
operators in a Hilbert space [1], analogous representations
to (2) are valid on a Hilbert space H, and therefore none
of the results presented here are essentially changed if one
considers a stationary sequence X = {Xk}k∈Z ⊂ H with H
a complex Hilbert space. However, the reader should keep in
mind the case H = L2(Ω,F ,P) which is the main interest in
applications.
Following [26], linear time invariant filtering operations on X
are defined by:

Yk =

∫
[−π,π]

f(λ)eikλdM(λ) , f ∈ L2([−π, π], dν),

so that the resulting stationary sequence Y = {Yk}k∈Z can
be thought as the output of a linear system with a frequency
response given by f (i.e. filter) and input X = {Xk}k∈Z.

B. Miscelaneous notation and remarks
If A is any subset, its associated indicator function will

be noted 1A. Whenever it is mentioned that a property
holds “a.e.” (or almost everywhere) without mention of the
underlying measure, it will be implicitly understood that we
are referring to the usual Lebesgue measure, otherwise if it is
not the case it will be clear from the context. For a Lebesgue
measurable subset A ⊆ R its (Lebesgue) measure will be
denoted |A|. According to the motivation of this work all other
involved measures µ, ν, etc. are supposed to be finite and if µ
is absolutely continuous with respect to ν its Radon-Nikodym
(RN) derivative will be denoted dµ

dν . Some properties will be
described in terms of some particular mappings between the
intervals [−π, π), [−π,−π + 2π

m ), (m ∈ N) and R. These
mappings are respectively defined as:

ϕm(λ) : [−π, π) −→ [−π,−π +
2π

m
),

ϕm(λ) =
m−1∑
k=0

(
λ− 2πk

m

)
1

[−π+ 2πk
m ,−π+

2π(k+1)
m )

(λ) ,

and

ϕ(λ) : R −→ [−π, π),

ϕ(λ) =
∑
k∈Z

(λ− 2πk)1Ik(λ) , Ik = [−π, π) + 2πk . (3)

If A ∈ Cn×n then its set of eigenvalues is denoted σ(A).

C. Frames, Riesz Bases and Minimality

Let us review some of the basic results about frames
and Hilbert spaces which are going to be used here. For a
comprehensive basic reference about the general theory of this
topic see e.g. [7], [11].

Definition 1. A sequence {fn}n∈N ⊂ H is a frame for H if
there exist constants C1, C2 > 0 such that

C1 ‖f‖2H ≤
∞∑
n=1

|〈f, fn〉H|2 ≤ C2 ‖f‖2H ,

for every f ∈ H.

Frames, in our context, provide very useful tools for
sampling and reconstructing signals. Frames are some times
referred as over complete (unconditional) bases. On the other
hand, frames provide several iterative reconstruction methods
for sampled signals among other interesting properties [11].

Definition 2. A Riesz basis for H is a family {fn}n∈N of the
form fn = Uen, where {en}n∈N is an orthonormal basis for
H and U : H −→ H is a bounded linear bijective operator.

Theorem II.1. A sequence {fn}n∈N ⊂ H is a Riesz basis
for H if and only if it is complete and there exist constants
C1, C2 > 0 such that

C1

∞∑
n=1

|cn|2 ≤

∥∥∥∥∥
∞∑
n=1

cnfn

∥∥∥∥∥
2

H

≤ C2

∞∑
n=1

|cn|2 ,

for every (cn)n∈N ∈ l2(N).

These two notions are closely related:

Theorem II.2. If {fn}n∈N is a Riesz basis for H then it is a
frame for H.

We recall the following definition:

Definition 3. Let {fn}n∈N be a sequence in a Hilbert space
H. We say that {fn}n∈N is minimal if fj /∈ span{fk}k 6=j .

There is an interesting relationship between minimal se-
quences and frames:

Theorem II.3. Let {fn}n∈N be a frame for a Hilbert space
H, then the following are equivalent:
i) {fn}n∈N is a Riesz basis for H.
ii) If

∑
n
cnfn = 0 for (cn)n ∈ l2 then cn = 0 for all n.

iii) {fn}n∈N is minimal.

The following result by the authors [19] gives a necessary
and sufficient condition for a vector stationary sequence to be
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a frame or a Riesz basis of the closed linear span of its scalar
values. In [20] a similar result is proved for scalar sequences.

Theorem II.4. Let X = {Xj
k}
j=1...n
k∈Z be (w.s.s.) stationary

in the variable k. Then: a) X is a frame for its span H(X )
(in L2(Ω,F ,P)) with constants C1, C2 if and only if the
(cross) spectral measures µi j verify the following conditions:
(i) µi j is absolutely continuous with respect to the Lebesgue
measure for every i, j, (ii) the spectral densities matrix D
verifies σ(D)(λ) ⊆ {0}∪ [C1, C2] for almost all λ ∈ [−π, π).
b) X is a Riesz basis of H(X ) with constants C1, C2 if
and only if: (i) µi j is absolutely continuous with respect
to the Lebesgue measure for every i, j, (ii) the spectral
densities matrix D verifies σ(D)(λ) ⊆ [C1, C2] for almost
all λ ∈ [−π, π).

Frequencies are referred to the interval [−π, π). However
as the µi j’s are absolutely continuous, the boundaries of the
interval have null measure. This result resembles some known
characterizations of frames in terms of the Fourier transform
of the generators of a SIS of L2(R) [3], [4], [6], [24]. On
the other hand, referring frequencies to [−π, π) gives a rather
simple condition for minimality for a stationary sequence or
to be a Riesz basis. The study of these conditions for w.s.s.
sequences goes back to Kolmogorov e.g. [27], [29], [18].

III. OUTLINE OF THE PAPER AND REVIEW OF SOME
EXISTING RELATED RESULTS

With the considerations previously introduced, we may state
more precisely the problem described in the introduction:
Given m ∈ N, find under which conditions for the filters
f1, . . . , fm the (under) sampled set of filtered sequences
Y = {Y rmk}

r=1,...,m
k∈Z , with

Y rk =

∫
[−π,π]

fr(λ)eikλdM(λ)

completely determines X in a linear form.
The first condition we may establish is that Y =
{Y rmk}

r=1,...,m
k∈Z should be complete in H(X ). In this case

the necessary and sufficient conditions are given for w.s.s.
sequences with spectral density. The singular case will be
discussed in further work. However a complete system may not
constitute an adequate framework for applications since it may
be impossible to have stable representations. An appropriate
tool to ensure stability is the use of frames. However, frames
could provide redundant representations and if additionally
uniqueness is required, one should study conditions to ensure
the existence of an unconditional Riesz basis. Necessary and
sufficient conditions will be established for ν and fr so that
Y = {Y rmk}

r=1,...,m
k∈Z is a frame or Riesz basis. In this case,

the condition of the existence of an spectral density is proved
to be necessary. A similar result has been given for stationary
sequences in [20], [19], for scalar and vector sequences respec-
tively (see Theorem II.4 above), see also [9], [23]. In Section

VII these results are related to the problem of reconstructing
a continuous time, not necessarily band limited multi-band
w.s.s. process from m under-sampled measurements.
Recalling the isomorphism (1) of section II, if ν is a finite
Borel measure on [−π, π), these problems can be restated
as finding conditions under which {fr(λ)eimnλ}r=1,...,m

n∈Z is
complete or a frame of L2([−π, π], dν) respectively, which
may be an interesting function spaces problem on its own.
Following this fact, no further mention on the underlying
process Xk or H(X ) will be done, but the original motivation
should remain clear from the context.

IV. COMPLETENESS CONDITIONS

Assuming the existence of the spectral density φ associated
to the spectral measure ν of X we shall give some conditions
on {fr(λ)eimnλ}r=1,...,m

n∈Z to be complete. This problem is
related to the sampling and reconstruction of a stationary
sequence from periodic observations. First, we need:

Lemma IV.1. Let f ∈ L1([−π, π]) and m ∈ Z, then:∫
[−π,π]

f(λ)eiλmndλ = 0 for all n ∈ Z,

if and only if
m−1∑
k=0

f

(
λ+

2π

m
k

)
= 0

a.e. in [−π,−π + 2π
m ].

Proof: Define Ik =
[
−π + 2π

m k,−π + 2π
m (k + 1)

)
, k =

0, . . . ,m− 1.∫
[−π,π]

f(λ)eiλmndλ =
m−1∑
k=0

∫
Ik

f(λ)eiλmndλ

=

∫
[−π,−π+ 2π

m ]

m−1∑
k=0

f

(
λ+

2π

m
k

)
ei(λ+ 2π

m k)mndλ ,

=

∫
[−π,−π+ 2π

m ]

m−1∑
k=0

f

(
λ+

2π

m
k

)
eiλmndλ ,

But, by the uniqueness of the Fourier series coefficients, this
last integral equals 0 for all n ∈ Z if and only if

m−1∑
k=0

f

(
λ+

2π

m
k

)
= 0

a.e. in [−π,−π + 2π
m ].

From this result we can prove:

Theorem IV.1. Let ν be absolutely continuous with respect
to the Lebesgue measure with spectral density φ, let A be the
support of ν and f1, . . . , fm ∈ L2([−π, π], dν).
Then:
{fr(λ)eimnλ}r=1,...,m

n∈Z is complete in L2([−π, π], dν) if and
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only if det(F(λ)) 6= 0 a.e. in A = ϕm(A) =
m−1⋂
k=0

(A ∩

Ik) − 2π
m k, where (F(λ))r j = fr

(
λ+ 2π

m (j − 1)
)
, with

r, j = 1, . . . ,m, λ ∈ A ⊆ [−π,−π + 2π
m ] and the Ik’s are

defined as in Lemma IV.1.

Proof: Let us prove the ”if” part. Let g ∈ L2([−π, π], dν)
be such that:∫

[−π,π]

fr(λ)g(λ)eiλmnφ(λ)dλ = 0 ∀n ∈ Z, r = 1 . . . m .

(4)
By Lemma IV.1:

m−1∑
k=0

fr

(
λ+

2π

m
k

)
φ

(
λ+

2π

m
k

)
g

(
λ+

2π

m
k

)
= 0 ∀ r

(5)
and almost all λ ∈ [−π,−π + 2π

m ]. If we define

H(λ)r k = fr

(
λ+

2π

m
(k − 1)

)
φ

(
λ+

2π

m
(k − 1)

)
, (6)

then:

det(H(λ)) =
m∏
j=1

φ

(
λ+

2π

m
(j − 1)

)
det(F(λ))) . (7)

Hence if det(F) 6= 0 a.e. in A then det(H) 6= 0 a.e. in A,
which together with (5), implies that, for all k: g

(
λ+ 2π

m k
)

=
0 for almost all λ ∈ A = ϕm(A) and then g = 0 a.e. in A.
To prove the ”only if” part suppose that |B| > 0, where B =
{λ : det(F(λ)) = 0}

⋂
A = {λ : det(H(λ)) = 0}

⋂
A, see

(7). Then, there exist non null x1(λ), . . . xm(λ) measurable
functions such that

Hx(λ) = 0, ∀λ ∈ B

where x = (x1, . . . , xm)t . Hence, if we take yk = xk1B ,
then:

H(λ)y(λ) = 0, ∀λ ∈ A . (8)

Now, consider the (non identically zero) function:

g(λ) =
m−1∑
k=0

yk(λ− 2π

m
k)1[−π+ 2π

m k,−π+ 2π
m (k+1))(λ) .

Then: ∫
[−π,π]

fr(λ)g(λ)eimnλφ(λ)dλ

=

∫
[−π,−π+ 2π

m )

(H(λ)y(λ))re
iλmndλ = 0

Then {fr(λ)eimnλ}r=1,...,m
n∈Z is not complete.

V. FRAMES AND STATIONARY SEQUENCES

In the previous section we assumed the absolute continuity
of ν. However, completeness alone may be of no practical
value and then some additional stability conditions could be
required. One way to have stable representations is by means
of frames. We shall see that the absolute continuity of ν is a
necessary condition for {fr(λ)eimnλ}r=1,...,m

n∈Z to constitute a
frame sequence.

Theorem V.1. If {fr(λ)eimnλ}r=1,...,m
n∈Z is a frame for

L2([−π, π], dν) for some fr ∈ L2([−π, π], dν), for r =
1, . . . ,m, then ν is absolutely continuous with respect the
Lebesgue measure, i.e. there exists a spectral density.

Proof: Note that by Definition 1, {fr(λ)eimnλ}r=1,...,m
n∈Z

is a frame if and only if there exists some 0 < C1 ≤ C2 such
that ∀ g ∈ L2([−π, π], dν):

C1

∫
[−π,π]

|g(λ)|2dν(λ)

≤
m∑
r=1

∑
n∈Z

∣∣∣∣∣∣∣
∫

[−π,π]

fr(λ)g(λ)eimnλdν(λ)

∣∣∣∣∣∣∣
2

(9)

≤ C2

∫
[−π,π]

|g(λ)|2dν(λ) .

First, let’s check that ν({π}) = 0. Suppose this is not the
case. Then, from the completeness condition, we have that for
some fr: fr(π) 6= 0 it is:∫

[−π,π]

1{π}(λ)fr(λ)eimnλdν(λ) = (−1)mnfr(π)ν(π)

Then, if we take g = 1{π} in (9) we obtain:

C2ν({π})

≥
m∑
r=1

∑
n∈Z

∣∣∣∣∣∣∣
∫

[−π,π]

fr(λ)1{π}(λ)eimnλdν(λ)

∣∣∣∣∣∣∣
2

=∞ ,

a contradiction. Hence, the boundaries of the interval have
zero ν-measure and the same holds for every atomic set, and
then, ν is a non-atomic measure.
Next, for l = 1, . . . ,m, j = 0, . . . ,m − 1, taking g =
sign(fl)1Ij with Ij =

[
−π + 2π

m j,−π + 2π
m (j + 1)

)
, replac-

ing this g in (9), we obtain that for each j, r:

∑
n∈Z

∣∣∣∣∣∣∣
∫
Ij

|fr(λ)|eimnλdν(λ)

∣∣∣∣∣∣∣
2

≤ C2ν(Ij) <∞ .

This implies that the Fourier coefficients of the measure |ρ|r j ,
defined for each Borel subset A ⊆ Ij by:

|ρr j |(A) =

∫
A

|fr|dν
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are in l2(Z). Then, these are the Fourier coefficients of a
function in L2(Ij) , and then also in L1(Ij). By the unique-
ness of the Fourier transform this implies that there exists
φr j ∈ L1(Ij) such that |ρr j |(A) =

∫
A
φr j(λ)dλ . and then,

we may define for each measurable subset A ⊂ [−π, π):

|ρr|(A) =
m−1∑
j=0

|ρr j |(A ∩ Ij) =

∫
A

∑
j

φr jdλ

But on the other hand

|ρr|(A) =

∫
A

|fr|dν

and then the signed measure ρr(A) =
∫
A
frdν is absolutely

continuous with respect to the Lebesgue measure. Hence, there
exists

∼
fr ∈ L1 such that for each Borel subset A ⊆ [−π, π):

ρr(A) =

∫
A

frdν =

∫
A

∼
fr dλ , (10)

and then: ∫
A

fr(λ)eimnλdν =

∫
A

∼
fr(λ)eimnλdλ . (11)

Now, considering a measurable subset A such that |A| = 0
and setting g = 1A in (9), by (11) we obtain

C1ν(A) ≤
m∑
r=1

∑
n∈Z

∣∣∣∣ ∫
A

∼
fr(λ)eimnλdλ

∣∣∣∣2 = 0 ,

which gives the absolute continuity of ν.

Remark: (10) extends from characteristic functions 1A to
simple functions and by an approximation argument ( 11)
holds.

Theorem V.2. Let f1, . . . , fm ∈ L2([−π, π], dν) and let A
be the support of ν. Then
{fr(λ)eimnλ}r=1,...,m

n∈Z is a frame for L2([−π, π], dν) if and
only if ν is absolutely continuous with respect to the Lebesgue
measure and there exists some constants 0 < C1 ≤ C2 such
that

σ(H(φ)(λ)HH(φ)(λ)) ⊆ [C1, C2] (12)

for almost all λ ∈ A = ϕm(A), where φ is the RN derivative
of ν and

(H(φ)(λ))r j = fr

(
λ+

2π

m
(j − 1)

)√
φ

(
λ+

2π

m
(j − 1)

)
,

k = 1, . . . ,m .

Some Remarks: As in Brown’s original formulation, one can
easily check that the condition given in (12) holds if and only if
for some positive constants C1, C2: C1 ≤ det(H(φ)(λ)) ≤ C2

for almost all λ ∈ A = ϕm(A). Additionally, note that
ϕm(A) ⊆ [−π,−π+ 2π

m ] so, in some way, this result indicates
that the bandwidth can been “reduced” by a factor of 1/m.
As far as the authors know this result cannot be derived,
at least directly, from Theorem II.4 (Theorem 3.1 of [19]),
or from similar results in, for example [9], [23]. Hence,
we include a complete proof of this formulation, which
is also more suitable for the subsequent analysis on sam-
pling presented here below. Note that, applying the result
of [19], combined with Theorem V.1 and the next Lemma
V.1, we obtain the similar but less informative condition:
σ(H(φ)(λ)HH(φ)(λ)) ⊆ [C1, C2] ∪ {0} a.e.

Proof:
Proof (of Theorem V.2)
First, we observe that by Definition 1, {fr(λ)eimnλ}r=1,...,m

n∈Z
is a frame if and only if there exists some 0 < C1 ≤ C2 such
that eq. 9 of Theorem V.1 holds. On the other hand, if we
assume that dν = φdλ, and repeating an argument similar to
that in the proof of Lemma IV.1 we get that:∫

[−π,π]

fr(λ)g(λ)eimnλdν(λ)

=

∫
[−π,−π+ 2π

m ]

m−1∑
k=0

fr

(
λ+

2π

m
k

)
. . .

φ

(
λ+

2π

m
k

)
g

(
λ+

2π

m
k

)
eiλmndλ ,

From Parseval’s Theorem and if A is a support, this implies
that the inner integral of the double inequality in( 9) equals:

m∑
r=1

∫
ϕm(A)

∣∣∣∣∣
m−1∑
k=0

fr

(
λ+

2π

m
k

)
. . .

φ

(
λ+

2π

m
k

)
g

(
λ+

2π

m
k

)∣∣∣∣∣
2

dλ ,

and in a similar way: ∫
[−π,π]

|g(λ)|2dν(λ)

=

∫
ϕm(A)

m−1∑
k=0

∣∣∣∣g(λ+
2π

m
k

)∣∣∣∣2 φ(λ+
2π

m
k

)
dλ .

Now, we are in condition to prove the ”only if” part of the The-
orem. The absolute continuity of ν was proved in the previous
Theorem V.1. Now, given x ∈ Cm, λ0 ∈

(
−π,−π + 2π

m

)
and

ε > 0, define:

gε(λ) =
1A(λ)√
φ((λ)

m−1∑
k=0

xk+11B(λ0,ε)

(
λ− 2π

m
k

)
,
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thus if λ ∈ A,
m−1∑
k=0

fr

(
λ+

2π

m
k

)
φ

(
λ+

2π

m
k

)
gε

(
λ+

2π

m
k

)

=

(
m−1∑
k=0

fr

(
λ+

2π

m
k

)√
φ

(
λ+

2π

m
k

)
xj+1

)
. . . (13)

1B(λ0,ε)∩A(λ) = (H(φ)(λ)x)r

since 1B(λ0,ε)

(
λ− 2π

m k
)

= 0 if λ ∈ (−π,−π + 2π
m ), j 6= k

and ε > 0 is such that B(λ0, ε) ⊆ (−π,−π+ 2π
m ). By a similar

argument if λ ∈ A:
m−1∑
k=0

∣∣∣∣gε(λ+
2π

m
k

)∣∣∣∣2 φ(λ+
2π

m
k

)

=
m−1∑
k=0

|xk+1|2

φ
(
λ+ 2π

m k
)φ(λ+

2π

m
k

)
1B(λ0,ε)∩A(λ) (14)

=
m∑
k=1

|xk|21B(λ0,ε)∩A(λ) .

Thus, recalling (9) and replacing g by gε, then, by (13) and
(14), using the Lebesgue differentiation Theorem, we obtain
that there exists a Lebesgue set Fx ⊆ A such that |F cx∩A| = 0
and that for each λ0 ∈ Fx:

C1

m∑
k=1

|xk|2 ≤ ‖H(φ)(λ0)x‖22

= lim
ε−→0

1

2ε

∫
B(λ0,ε)

m∑
r=1

|(H(φ)(λ)x)r|2 dλ ≤ C2

m∑
k=1

|xk|2 .

If we consider a countable dense subset D ⊂ Cm, then

C1

m∑
k=1

|xk|2 ≤ ‖H(φ)(λ)x‖22 ≤ C2

m∑
k=1

|xk|2

for each λ ∈ F =
⋂
x∈D

Fx ⊆ A, and then this inequality holds

for almost all λ ∈ A and all x ∈ D. But for each λ and k > 0
the map x 7→ ‖H(φ)x‖22− k ‖x‖

2
2 is continuous, and then the

inequality holds for every x.
The ”if” part is obtained replacing in the last inequality xk =
g(λ+ 2π

m k), and reversing the previous arguments and (9).

A. Minimality and Riesz Bases

Frames can provide stable representations, but they may
not be minimal. We recall that a minimal frame is a Riesz
basis (Theorem II.3) We need an auxiliary Lemma:

Lemma V.1. Let m ∈ N and let M be the random measure as-
sociated to X (see equation (2), Section II). If its spectral mea-
sure ν is absolutely continuous with respect to the Lebesgue
measure with spectral density φ and fr ∈ L2([−π, π], ν), then
the vector process Y = {Y rmk}

r=1,...,m
k∈Z defined by

Y rmk =

∫
[−π,π]

fr(λ)eimkλdM(λ) , k ∈ Z, r = 1, . . . ,m,

is stationarity correlated in the variable k ∈ Z and has its
spectral density matrix, for r, l = 1, . . . ,m, determined by the
coefficients:

(D(λ))r l =
m−1∑
n=0

fr(λ+
2πn

m
)fl(λ+

2πn

m
)φ(λ+

2πn

m
) , (15)

with r, l = 1, . . . ,m, λ ∈ [−π,−π + 2π
m ) .

Remark: Usually, following the original definition of
spectral measure given in Section II, the resulting spectral
density of Y could be expressed as a function defined over
[−π, π]. However, the alternative scaled formulation of (15)
seems to be more compact and easier to handle in the
forthcoming proofs, as it is also reflected in related works
such as [14], and moreover, it clearly reflects again the effect
of contracting the original “bandwidth” of X by a factor of 1

m .

Proof: The derivation of this matrix is very close to the
proof of Lemma 4.1 of [15] so we omit the details. By a
change of variable and as the spectral density is uniquely
determined by the cross-correlations:

E(Y rmkY
l

mj) =

∫
[−π,π)

eim(k−j)λfr(λ)fl(λ)φ(λ)dλ

=

∫
[−π,−π+ 2π

m )

(
m−1∑
n=0

fr(λ+
2πn

m
)fl(λ+

2πn

m
) . . .

φ(λ+
2πn

m
)

)
eim(k−j)λdλ ,

the result follows from these observations.

Now, the following is obtained almost directly from Theorem
II.4:

Theorem V.3. Let f1, . . . , fm ∈ L2([−π, π], dν). Then
{fr(λ)eimnλ}r=1,...,m

n∈Z is a Riesz basis for L2([−π, π], dν) if
and only if ν is absolutely continuous with respect to the
Lebesgue measure and there exists some constants 0 < C1 ≤
C2 such that

σ(H(φ)(λ)HH(φ)(λ)) ⊆ [C1, C2] (16)

for almost all λ ∈ [−π,−π+ 2π
m ), where φ is the RN derivative

of ν and

(H(φ)(λ))r j = fr

(
λ+

2π

m
(j − 1)

)√
φ

(
λ+

2π

m
(j − 1)

)
,

k = 1, . . . ,m .

Proof:
First, supposing that dν = φdλ, by Lemma V.1 we have an

spectral density matrix given by (15). So if D exists is easy
to check that

D = H(φ)H(φ)H .

Now, suppose that {fr(λ)eimnλ}r=1,...,m
n∈Z is a Riesz basis then,

in particular, it is also a frame, and then by Theorem V.1 there
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exists a spectral density φ, and thus we can infer that the vector
process Y = {Y rmk}r=1...m

k∈Z has an spectral density matrix
given by (15). Then by Theorem II.4 σ(D(λ)) ⊆ [C ′1, C

′
2]

a.e. in [−π,−π + 2π
m ).

Conversely, if a spectral density φ exists then by Lemma
V.1 we have a spectral density matrix given by equa-
tion (15) as D = H(φ)H(φ)H . Then by Theorem II.4
{fr(λ)eimnλ}r=1,...,m

n∈Z is a Riesz basis.

B. Some Examples

1) A complete system which is not a frame.: Take φ(λ) =

e−
1
|λ| and f1 = 1[−π,0) and f2 = 1[0,π]. In this case we get

that:

F(λ) =

(
f1(λ) f1(λ+ π)
f2(λ) f2(λ+ π)

)
=

(
1 0
0 1

)
,

so by Theorem IV.1 {f1(λ)ei2nλ, f2(λ)ei2nλ}n∈Z is complete,
but is not a frame since:

H(φ)(λ) =

(
f1(λ)

√
φ(λ) f1(λ+ π)

√
φ(λ+ π)

f2(λ)
√
φ(λ) f2(λ+ π)

√
φ(λ+ π)

)

=

(
e−

1
|λ| 0

0 e−
1

|λ+π|

)
,

then H(φ)(λ)HH(φ)(λ) has eigenvalues e−
2
|λ| and e−

2
|λ+π|

and the result follows from Theorem V.2.
2) A simple frame.: Let’s modify the previous example.

Take any density φ ∈ L1[−π, π]. If A is a support then define
f1 =

1[−π,0)∩A√
φ

and f2 =
1[0,π]∩A√

φ
thus

H(φ)(λ) =

(
f1(λ)

√
φ(λ) f1(λ+ π)

√
φ(λ+ π)

f2(λ)
√
φ(λ) f2(λ+ π)

√
φ(λ+ π)

)
=

(
1 0
0 1

)
1A(λ) ,

and then by Theorem V.2 {f1(λ)ei2nλ, f2(λ)ei2nλ}n∈Z is a
frame.

VI. SOME PROJECTIONS AND ISOMORPHISMS.

In this section some linear operators between L2(R, dµ)
and L2([−π, π), dν) are studied, where ν is a periodization
of the spectral measure µ, ν := µϕ. Equivalently, ν is the
measure induced by the map ϕ previously defined in (3). We
recall that if µ is absolutely continuous then ν has a spectral
density defined for λ ∈ [−π, π] as

∼
φ(λ) =

∑
k

φ(λ + 2πk).

The following gives a complete characterization [19]:

Proposition VI.1. Let µ be a complex Borel measure over
R. Then, the induced measure over [−π, π) by ϕ, ν := µϕ
is absolutely continuous with respect to Lebesgue measure if
and only if the same holds for µ. If φ is the RN derivative with
respect to the Lebesgue measure of the absolutely continuous
part of µ, then

∼
φ =

∑
k

φ( . + 2πk) is the RN derivative of the

absolutely continuous part of ν.

This is the basic result for the multichannel sampling analysis
in the following section. As noted in [17] there is a relationship
between the sampling problem and the characterization of
certain subspaces of periodic functions. We begin with a
definition: we shall denote with P the following closed (in
L2(R, dµ)) subspace of “2π-periodic functions”:

P =
{
f ∈ L2(R, dµ) : f = g a.e.[µ] for some g ∈ L2(R, dµ),

. . . g(λ) = g(λ+ 2πk), ∀ k ∈ Z, λ ∈ R }

Theorem VI.1. Let f ∈ L2(R, dµ), then the formula given
for each λ ∈ [−π, π) by:

(Tf)(λ) =
∑
k∈Z

f(λ+ 2πk)
dνk
dν

(λ), (17)

defines an onto linear mapping T : L2(R, dµ) −→
L2([−π, π), dν), such that ‖T‖op = 1, where the measures
νk and ν are defined for every Borel subset of A ⊆ [−π, π)
by the equations:

νk(A) = µ(A+ 2πk) , ν = µϕ =
∑
k∈Z

νk .

Proof: First note that if we apply Hölder’s inequality with
measure m(C) =

∑
k∈C

dνk
dν then:

|Tf(λ)|2 ≤
∑
k∈Z
|f(λ+ 2πk)|2 dνk

dν
(λ) ,

since
∑
k∈Z

dνk
dν = 1 a.e. [ν] and then, by the monotone

convergence Theorem:∫
[−π,π)

|Tf(λ)|2dν ≤
∫

[−π,π)

∑
k∈Z
|f(λ+ 2πk)|2 dνk

dν
(λ)dν(λ)

∫
[−π,π)

∑
k∈Z
|f(λ+ 2πk)|2dνk(λ) =

∫
R

|f(λ)|2dµ(λ) .

To check that T is onto, let’s observe that if g is such that
g(λ) = g(λ + 2π) for every λ ∈ R, then: (Tg)(λ) =
g(λ) for almost every λ ∈ [−π, π) [µ]. Thus, given f ∈
L2([−π, π), dν) , let’s define for λ ∈ R:

g(λ) =
∑
k∈Z

f(λ− 2πk)1Ik(λ) ,

with Ik = [−π, π) + 2πk. This g verifies that (Tg)(λ) =
g(λ) = f(λ) for almost all [µ] λ ∈ [−π, π), and in particular
‖Tg‖L2([−π,π],dν) = ‖g‖L2(R,dµ), so that ‖T‖op = 1.

Since the following chain rule for RN derivatives holds, see
e.g. Theorem A p.133 [12]: dνk

dν
dν
dλ = dνk

dλ , then, if µ has a
support A and µ is absolutely continuous with respect to the
Lebesgue measure with RN derivative given by dµ

dλ = φ, then,
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in this case, we have the following alternative expression for
Tf :

(Tf)(λ) =

∑
k∈Z

f(λ+ 2πk)φ(λ+ 2πk)∑
k∈Z

φ(λ+ 2πk)
1⋃
k

A+2πk(λ) a.e.

(18)

Theorem VI.2. Let f ∈ L2([−π, π), dν) then the formula
given for λ ∈ R by:

(Sf)(λ) =
∑
k∈Z

f(λ− 2πk)1Ik(λ) , (19)

with Ik = [−π, π) + 2πk defines a one to one linear mapping
S : L2([−π, π), dν) −→ P , such that ‖S‖op = 1.

Remark: Alternatively, if ϕ(λ) =
∑
k∈Z

(λ − 2πk)1Ik(λ)

then Sf coincides a.e. [µ] with f ◦ ϕ.

Proof: From the definition of S we have Ran(S) = P .
On the other hand,

‖Sf‖2L2(R,dµ) =

∫
R

|f ◦ ϕ(λ)|2 dµ(λ)

=

∫
[−π,π)

|f(λ)|2dµϕ(λ) =

∫
[−π,π)

|f(λ)|2dν(λ) .

Theorem VI.3. Let T and S be as in Theorems VI.1 and VI.2
respectively. Then P = S ◦ T : L2(R, dµ) −→ L2(R, dµ) is
the orthogonal projection over P .

Proof: From the definition P 2 = P . The fact that
Ran(P ) = P follows from T being a surjective map and
Ran(S) = P , so one only has to prove that 〈Pf, g〉 =
〈f, Pg〉.

〈Pf, g〉 =

∫
R

(∑
k∈Z

f(ϕ(λ) + 2πk)
dνk
dν

(ϕ(λ))

)
g(λ)dµ(λ)

=
∑
j∈Z

∫
Ij

(∑
k∈Z

f(ϕ(λ) + 2πk)
dνk
dν

(ϕ(λ))

)
g(λ)dµ(λ)

=
∑
j∈Z

∫
[−π,π)

(∑
k∈Z

f(ϕ(λ+ 2πj) + 2πk)
dνk
dν

(ϕ(λ+ 2πj))

)

. . . g(λ+ 2πj)dνj(λ)

(since ϕ(λ) = ϕ(λ + 2πj) for all λ and ϕ(λ) = λ if λ ∈
[−π, π))

=
∑
j∈Z

∫
[−π,π)

(∑
k∈Z

f(λ+ 2πk)
dνk
dν

(λ)

)

. . . g(λ+ 2πj)
dνj
dν

(λ)dν(λ)

=
∑
k∈Z

∫
[−π,π)

f(λ+2πk)
dνk
dν

(λ)

∑
j∈Z

g(λ+ 2πj)
dνj
dν

 dν(λ) .

Then, reversing the previous argument we obtain that the last
equation equals 〈f, Pg〉.

Corollary VI.1. Let T and S be as in Theorems VI.1 and
VI.2 respectively. Then both restrictions: T |P : P −→
L2([−π, π), dν) and S|P : L2([−π, π), dν) −→ P define
isometric isomorphisms.

Finally, we recall a restatement of the main result of [17]
(Theorem 1 there), which we will be useful in the following
section.

Theorem VI.4. If µ is finite Borel measure. P = L2(R, dµ)
if and only if there exists a support A of µ such that the
translates A+ 2πk are mutually disjoint, k ∈ Z.

This result relates the problem of sampling to a condition of
aliasing on the spectral measure of X . A similar condition is
used in e.g. [2], [16].

VII. MULTICHANNEL SAMPLING OF CONTINUOUS TIME
PROCESSES.

Here, we give some results on multichannel sampling
for, not necessarily band limited, multi band signals. The
assumptions on µ and ν are the same as in the previous
section. We shall see again, that the absolute continuities of
µ and ν are necessary in the case of frame sequences.

Theorem VII.1. Given f1, . . . , fm ∈ L2(R, dµ), then:{
(Pfr)(λ)eimnλ

}r=1,...,m

n∈Z is complete in P if and only if{
(Tfr)(λ)eimnλ

}r=1,...,m

n∈Z is complete in L2([−π, π), dν).

Proof: The result follows from corollary VI.1 and the
fact that: P (fre

imn . )(λ) = (S ◦ T )(fre
imn . ) = (S ◦

T )(fr)(λ)eimnλ. The fact follows from:

T (fre
imn . )(λ) = T (fr(λ)eimnλ)

=
∑
k∈Z

fr(λ+ 2πk)ei(λ+2πk)mn dνk
dν

(λ)

= eimnλ
∑
k∈Z

fr(λ+ 2πk)
dνk
dν

(λ) = T (fr)(λ)eimnλ

and since eimnλ = eiϕ(λ)mn then:

(S ◦ T )(fre
imn . )(λ) = S(T (fr)e

imn . )(λ)

= T (fr)(ϕ(λ))eiϕ(λ)mn = (Tfr)(ϕ(λ))eimnλ

= (S ◦ T )(fr)(λ)eimnλ = P (fr)(λ)eimnλ
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If in addition we assume that µ is absolutely continuous, then,
we have the following corollary:

Corollary VII.1. Given f1, . . . , fm ∈ L2(R, dµ) and µ a
finite absolutely continuous measure, if A is the support of

µ such that ϕ−1
m (A) = ϕ(A) where A =

m−1⋂
k=0

(ϕ(A) ∩

Ik) − 2π
m k and Ik = [−π + 2π

m k,−π + 2π
m (k + 1)) then:{

(Pfr)(λ)eimnλ
}r=1,...,m

n∈Z is complete in P if and only if
det(F(λ)) 6= 0 a.e. on

⋃
k∈Z

[−π,−π + 2π
m ) + 2πk, where:

(F(λ))r j = Pfr
(
λ+ 2π

m (j − 1)
)
, r, j = 1, . . . ,m and

λ ∈ [−π,−π + 2π
m ].

Proof: Because of Theorem VII.1 the sequence{
(Pfr)(λ)eimnλ

}r=1,...,m

n∈Z is complete in P if and only if{
(Tfr)(λ)eimnλ

}r=1,...,m

n∈Z is complete in L2([−π, π], dν)
with ν absolutely continuous by proposition VI.1. By The-
orem IV.1 this holds if and only if det(

∼
F(λ)) 6= 0 a.e. on

m−1⋂
k=0

(ϕ(A) ∩ Ik)− 2π
m k where:

(
∼
F(λ))r j = Tfr

(
λ+

2π

m
(k − 1)

)
.

But if λ ∈ [−π,−π + 2π
m ):

Pfr

(
λ+

2π

m
(k − 1)

)
= Tfr

(
ϕ

(
λ+

2π

m
(k − 1)

))
= Tfr

(
ϕ(λ) +

2π

m
(k − 1)

)
Hence, if det(F(λ)) 6= 0 a.e. on

⋃
k∈Z

[−π,−π + 2π
m ) + 2πk =

ϕ−1([−π,−π + 2π
m )), then det(

∼
F(λ)) = det(F(ϕ(λ))) 6= 0

on [−π,−π + 2π
m ), and then

{
(Tfr)(λ)eimnλ

}r=1,...,m

n∈Z is
complete in L2([−π, π], dν).

Lemma VII.1. Given f1, . . . , fm ∈ L2(R, dµ), then:{
(Pfr)(λ)eimnλ

}r=1,...,m

n∈Z is a frame sequence for P if and

only if
{

(Tfr)(λ)eimnλ
}r=1,...,m

n∈Z is a frame sequence for
L2([−π, π), dν).

Proof: Since Id = P |P = S ◦ T and S|P is an isometric
isomorphism one gets for each r = 1, . . . ,m:∑
n∈Z
|〈Pfreimn . , g〉|2L2(R,dµ) =

∑
n∈Z
|〈Pfreimn . , Pg〉|2L2(R,dµ)

=
∑
n∈Z
|〈Tfreimn . , T g〉|2L2([−π,π],dν) .

On the other hand:

‖g‖L2(R,dµ) = ‖Tg‖L2([−π,π],dν) ,

and then the result follows directly from the Definition 1.

Form this we prove:

Corollary VII.2. Given f1, . . . , fm ∈ L2(R, dµ) and
µ a finite absolutely continuous measure, if A is the
support of µ such that A

⋂
A + 2πk = � for all

k ∈ Z, then:
{

(Pfr)(λ)eimnλ
}r=1,...,m

n∈Z is a frame for
L2(R, dµ) if there exist some constants 0 < C1 ≤
C2 such that σ(H(φ)(λ)HH(φ)(λ)) ⊆ [C1, C2] a.e. in(
ϕ−1(ϕm(ϕ(A)))

)⋂
A, where φ is the RN derivative of µ

and

(H(φ)(λ))r j = fr

(
λ+

2π

m
(j − 1)

)√
φ

(
λ+

2π

m
(j − 1)

)
for k = 1, . . . ,m.

Proof: By Proposition VI.1, ν is absolutely contin-
uous with spectral density

∼
φ, and by Lemma VII.1{

(Pfr)(λ)eimnλ
}r=1,...,m

n∈Z is a frame sequence in P if and

only if
{

(Tfr)(λ)eimnλ
}r=1,...,m

n∈Z is a frame sequence in
L2([−π, π], dν). But, the condition on the support A (Theorem
VI.4) implies that P = L2(R, dµ). Hence, we just need to
check that

{
(Tfr)(λ)eimnλ

}r=1,...,m

n∈Z is a frame sequence in

L2([−π, π], dν). Taking in account that
∼
φ(λ) =

∑
k∈Z

φ(λ +

2πk) a.e., if Jk = [−π, π) + 2πk then
∼
φ(ϕ(λ)) =

∑
k∈Z

∼
φ(λ−

2πk)1Jk(λ) and therefore, if λ ∈ A:

∼
φ(ϕ(λ)) =

∑
k∈Z

∑
j∈Z

φ(λ+ 2π(k − j))

1Jk(λ)

= φ(λ)
∑
k∈Z

1Jk(λ) +
∑
k 6=j

(∑
φ(λ+ 2π(k − j))

)
1Jk(λ)

(20)
= φ(λ) ,

since
∑
k 6=j (

∑
φ(λ+ 2π(k − j)))1Jk(λ) = 0 if λ ∈ A. By

Theorem V.2 it suffices to check that σ(
∼
H(
∼
φ)(λ)) ⊆ [C1, C2]

a.e. on ϕm(φ(A)), with

(
∼
H(
∼
φ)(λ))r j

= Tfr

(
λ+

2π

m
(j − 1)

)√
∼
φ

(
λ+

2π

m
(j − 1)

)
But if λ ∈

(
ϕ−1(ϕm(ϕ(A)))

)
⊆
⋃
k∈Z

[−π,−π + 2π
m ) + 2πk

then, by (20):
(
∼
H(
∼
φ)(ϕ(λ)))r j

= Tfr

(
ϕ(λ) +

2π

m
(j − 1)

)√
∼
φ

(
ϕ(λ) +

2π

m
(j − 1)

)

= Tfr

(
ϕ

(
λ+

2π

m
(j − 1)

))√
∼
φ

(
ϕ

(
λ+

2π

m
(j − 1)

))

= Pfr

(
λ+

2π

m
(j − 1)

)√
φ

(
λ+

2π

m
(j − 1)

)
= (H(φ)(λ))r j ,
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and then the result follows form this.

Finally, we prove that the existence of a spectral
density, in this case over R, is a necessary condition
for
{

(Pfr)(λ)eimnλ
}r=1,...,m

n∈Z to be a frame.

Theorem VII.2. Given f1, . . . , fm ∈ L2(R, dµ), if{
(Pfr)(λ)eimnλ

}r=1,...,m

n∈Z is a frame for L2(R, dµ) then µ is
absolutely continuous with respect to the Lebesgue measure,
i.e. there exists a spectral density associated to the spectral
measure µ.

Proof: The hypothesis implies, by Lemma
VII.1, that

{
(Tfr)(λ)eimnλ

}r=1,...,m

n∈Z is a frame for
L2([−π, π), dν) and then by Theorem V.2 (or V.1) ν is
absolutely continuous, and then Proposition VI.1 gives the
desired result.
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[11] K. Gröchenig, Time Frequency Analysis, Birkhäuser, 2001.
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