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Abstract

We study the set C consisting of pairs of orthogonal projections P,Q acting in a Hilbert
space H such that PQ is a compact operator. These pairs have a rich geometric structure
which we describe here. They are parted in three subclasses: C0 which consists of pairs where
P or Q have finite rank, C1 of pairs such that Q lies in the restricted Grassmannian (also
called Sato Grassmannian) of the polarization H = N(P ) ⊕ R(P ), and C∞. Belonging to
this last subclass one has the pairs

PIf = χIf, QJf =
(

χJ f̂
)

,̌ f ∈ L2(Rn),

where I, J ⊂ R
n are sets of finite Lebesgue measure, χI , χJ denote the corresponding char-

acteristic functions and ,̂ˇ denote the Fourier-Plancherel transform L2(R2) → L2(R2) and
its inverse. We characterize the connected components of these classes: the components of
C0 are parametrized by the rank, the components of C1 are parametrized by the Fredholm
index of the pairs, and C∞ is connected. We show that these subsets are (non complemented)
differentiable submanifolds of B(H)× B(H).

2010 MSC: 58B20, 47B15, 42A38, 47A63.
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1 Introduction

The study of pairs of subspaces of a Hilbert space H or, more generally, pairs of orthogonal
projections in a C∗-algebra started in the early times of spectral theory with Dixmier [9]. Some
efforts towards finding more transparent proofs of Dixmier’s theorems are due to Davis [8],
Pedersen [17], Halmos [13], Raeburn and Sinclair [22], Avron, Seiler and Simon [3], Amrein and
Sinha [1], among many others. The excellent survey of Böttcher and Spitkovsky [4] contains a
complete description and bibliography. This theory is concerned not only with two projections
P , Q in B(H) (the algebra of bounded linear operators in H) but also with the products PQ
and PQP . This paper is an addition to this part of the theory, where PQ is supposed to be
compact. The interest in this type of products is not new. Consider the following examples.

Examples 1.1. 1. Let I, J ⊂ R
n be Lebesgue-measurable sets of finite measure. Let PI , QJ

be the projections in L2(Rn, dx) given by

PIf = χIf and QJf =
(

χJ f̂
)

,̌
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where χL denotes the characteristic function of the set L. Equivalently, denoting by UF

the Fourier transform regarded as a unitary operator acting in L2(Rn, dx), then

PI =MχI
and QJ = U∗

FMχJ
UF .

In [11] (Lemma 2) it is proven that PIQJ is a Hilbert-Schmidt operator. See also [12].
These products play a relevant role in operator theoretic formulations of the uncertainty
principle [11], [12].

2. Let H = L2(T, dt) where T is the unit circle, and consider the decomposition

H = H− ⊕H+,

where H+ is the Hardy space. Benote by P+ and P− the orthogonal projections onto H+

and H−, respectively. Let ϕ,ψ be continuous functions on T with |ϕ(eit)| = |ψ(eit)| = 1
for all t, and

P = P⊥
ϕH+

= 1− PϕH+ , Q = PψH+ .

Since ϕ and ψ are unimodular, the multiplication operators Mϕ, Mψ are unitary in H.
Then

PϕH+ = PMϕ(H+) =MϕP+M
∗
ϕ =MϕP+Mϕ̄,

and similarly for PψH+ . Then

P⊥
ϕH+

= 1− PϕH+ =Mϕ(1− P+)Mϕ̄ =MϕP−Mϕ̄.

Therefore
PQ =MϕP−Mϕ̄MψP+Mψ̄ =MϕP−Mϕ̄ψP+Mψ̄.

Since P−Mϕ̄ψ|H+ is a Hankel operator with continuous symbol, it follows by Hartman’s
theorem [14] that it is compact (see also Theorem 5.5 in [18]). Thus PQ is compact.

We shall see below that these two examples are of different nature.

Our main goal in this paper is the study of the geometry of the sets

C = {(P,Q) : P,Q are orthogonal projections and PQ is compact}

and, for each projection P ,
C(P ) = {Q : PQ is compact}.

Let us describe the contents of the paper.
In Section 2 we state elementary properties of pairs P,Q in C: the spectral description of

the entries of Q, written as a 2 × 2 matrix in terms of P , and the partition of the class C in
three subclasses C0, C1 and C∞. In Section 3 we recall the so-called Halmos decomposition of
H given by a pair of subspaces, and specialize it to the case where the corresponding pair of
projections lies in C. In Section 4 we give a spatial characterization of C in the following sense:
given orthogonal projections P , Q, denote S = R(P ) and T = R(Q); then (P,Q) belongs to
C if and only if there exist orthonormal bases {ξn}, {ψn} of S and T , respectively, such that
〈ξn, ψk〉 = 0 if n 6= k, and 〈ξn, ψn〉 → 0. In Section 5 we introduce the action of the restricted
unitary group induced by P on projections Q ∈ C(P ). In Section 6 we study the class C1, on
which an index is defined, and prove that the connected components of C1 are parametrized
by this index. It is shown that Hankel pairs as in Example 1.1.2 belong to C1. In Section 7
we study the class C∞, and prove that it is connected. We also prove that the pairs (PI , QJ)
like in Example 1.1.1 belong to C∞. In Section 8 we prove that the sets C and C(P ) are (non
complemented) C∞-differentiable submanifolds of B(H).
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2 Elementary properties

Let H be a Hilbert space, B(H) the algebra of bounded linear operators in H, K(H) the ideal
of compact operators and P(H) the set of selfadjoint (orthogonal) projections. If S is a closed
subspace of H, the orthogonal projection onto S is denoted by PS . Given P ∈ P(H), operators
acting in H can be written as 2× 2 matrices. For instance, any projection Q is of the form

Q =

(

a x
x∗ b

)

where the fact that Q is a projection is equivalent to the relations







xx∗ = a− a2

x∗x = b− b2

ax+ xb = x
, (1)

with 0 ≤ a ≤ 1R(P ), 0 ≤ b ≤ 1N(P ) and ‖x‖ ≤ 1/2. The fact that PQ is compact means
that a ∈ B(R(P )) and x ∈ B(N(P ), R(P )) are compact. Here and throughout R(T ) and N(T )
denote the range and the nullspace of T , respectively.

Let us show another example of pairs of projections with compact product.

Example 2.1. Let H = L×S and fix a compact operator K : S → L. Consider the idempotent
E = EK given by the matrix

E =

(

1L K
0 0

)

.

Then P = PR(E) = PL and Q = PN(E) satisfy that PQ is compact. Indeed, straightforward
computations show that R(E) = L and that

PN(E) = (1− EK)(1− EK − E
∗
K)

−1 =

(

KK∗(1 +KK∗)−1 −K(1 +K∗K)−1

−K∗(1 +KK∗)−1 (1 +K∗K)−1

)

.

Then

PQ =

(

KK∗(1 +KK∗)−1 −K(1 +K∗K)−1

0 0

)

,

which is clearly compact. The singular values of PQ are the square roots of the eigenvalues of

PQP =

(

KK∗(1 +KK∗)−1 0
0 0

)

,

i.e., those of KK∗(1 + KK∗)−1, which have the same asymptotic behaviour near zero as the
singular values of K.

Let us collect several elementary properties of pairs in C. First note that b (in the matrix
expression of Q in terms of P ) may not be compact. It is positive and b− b2 is compact. This
implies that it can be diagonalized, and that its spectrum consists of eigenvalues which can only
accumulate (eventually) at 0 or 1, plus 0 and 1 which may not be eigenvalues. All spectral
values different from 0 or 1 have finite multiplicity.

Moreover, there is a relationship between eigenvalues of a and b, which we state in the
following elementary lemma.
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Lemma 2.2. If λ 6= 0, 1 is an eigenvalue of b, then 1−λ is an eigenvalue of a, and the operator
x|N(b−λ1N(P )) maps N(b−λ1N(P )) isomorphically onto N(a− (1−λ)1R(P )). Thus, in particular,
these eigenvalues have the same multiplicity. Moreover,

xPN(b−λ1N(P )) = PN(a−(1−λ)1R(P ))x.

Proof. Let ξ ∈ H, ξ 6= 0, such that bξ = λξ (with λ 6= 0, 1). Then, by the third relation in (1),
one has

xξ = axξ + xbξ = axξ + λxξ, i.e. , axξ = (1− λ)xξ.

Also note that
N(x) = N(x∗x) = N(b− b2) = N(b)⊕N(b− 1N(P )),

and thus xξ 6= 0 is an eigenvector for a, with eigenvalue 1 − λ, and the map x|N(b−λ1N(P )) is

injective from N(b− λ1N(P )) to N
(

ax− (1− λ)1R(P )

)

. Therefore

dim
(

N(b− λ1N(P ))
)

≤ dim
(

N(a− (1− λ)1R(P )

)

.

By a symmetric argument, using x∗ (and the relation bx∗ + x∗a = x), one obtains equality of
these dimensions.

Pick now an arbitrary ξ ∈ N(P ) and write ξ = ξ1 + ξ2, with ξ1 ∈ N(b − λ1N(P )) and
ξ2 ⊥ N(b− λ1N(P )). Then

xPN(b−λ1N(P ))ξ = xξ1.

On the other hand
P
N(a−(1−λ)1R(P ))xξ1 = xξ1,

by the fact proven above. Let us see that P
N(a−(1−λ)1R(P ))xξ2 = 0, which will prove our claim.

Since ξ2 ⊥ N(b−λ1N(P )), it follows that ξ2 =
∑

l≥2 ηl+η0+η1, where ηl, l ≥ 2, are eigenvectors
of b corresponding to eigenvalues λl different from 0, 1 and λ, η0 ∈ N(b), η1 ∈ N(b − 1N(P ))
(where these two latter may be trivial). Note then that η0, η1 ∈ N(x), and thus

xξ2 =
∑

l≥2

xηl,

where the (non nil) vectors xηl are eigenvectors of a corresponding to eigenvalues 1−λl, different
from 0, 1 and 1− λ. Thus P

N(a−(1−λ)1R(P ))xξ2 = 0.

For an operator T ∈ B(H), let r(T ) = dim (R(T )) be the rank of T and n(T ) = dim (N(T ))
the nullity of T .

Remark 2.3. This result implies that we may write a and b as

a =
∑

n≥1 λnPn + E1

b =
∑

n≥1(1− λn)P
′
n + E′

1
(2)

where 1 > λn > 0 is a decreasing set, which may be finite or a sequence converging to 0,

r(Pn) = r(P ′
n) <∞ , E1 = PN(a−1R(P )) with r(E1) <∞, and E′

1 = PN(b−1N(P )).
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Accordingly, the decomposition of the (non selfadjoint) operator x in singular values is

x =
∑

n≥1

αn(

kn
∑

j=1

ξn,j ⊗ ξ
′
n,j),

where αn =
√

λn − λ2n, and {ξn,j : 1 ≤ j ≤ kn} and {ξ
′
n,j : 1 ≤ j ≤ kn} are orthonormal systems

which span R(Pn) and R(P
′
n), respectively.

Let us first sort out the pairs where either P or Q have finite rank, and which clearly belong
to C.

Remark 2.4. 1. If r(P ) = k <∞, then (P,Q) ∈ C for any Q ∈ P. Moreover, if (P (t), Q(t))
is a continuous path in C, P (t) and Q(t) are continuous paths in P, and thus r (P (t)) = k
and r (Q(t)) = l ≤ ∞ along the path. If l = ∞, then n(Q(t)) = n(Q) = m ≤ ∞ for all
t. Conversely, suppose that (P ′, Q′) is another pair in C with r(P ) = r(P ′), r(Q) = r(Q′)
and n(Q) = n(Q′). Then there exists a unitary operator U such that UPU∗ = P ′. Let
U = eiX for some X∗ = X. Then

α(t) = (eitXPe−itX , eitXQe−itX)

is a continuous path inside C with α(0) = (P,Q) and α(1) = (P ′, UQU∗). It is clear that
UQU∗ and Q′ have also the same rank and nullity. Thus, there exists a unitary operator
W = eitY (with Y ∗ = Y ) such that WUQ(WU)∗ = Q. Then

β(t) = (P ′, eitY UQU∗e−itY )

is another continuous path inside C joining (P ′, UQU∗) and (P ′, Q′). It follows that (P,Q)
and (P ′, Q′) lie in the same connected component of C.

2. If n(P ) = m < ∞ and (P,Q) ∈ C, then it must be r(Q) = l < ∞. Indeed, in this case
PQ is compact and (1−P )Q has finite rank, then Q = PQ+ (1−P )Q is compact, i.e. of
finite rank. Thus, a similar analysis as above can be done, for pairs in C with the second
coordinate of rank l <∞.

3. We may summarize this information as follows. Let

C0 = {(P,Q) ∈ P × P : r(P ) <∞ or r(Q) <∞}.

Then the connected components of C0 are the sets

Cm,nk,l = {(P,Q) ∈ P ×P : r(P ) = k, n(P ) = l, r(Q) = m,n(Q) = n},

with min{k, l,m, n} finite.

In what follows, unless otherwise stated, we shall suppose that both projections in the pair
(P,Q) ∈ C have infinite rank and nullity. To describe the pairs (P,Q) ∈ C, it will be useful to
consider the homomorphism onto the Calkin algebra

π : B(H)→ B(H)/K(H).
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Put p = π(P ), q = π(Q), which are non zero projections in B(H)/K(H). Write the matrix of q
in terms of p. Then

q =

(

0 0
0 q′

)

,

where q′ is a projection (i.e. a selfadjoint idempotent) in B (N(P )) /K (N(P )), the Calkin algebra
of N(P ). In the Calkin algebra there are three (unitary) equivalence classes of projections: 0, 1
and e 6= 0, 1 (e = π(E) for any E with R(E) and N(E) infinite dimensional).

Definition 2.5. Fix P ∈ P(H). Denote

C(P ) = {Q ∈ P(H) : PQ is compact}.

According to the above classification, relative to P there are two classes of projections Q such
that PQ is compact.

1. If q′ = 1:
C1(P ) = {Q ∈ P(H) : π ((1− P )(1−Q)(1− P )) = π(1− P )}.

This means that dim (N(b)) < ∞. We shall describe this class below. It is the restricted
Grassmannian induced by the decomposition H = N(P )⊕ R(P ) (in the usual description
of the restricted Grassmannian: N(P ) plays the main role).

2. If q′ is a proper projection in B(N(P ))/K(N(P )):

C∞(P ) = {Q ∈ P(H) : π((1 − P )(1−Q)(1− P )) 6= π(1− P ), 0}.

We shall call this the class of essential projections relative to P . We shall see that the
pairs in Example 1.1 belong to this class.

3 The Halmos decomposition

Given orthogonal projections P and Q , we shall call the Halmos decomposition [13] (though it
was certainly used before) the following orthogonal decomposition of H,

H11 = R(P ) ∩R(Q) , H00 = N(P ) ∩N(Q) , H10 = R(P ) ∩N(Q) , H01 = N(P ) ∩R(Q)

and H0 the orthogonal complement of the sum of the above. This last subspace is usually called
the generic part of the pair P,Q. Note also that

N(P −Q) = H11 ⊕H00 , N(P −Q− 1) = H10 and N(P −Q+ 1) = H01,

so that the generic part depends in fact of the difference P −Q.
Halmos proved that there is an isometric isomorphism between H0 and a product Hilbert

space L×L such that, in the above decomposition (putting L×L in place of H0), the projections
are

P = 1⊕ 0⊕ 1⊕ 0⊕

(

1 0
0 0

)

and

Q = 1⊕ 0⊕ 0⊕ 1⊕

(

C2 CS
CS S2

)

,
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where C = cos(X) and S = sin(X) for some operator 0 ≤ X ≤ π/2 in L with trivial nullspace.
Let us describe the pairs in C in terms of this decomposition. It should be noted that the

operator X and the space L are uniquely determined up to unitary equivalence.

Proposition 3.1. The pair (P,Q) belongs to C if and only if H11 is finite dimensional and
C = cos(X) is compact.

Proof. By direct computation,

PQ = 1⊕ 0⊕ 0⊕ 0⊕

(

C2 CS
0 0

)

.

If C is compact, then C2 and CS are compact. If, additionally, dimH11 < ∞, then it is clear
that PQ is compact.

Conversely, if PQ is compact, then clearly dimH11 <∞. If the matrix operator

(

C2 CS
0 0

)

is compact, then its 1, 1 entry is also compact. The square root of a positive compact operator
is compact (recall that C ≥ 0), thus C is compact.

Remark 3.2. If (P,Q) ∈ C, then the spectral resolution of X can be easily described. Since
0 < cos(X) is compact, it follows that

X =
∑

n

γnPn +
π

2
E,

where 0 < γn < π/2 is an increasing (finite or infinite) sequence, and Pn, E are the projections
onto the eigenspaces associated to γn and and π/2, respectively . For all n, dimR(Pn) < ∞,
and

R(E)⊕ (⊕n≥1R(Pn)) = L.

From the spectral picture of X above, one obtains the following result, which states that in
their generic part, all pairs in C are obtained as in Example 2.1

Proposition 3.3. The pair (P,Q) belongs to C if and only if the following conditions are sat-
isfied:

1. H11 is finite dimensional.

2. The subspaces M = P (H0) and N = Q(H0) of the generic part H0, satisfy

M ⊕N = H0.

3. The idempotent E = PM‖N corresponding with this decomposition has matrix form, in
terms of its range M ,

E =

(

1 K
0 0

)

for K : N →M a compact operator.
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Proof. It is clear that these conditions imply that (P,Q) ∈ C. It is also clear that condition
dim(H11) < ∞ is necessary. Denote by P0 and Q0 the reductions of P and Q to their generic
part. In Halmos’ model H0 = L × L, sin(X) is invertible in L. Then (reasoning with matrices
in terms of H0 = L × L)

P0 −Q0 =

(

S2 CS
CS −S2

)

and thus (P0 −Q0)
2 =

(

S2 0
0 S2

)

is invertible. Then P0 −Q0 is invertible. This means that M ⊕N = H0 (see [5]). Moreover, by
a formula in [5], and after straightforward computations, it holds that

E = PM‖N = P0(P0 −Q0)
−1 =

(

1 −CS−1

0 0

)

.

Note that −CS−1 is compact in L.

We shall describe the different subclasses of C in terms of the Halmos decomposition and the
spectral resolution of X. The class C0 is easiest to describe. Recall that (P,Q) ∈ C0 if dimR(Q)
or dimR(P ) <∞.

Proposition 3.4. Let (P,Q) ∈ C. Then (P,Q) ∈ C0 if and only if the sequence {γn} is finite,
dimH01 <∞ and dimR(E1) <∞.

4 A spatial characterization

In this section we briefly address the following question: let S and T be closed subspaces of H,
when is PSPT compact?

Theorem 4.1. PSPT is compact if and only if there exist orthonormal bases {ξn : n ≥ 1} and
{ψn : n ≥ 1} of S and T respectively, such that 〈ξn, ψk〉 = 0 if n 6= k and 〈ξn, ψn〉 → 0 (n→∞).

Proof. The sufficiency of this condition is clear. If {ξn : n ≥ 1} and {ψn : n ≥ 1} are bi-
orthogonal and 〈ξn, ψn〉 → 0, then

PSPT = (
∑

n≥1

〈 , ξn〉ξn)(
∑

k≥1

〈 , ψk〉ψk) =
∑

n≥1

〈ξn, ψn〉ξn ⊗ ψn.

This is essentially the singular value decomposition for PSPT . Indeed, put

〈ξn, ψn〉 = eiθn |〈ξn, ψn〉|

and replace ξ′n = e−iθnξn. Then

PSPT =
∑

n≥1

|〈ξ′n, ψn〉|ξ
′
n ⊗ ψn

with singular values |〈ξ′n, ψn〉| → 0, and thus PSPT is compact.
Conversely, suppose that T = PSPT is compact. Then clearly R(T ) ⊂ S and N(PT ) =

T ⊥ ⊂ N(T ), i.e. N(T )⊥ ⊂ T . Thus PSPR(T ) = P
R(T )

and PT PN(T )⊥ = PN(T )⊥ . Then

T = P
R(T )TPN(T )⊥ = P

R(T )PSPT PSPN(T )⊥ = P
R(T )PN(T )⊥ .
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Consider the singular value decomposition of T :

T =
∑

n≥1

snξn ⊗ ψn,

where {ξn : n ≥ 1} and {ψn : n ≥ 1} are orthonormal bases of R(T ) and N(T )⊥, respectively.
Note that T satifies the equation

T 2 = PSPT PSPT = TT ∗T. (3)

Straightforward computations show that

T 2 =
∑

n≥1

snTξn ⊗ ψn =
∑

n,k≥1

snsk〈ξn, ψk〉ξk ⊗ ψn =
∑

k≥1

〈 ,
∑

n≥1

snsk〈ψk, ξn〉ψn〉ξk.

On the other hand,

T ∗T =
∑

k≥1

s2kψk ⊗ ψk

and
TT ∗T =

∑

k≥1

s2kTψk ⊗ ψk =
∑

k≥1

s3kξk ⊗ ψk =
∑

k≥1

s3k〈 , ψk〉ξk.

Therefore using (3)
∑

n≥1

snsk〈ψk, ξn〉ψn = s3kψk.

Then 〈ξn, ψk〉 = 0 if n 6= k and 〈ξn, ψn〉 = sn.
Let us extend the orthonormal bases {ξn} and {ψn} of R(T ) and N(T )⊥ to orthonormal

bases of S and T . Note that if ξ ∈ S ⊖R(T ) and ψ ∈ T ⊖N(T )⊥, then

〈ξ, ψ〉 = 〈PSξ, PT 〉 = 〈ξ, PSPT ψ〉 = 〈ξ, Tψ〉 = 0,

because ξ ⊥ R(T ). Therefore we can extend the bases {ξn} and {ψn} to bases {ξ′n} and {ψ
′
n}

arbitrarily, and the properties that 〈ξ′n, ψ
′
k〉 = 0 if n 6= k, and that 〈ξ′n, ψ

′
n〉 (= sn or 0) converges

to 0 remain valid for the extended bases.

Remark 4.2. Equation (3) above in fact characterizes operators which are the product of two
projections, compact or not. This was shown by Crimmins, and published in [21].

Remark 4.3. In the special case S = R(PI) and T = R(QJ) for I, J ⊂ R
3 of finite Lebesgue

measure, the bi-orthogonal system is given by the so-called prolate spherical functions, and their
(normalized) images under QJ (see, for instance, [15]). That these functions are bi-orthogonal
(or double orthogonal, as stated in [15]) is well known. As seen above, this is not a special
feature of this example but a general property when PQ is compact.
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5 Unitary actions

We shall use two unitary actions to describe the structure of C. The full unitary group U(H)
acts on pairs in C by joint inner conjugation:

U · (P,Q) = (UPU∗, UQU∗), U ∈ U(H), (P,Q) ∈ C.

We shall make use of another local unitary action, on pairs in C with the first coordinate P0

fixed. Recall the definition of the restricted unitary group, where the restriction is given by the
decomposition H = R(P0)⊕N(P0) (see [19]),

Ures(P0) = {U ∈ U(H) : [U,P0] ∈ K(H)}.

In matrix form, in terms of the given decomposition, these unitaries are of the form

U =

(

u11 u12
u21 u22

)

where u12 and u21 are compact operators. Elementary matrix computations, involving the
fact that U is unitary, imply that u11 and u22 are Fredholm operators in R(P0) and N(P0),
respectively, and that

ind(u22) = −ind(u11).

The integer ind(u11) is usually called the index of U . It is known that this index parametrizes the
connected components of Ures(P0): two unitaries U,W ∈ Ures(P0) belong to the same connected
component if and only if ind(U) = ind(W ) (see for instance [19] or [6]).

Let us prove that Ures(P0) acts by inner conjugation of the classes Cx(P0) (x = 0, 1,∞).

Proposition 5.1. Let Q ∈ Cx(P0) (x = 0, 1,∞) and U ∈ Ures(P0). Then UQU∗ ∈ Cx(P0).

Proof. Straightforward matrix computation:

UQU∗ =

(

u11 u12
u21 u22

)(

a x
x∗ y

)(

u∗11 u∗21
u∗12 u∗22

)

.

The 1, 1 entry of this product is

u11au
∗
11 + u12x

∗u∗11 + u11xu
∗
12 + u12bu

∗
12,

where a, x and u12 are compact, therefore the 1, 1 entry is compact. The 1, 2 entry is

u11au
∗
21 + u12x

∗u∗21 + u11xu
∗
22 + u12bu

∗
22,

which is compact by a similar argument. Then P0UQU
∗ ∈ K(H).

We shall mainly use U0
res(P0), the connected component of the identity (or zero index com-

ponent). This component is an exponential group, namely

U0
res(P0) = exp{iX ∈ B(H) : X∗ = X, [X,P0] ∈ K(H)},

(see [6], [19]). Note that Ures(P0) is the unitary group of the C∗-algebra AP0(H) of operators T
in H such that [T, P0] ∈ K(H).
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6 The restricted Grassmannian

Let us recall some elementary facts concerning the restricted Grassmannian of a decomposition
of H = N0 ⊕N

⊥
0 . Denote by E0 the orthogonal projection onto N0.

Definition 6.1. [23]
A projection Q belongs to the restricted Grassmannian Pres(N0) with respect to the decom-

position H = N0 ⊕N
⊥
0 , or more precisely, with respect to subspace N0, if and only if

1.
E0Q|R(Q) : R(Q)→ N0 ∈ B (R(Q),N0)

is a Fredholm operator in B(R(Q),N0), and

2.
(1− E0)Q|R(Q) : R(Q)→ N⊥

0 ∈ B
(

R(Q),N⊥
0

)

is compact.

The index of the first operator characterizes the connected components of Pres(N0). The
following result is elementary.

Lemma 6.2. Let Q ∈ P(H) with matrix (in terms of H = N0 ⊕N
⊥
0 )

Q =

(

a x
x∗ b

)

.

Then Q ∈ Pres(N0) if and only if a is Fredholm in B(N0), and b and x are compact.

Proof. The proof is based on the following elementary facts:

• A ∈ B(H1,H2) is a Fredholm operator if and only if AA∗ is a Fredholm operator in H1

and N(A) is finite dimensional.

• A ∈ B(H1,H2) is compact if and only if A∗A ∈ B(H1) is compact.

Suppose first that Q ∈ Pres(N0). Then E0Q ∈ B (R(Q),N0) is Fredholm, and thus

E0Q(E0Q)∗|N0 = E0QE0|N0 = a

is Fredholm in N0. Also (1− E0)Q ∈ B(R(Q),N⊥
0 ) is compact, and thus

(1− E0)Q(1− E0 −Q)∗|N⊥

0
= (1− E0)Q(1− E0)|N⊥

0
= b

is compact in N⊥
0 . The fact that Q is a projection implies the relation b − b2 = x∗x, and thus

x is compact.
Conversely, by the last computations, if x and b are compact, then (1−E0)Q ∈ B

(

R(Q),N⊥
0

)

is compact. Similarly, E0Q(E0Q)∗|N0 = a is Fredholm, thus E0Q, as an operator in B(R(Q),N0),
has closed range (equal to the range of a) with finite codimension. Let us prove that its nullspace
is finite dimensional. Let ξ = ξ+ + ξ− = Qξ such that E0ξ = 0, (ξ+ ∈ N0, ξ− ∈ N

⊥
0 ). This

implies that
{

ξ+ = aξ+ + xξ−
ξ− = x∗ξ+ + bξ−

and ξ+ = 0. The second equation then reduces to ξ− = bξ−, i.e., ξ− lies in the 1-eigenspace of
the compact operator b. Thus ξ− lies in a finite dimensional space. It follows that N(E0Q|R(Q))
is finite dimensional.

11



Corollary 6.3. Let P ∈ P(H) be such that N(P ), R(P ) are infinite dimensional. Then C1(P )
coincides with the restricted Grassmannian of H induced by the decomposition H = N(P )⊕R(P ).

Proof. In the description of the classes Ci(P ) at Definition 2.5 (given in matrix form in terms
of the decomposition H = R(P ) ⊕ N(P ), note the reversed order), a projection Q belongs to
C1(P ) if and only if, in the Calkin algebra, its 2, 2 entry is the identity and all other entries are
nil. By the above Lemma, this means that Q belongs to the restricted Grassmannian of the
decomposition H = N(P )⊕R(P ).

From now on we shall refer this set of projections as the restricted Grassmannian of N(P0).

Remark 6.4. The group U0
res(P0) acts transitively on the connected components of C1(P0),

which are parametrized by the Fredholm index defined in the restricted Grassmannian of N(P0).

Let us denote by
C1 = {(P,Q) ∈ C : Q ∈ C1(P )},

the union of C1(P ) for all P ∈ P∞(H), where P∞(H) denotes the (connected) space of projections
in H with infinite dimensional range and nullspace.

Theorem 6.5. The connected components of C1 are parametrized by the Fredholm index. Namely,
(P,Q), (P ′, Q′) ∈ C1 lie in the same connected component if and only if the index of Q in the
restricted Grassmannian of N(P ) coincides with the index of Q′ in the restricted Grassmannian
of N(P ′).

Proof. There exists a unitary operator U ∈ U(H) such that U∗P ′U = P . Consider the pair
U∗ · (P ′, Q′) = (P,U∗Q′U). Note that (P,U∗Q′U) belongs to the restricted Grassmannian of
N(P ), and it has the same index as (P ′, Q′). Since U(H) is connected, this means that one is
reduced to the case P = P ′, where the result is valid due to the above Corollary.

Note that the class C1 can be described in terms of the Halmos decomposition.

Proposition 6.6. Let (P,Q) ∈ C. Then the following are equivalent:

1. (P,Q) ∈ C1.

2. dimH00 <∞.

3. dimN(b) <∞.

In this case, the index of Q in the restricted Grassmannian of N(P ) is given by

dimH01 − dimH10.

Proof. The (five space) Halmos decomposition induces a (four space) decomposition of H which
reduces both P and Q. Namely,

H = H00 ⊕H11 ⊕H
′ ⊕H0,

where H′ = H10⊕H01. By Lemma (6.2), the part of Q which acts on N(P ) must be a Fredholm
operator. By the above reduction, this amounts to show that both 0 acting in H00 and S

2 acting
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in the space L, are Fredholm operators (recall notations from Section 3). The first assertion
means that dimH00 <∞. With respect to the second,

S2 = sin2(X) =
∑

n

sin2(γn)Pn +E

is always a Fredholm operator (recall that N(S) = N(X) = {0}), since 0 < sin2(γn) is a finite
set or a sequence increasing to 1. If Q ∈ C1(P ), then b is Fredholm in N(P ), and thus N(b) is
finite dimensional. Conversely, the fact that Q ∈ C(P ) implies that the spectral decomposition
of b is of the form

b =
∑

n≥1

(1− λn)P
′
n + E′

1,

with 1 > λn > 0 a finite set or a strictly decreasing sequence converging to 0. If N(b) is finite
dimensional, then b is a Fredholm operator, and thus Q belongs to the restricted Grassmannian
of N(P ), i.e., Q ∈ C1(P ).

If Q lies in the restricted Grassmannian, it is well known that the index of Q with respect
to N(P ) is

dim (R(Q) ∩N(P ))− dim (N(Q) ∩R(P )) = dimH01 − dimH10.

Example 6.7. Let us return to Example 1.1.2:

H = L2(T, dt) = H− ⊕H+, P = P⊥
ϕH+

, Q = PψH+ ,

where H+ is the Hardy space and ϕ,ψ : T → T are continuous. The 2, 2 entry b of Q in terms
of P is unitarily equivalent to

P+Mϕ̄ψP+Mψ̄ϕP+ = (P+Mψ̄ϕP+)
∗P+Mψ̄ϕP+.

Note that P+Mψ̄ϕ|H+ is a Toeplitz operator with non vanishing continuous symbol, therefore b is
a Fredholm operator [10], and (P,Q) ∈ C1. The index of the pair is (minus) the winding number
of the symbol ψ̄ϕ [10]. Subspaces ϕH+ with ϕ continuous and non vanishing were studied in
[19] and [23] in connection with parametrizations of solutions of the KdV equation.

7 Essential projections

Following the notation of the previous section, denote

C∞ = {(P,Q) ∈ C : Q ∈ C∞(P )},

the union of C∞(P ) for all P ∈ P∞(H). Let (P,Q) ∈ C∞. Write Q as a matrix in terms of P as
before,

Q =

(

a x
x∗ b

)

with a =
∑

n≥1 λnPn + E1 and b =
∑

n≥1(1− λn)P
′
n + E′

1. Define

Qd =

(

E1 0
0

∑

n P
′
n + E′

1

)

.
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Note that Qd is a projection; it is also clear that Qd ∈ P∞(H). Indeed, since r(E1) < ∞, it
follows that dimN(Qd) = ∞. If the sequence {λn} is finite, the facts that they have finite
multiplicities and that b is a Fredholm operator, imply that r(E′

1) = ∞. If the sequence is
infinite, then r(

∑

n P
′
n) =∞. In any case, r(Qd) =∞.

Lemma 7.1. B = Q+Qd − 1 is invertible in H.

Proof. Let N (resp. N ′) denote the orthogonal projection onto N(a) (resp. N(b)) in R(P ) (resp.
N(P )), and write 1R(P ) = E1 +N +

∑

n≥1 Pn, and 1N(P ) = E′
1 +N ′ +

∑

n≥1 P
′
n. One has

B =

( ∑

n≥1(λn − 1)Pn + E1 −N x

x∗
∑

(1− λn)P
′
n + E′

1 −N
′

)

.

The diagonal entries of B are invertible in R(P ) and N(P ). Indeed, they are diagonal operators
with non nil eigenvalues that accumulate (eventually) at −1 and 1, respectively. The codiagonal
entries of B are compact. It follows that B is of the form invertible plus compact. Thus it is
a Fredholm operator, and in particular it has closed range. Therefore, since B is selfadjoint, it
suffices to show that it has trivial nullspace. Note that B is a difference of projections, namely

B = Q− (1−Qd).

It is an elementary fact that the nullspace of a difference of projections is

N(B) = (N(Q) ∩N(1−Qd))⊕ (R(Q) ∩R(1−Qd)) = (N(Q) ∩R(Qd))⊕ (R(Q) ∩N(Qd)) .

Let us see that N(Q) ∩R(Qd) = {0}. Let ξ + η ∈ R(P )⊕N(P ) = H in N(Q) ∩R(Qd). Then

E1ξ = ξ and
∑

n≥1

P ′
nη + E′

1η = η. (4)

This implies that Pnξ = 0 for all n, Nξ = 0 and N ′η = 0. Also one has

{

0 =
∑

n≥1 λnPnξ + E1ξ + xη = ξ + xη

0 = x∗ξ +
∑

n≥1(1− λn)P
′
nη + E′η.

(5)

Recall that R(x) = ⊕n≥1R(Pn) which is orthogonal to R(E1). Thus ξ = 0 and xη = 0. Since
the nullspace of x is R(N ′) ⊕ R(E′

1), one has that η = N ′η + E′
1η. Combining this with the

second equality in (4), one gets N ′η = 0 and E′η = η (and P ′
nη = 0 for all n). Using these facts

in the second equation of (5), one obtains η = 0.
The fact that R(Q) ∩N(Qd) = {0} is proved in a similar fashion.

Remark 7.2. Buckholtz [5] proved that a difference of projections P1 − P2 is invertible if and
only if ‖P1 + P2 − 1‖ < 1. In our case, this implies that

‖Q−Qd‖ < 1.

Lemma 7.3. The unitary part U of B in the polar decomposition B = U |B| belongs to U0
res(P ).
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Proof. As remarked in the above proof, the off-diagonal entries of B (in its matrix in terms of
P ) are compact. Therefore B is an invertible element in the C∗-algebra AP (H). It follows that
its unitary part is a unitary element of this algebra, namely Ures(P ). We need to show that
it has index zero. The index is in fact defined in the whole invertible group of AP (H), and it
coincides with the index of the 1, 1 entry. As it was also pointed out in the proof above, the 1, 1
entry of B is invertible in R(P ), and thus it has trivial index.

Remark 7.4. It is well known (see for instance [7]) that if an invertible operator intertwines
two selfadjoint projections, then its unitary part in the polar decomposition also does. In our
case,

BQ = QQd = QdB.

Therefore UQ = QdU , or UQU∗ = Qd.
Note also the fact that since B is selfadjoint, U is a symmetry (i.e., a selfadjoint unitary:

S∗ = S−1 = S), so that UQU = Qd.

Lemma 7.5. Let E,F be two projections in P∞(H) which commute with P . Then they are
unitarily equivalent with a unitary operator in U0

res(P ).

Proof. In terms of P , one has

E =

(

E1 0
0 E2

)

and F =

(

F1 0
0 F2

)

,

where E1 and F1 have finite rank in R(P ) and E2 and F2 have infinite rank and nullity in N(P ).
By means of a unitary operator of the form

(

1R(P ) 0

0 W

)

,

one is reduced to the case E2 = F2. Clearly this unitary operator belongs to U0
res(P ). In order

to prove that E and F are conjugate with a unitary in U0
res(P ), it suffices to show that any of

these projections, for instance E, can be conjugated with

E0 =

(

0 0
0 E2

)

.

Consider the following orthonormal bases:

• {en : 1 ≤ n} an orthonormal basis of R(E2) (in N(P )).

• {e′l : 1 ≤ l} an orthonormal basis of N(P )⊖R(E2).

• {fk : 1 ≤ k} an orthonormal basis of R(P ), with f1, . . . , fN spanning R(E1).

Consider U defined as follows:

• U(en) = fn if 1 ≤ n ≤ N , and U(en) = en−N if n ≥ N + 1.

• U(e′l) = e′l+N .

• U(fk) = e′k if 1 ≤ k ≤ N , and U(fk) = fk if n ≥ N + 1.

15



It is straightforward that U is a unitary operator. Note also that U is not the identity only on
a finite number of fk, and thus UP and PU are of the form P plus compact. Therefore [U,P ]
is compact, i.e. U ∈ Ures(P ). For the same reason, on R(P ), U is the identity plus a finite rank
operator, and thus U has index zero. Finally, by construction,

U (R(E0)) = R(E1) and U (N(E0)) = N(E1).

From these facts, the main result of this section follows.

Theorem 7.6. Let P0 ∈ P∞(H).

1. The action of U0
res(P0) is transitive in C∞(P0). In particular, C∞(P0) is connected.

2. C∞ is connected,

Proof. Let Q and R be elements of C∞(P0). By the first two lemmas above, Q is U0
res(P0)-

conjugate to Qd and R is U0
res(P0)-conjugated to Rd. Rd and Qd are U0

res(P0)-conjugate by the
third lemma.

To prove the second assertion, suppose that (P,Q) and (P ′, Q′) belong to C∞. Since by
hypothesis P,P ′ ∈ P∞(H), there exists a unitary operator W = eiX (with X∗ = X) such that
WPW ∗ = P ′. The pairs (P,Q) and (P ′,WQW ∗) are homotopic in C∞ (for instance, by means
of the curve (eitXPe−itX , eitXQe−itX)). Thus, it suffices to show that (P ′,WQW ∗) and (P ′, Q′)
are homotopic in C∞. This is the first assertion.

Note that in particular, this implies that if Q ∈ C∞(P ), then also Qd ∈ C∞(P ). This fact
could have been obtained directly from the definition of Qd.

Remark 7.7. Consider the example at the beginning of Section 1, namely let I, J be measurable
subsets of Rn of finite measure, and put PI , QJ ∈ P(L

2(Rn, dx)) given by

PIf = χIf and QJf =
(

χJ f̂
)

.̌

Lenard proved [16] that N(PI) ∩N(QJ) is infinite dimensional. Therefore, the matrix of QJ in
terms of PI (whose first column and row are compact) has the 2, 2 entry which is not a Fredholm
operator. Clearly, it is not compact (which would mean that QJ has finite rank). Therefore
(PI , QJ) ∈ C∞. Moreover, given another pair I ′, J ′ of finite Lebesgue measure subsets of Rn,
the pairs (PI , QJ) and (PI′ , QJ ′) are homotopic in C∞.

The above Remark, showing that pairs in the example by Lenard belong to C∞, can be
generalized. Recall the characterizations of C0 and C1 in terms of the Halmos decomposition.

Proposition 7.8. Let (P,Q) ∈ C. Then (P,Q) ∈ C∞ if and only if dimR(Q) = ∞ and
dimH00 =∞.

Proof. Use the same argument as in the above Remark.
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Remark 7.9. Note that (P,Q) ∈ C if and only if (Q,P ) ∈ C: PQ is compact if and only if QP
is compact. There is, however, an abuse of notation in this assertion, because we have supposed
from the beginning that the first coordinate of the pair must belong to P∞. Assume thus that
also Q ∈ P∞.

Note that if (P,Q) ∈ C1, then also (Q,P ) ∈ C1. This follows in a straightforward manner
from the definition of the restricted Grassmannian, by taking adjoints. Also it is clear that the
index of the reversed pair changes sign.

As a consequence (since the class C0 is explicitly excluded), it follows that (P,Q) ∈ C∞
implies that (Q,P ) ∈ C∞.

8 Regular structure

Let us recall some basic facts on the differential geometry of the set P(H) (see for instance [20],
[7], [2].

Remark 8.1. 1. The space P(H) is a homogeneous space under the action of the unitary
group U(H) by inner conjugation. The orbits of the action coincide with the connected
components of P(H), which are: Pn,∞(H) (projections of nullity n), P∞,n(H) (projections
of rank n) and P∞(H) (projections of infinite rank and nullity). These components are
C∞-submanifolds of B(H).

2. There is a natural linear connection in B(H). If dimH <∞, it is the Levi-Civita connection
of the Riemannian metric which consists of considering the Frobenius inner product at
every tangent space. It is based on the diagonal - codiagonal decompositon of B(H).
To be more specific, given P0 ∈ P(H), the tangent space of P(H) at P0 consists of all
selfadjoint codiagonal matrices (in terms of P0). The linear connection in P(H) is induced
by a reductive structure, where the horizontal elements at P0 (in the Lie algebra of U(H):
the space of antihermitian elements of B(H)) are the codiagonal antihermitian operators.
The geodesics of P which start at P0 are curves of the form

δ(t) = eitXP0e
−itX , (6)

with X∗ = X codiagonal with respect to P0. It was proved in [20] that if P0, P1 ∈ P(H)
satisfy ‖P0−P1‖ < 1, then there exists a unique geodesic (up to reparametrization) joining
P0 and P1. This condition is not necessary for the existence of a unique geodesic.

3. In [2] a necessary and sufficient condition was found, in order that there exists a unique
geodesic joining two projections P and Q. This is the case if and only if

R(P ) ∩N(Q) = N(P ) ∩R(Q) = {0}.

4. It is sometimes useful to parametrize projections using symmetries S (S∗ = S, S2 = 1),
via the affine map

P ←→ SP = 2P − 1.

Some algebraic computations are simpler with symmetries. For instance, the condition
that the exponent X (of the geodesic) is P0-codiagonal means that X anti-commutes with
SP0 . Thus the geodesic (6), in terms of symmetries, can be expressed

Sδ(t) = eitXSP0e
−itX = e2itXSP0 = SP0e

−2itX .
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Fix P0 ∈ P∞(H). We shall see first that C(P0) is a differentiable manifold. If A is a
C∗-algebra, denote by Ah the space of selfadjoint elements of A.

Lemma 8.2. If Q,Q′ ∈ C(P0) and ‖Q − Q′‖ < 1, then there exists U ∈ U0
res(P0) such that

UQU∗ = Q′. This unitary operator U can be chosen as an explicit smooth formula in terms of
Q and Q′. In particular, Q and Q′ lie in the same (class and) connected component of C(P0).

Proof. If ‖Q − Q′‖ < 1, then there exists a unique geodesic joining Q and Q′ in P(H): Q′ =
eiXQe−iX for X∗ = X Q-codiagonal with ‖X‖ < π/2. As remarked in [7], the fact that X is
Q-codiagonal implies that X anti-commutes with 2Q− 1. Then

2Q′ − 1 = eiX(2Q− 1)e−iX = e2iX(2Q− 1).

Thus
e2iX = (2Q′ − 1)(2Q − 1).

Since ‖2iX‖ < π, the spectrum of (2Q′−1)(2Q−1) is contained in the subset {eit : t ∈ (−π, π)}
of the unit circle, and thus X can be recovered as a continuous (in fact holomorphic) logarithm
of (2Q′ − 1)(2Q− 1),

X = −
i

2
log

(

(2Q′ − 1)(2Q − 1)
)

.

Note that both (2Q′ − 1)(2Q− 1)P0 and P0(2Q
′ − 1)(2Q− 1) are of the form P0 plus compact.

It follows that [(2Q′ − 1)(2Q− 1), P0] is compact, and thus (2Q′ − 1)(2Q− 1) ∈ Ures(P0). This
implies that the exponent X belongs to AP0 (recall that the exponential map is a diffeomorphism
between exponents X∗ = X in AP0 of norm less than π and unitaries U in Ures(P0) such that
‖U − 1‖ < 2).

Remark 8.3. In particular, the above result provides a way to parametrize elements Q′ ∈ C(P0)
in the vicinity of a given Q ∈ C(P0). Namely, let

VQ = {Q′ ∈ C(P0) : ‖Q
′ −Q‖ < 1}.

For each Q′ ∈ VQ, there exists a unique X = XQ(Q
′), X∗, ‖X‖ < π/2, which is Q-codiagonal

and belongs to AP0 , such that eiXQe−iX = Q′.
Conversely, to each X as above, there corresponds an element Q′ = eiXQe−iX ∈ C(P0), with

‖Q′ −Q‖ < 1. Both maps
Q′ 7→ X and X 7→ Q′

are smooth, and each one is the inverse of the other. Thus one has defined a local chart VQ for
any Q ∈ C(P0), which is modelled in an open ball of (AP0)h.

Corollary 8.4. For any P0 ∈ P∞(H), the set C(P0) is a smooth manifold modelled in AP0(H)h.

As remarked in Section 2, the subset C0 of pairs in C where either of the projections have
finite rank, decomposes as a discerete union of components parametrized by rank and nullity, It
is nor difficult to prove that each one of these components are differentiable manifolds. We are
though intereseted in the non trivial pairs in C: C \ C0, comprising the components of C1 and
C∞.
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Theorem 8.5. The set

C′ = C \ C0 = {(P,Q) : P,Q ∈ P∞(H), PQ is compact}

is a smooth differentiable manifold.

Proof. Fix a pair (P0, Q0) ∈ C
′. We shall exhibit a local chart for C′ near this pair. Let

(P,Q) ∈ C′ such that ‖P − P0‖ < 1. Then, as remarked above, there exists X = X(P ) (a
smooth map in terms of P , with X(P0) = 0), X∗ = X, ‖X‖ < π/2 and X is P0-codiagonal,
such that

P = eiXP0e
−iX .

Then the pair e−iX(P,Q)eiX = (P0, e
−iXQeiX) belongs to C(P0). Let (P,Q) be close enough to

(P0, Q0) so that e−iXQeiX lies in the local chart VQ0 for C(P0) around Q0 constructed above.
Note that if P → P0, then e

iX → 1, so that

‖e−iXQeiX −Q0‖ ≤ ‖e
−iXQeiX −Q‖+ ‖Q−Q0‖

is arbitrarily small if (P,Q) is close to (P0, Q0). The chart for (P0, Q0) is the open set

V(P0,Q0) = {(P,Q) ∈ C′ : ‖P − P0‖ < 1 and e−iXQeiX ∈ VQ0}.

If e−iXQeiX ∈ VQ0 , then there exists a unique Y = XQ0(e
−iXQeiX) in AP0 , Y

∗ = Y , ‖Y ‖ < π/2,
which is Q0-codiagonal, such that

e−iXQeiX = eiYQ0e
−iY .

Denote BP0 = {X ∈ Bh(H) : ‖X‖ < π/2 and X is P0 − codiagonal} (and accordingly consider
BQ0). Consider the map

Ψ = Ψ(P0,Q0) : V(P0,Q0) → BP0 × (BQ0 ∩ (AP0)h) ⊂ Bh(H)× (AP0)h

given by
Ψ(P,Q) = (X,Y ).

The inverse of Ψ is the map

Ψ−1(X,Y ) = (eiXP0e
−iX , eiY eiXQ0e

−iY e−iX).

Let us return to C(P0) for a fixed P0 ∈ C, and the fact stated in Remark (8.3). This remark
says a bit more about the geometry of C(P0) as a submanifold of P(H). Recall from the facts
pointed out at the beginning of this section, that two projections at distance less than one are
joined by a unique minimal geodesic.

Corollary 8.6. Let Q,Q′ ∈ C(P0) such that ‖Q−Q′‖ < 1. Then the unique geodesic of P(H)
remains inside C(P0).

Proof. If Q,Q′ ∈ C(P0) with ‖Q − Q′‖ < 1, then then the unique (selfadjoint, Q-codiagonal)
exponent X = XQ(Q

′) with ‖X‖ < π/2 such that eiXQe−iX = Q′, belongs to AP0 .

Recall from Remark 8.1, the fact that if a weaker condition holds, namely

R(Q) ∩N(Q′) = N(Q) ∩R(Q′) = {0},

then there exists a unique X as above. A natural question is the following. Suppose that this
condition for uniqueness holds, but ‖Q − Q′‖ = 1, does the unique geodesic γ(t) = eiXQe−iX

lie in C(P )?
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[4] Böttcher, A.; Spitkovsky, I. M. A gentle guide to the basics of two projections theory.
Linear Algebra Appl. 432 (2010), no. 6, 1412–1459.

[5] Buckholtz, D. Inverting the difference of Hilbert space projections. Amer. Math. Monthly
104 (1997), no. 1, 60–61.

[6] Carey, A.L. Some homogeneous spaces and representations of the Hilbert Lie group U(H)2,
Rev. Roumaine Math. Pures Appl. 30 (1985), no. 7, 505–520.

[7] Corach, G.; Porta, H.; Recht, L. The geometry of spaces of projections in C∗-algebras.
Adv. Math. 101 (1993), no. 1, 59–77.

[8] Davis, C. Separation of two linear subspaces. Acta Sci. Math. Szeged 19 (1958) 172–187.

[9] Dixmier, J. Position relative de deux variétés linéaires fermées dans un espace de Hilbert.
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