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Abstract

Free algebras with an arbitrary number of free generators in varieties of BL-algebras generated by one
BL-chain that is an ordinal sum of a finite MV-chaln, and a generalized BL-chal are described

in terms of weak Boolean products of BL-algebras that are ordinal sums of subalgehraardd free
algebras in the variety of basic hoops generate@by'he Boolean products are taken over the Stone
spaces of the Boolean subalgebras of idempotents of free algebras in the variety of MV-algebras generate
by L.
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Keywords and phrase8L-algebras, residuated lattices, hoops, Moisil algebras, free algebras, Boolean
products.

Introduction

Basic Fuzzy Logic (BL for short) was introduced bgjdk (see9] and the references
given there) to formalize fuzzy logics in which the conjunction is interpreted by a
continuous t-norm on the real segm@htl] and the implication by its corresponding
adjoint. He also introduced BL-algebras as the algebraic counterpart of these logics.
BL-algebras form a variety (or equational class) of residuated lattitéls More
precisely, they can be characterizedbasinded basic hoodd, 7]. Subvarieties of

the variety of BL-algebras are in correspondence with axiomatic extensions of BL.
Important examples of subvarieties of BL-algebras are MV-algebras (that correspond
to Lukasiewicz many-valued logics, s€€f]), linear Heyting algebras (that correspond

to the superintuitionistic logic characterized by the axidth= Q) v (Q = P),

see P5] for a historical account about this logic), PL-algebras (that correspond to the
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logic determined by the t-norm given by the ordinary product®ri], see [L5]), and
also Boolean algebras (that correspond to classical logic).

Since the propositions under BL equivalence form a free BL-algebra, descriptions of
free algebras in terms of functions give concrete representations of these propositions
Such descriptions are known for some subvarieties of BL-algebras. The best known
example is the representation of classical propositions by Boolean functions. Free
MV-algebras have been described in terms of continuous piecewise linear functions
by McNaughton 22] (see also 14]). Finitely generated free linear Heyting algebras
were described by Horr2])], and a description of finitely generated free PL-algebras
was given in [L5]. Linear Heyting algebras and PL-algebras are examples of varieties
of BL-algebras satisfying thBoolean retraction property Free algebras in these
varieties were completely described iv].

In [10] the first author described the finitely generated free algebras in the varieties
of BL-algebras generated by a single BL-chain which is an ordinal sum of a finite
MV-chain L, and a generalized BL-chaB®. We call these chains Bkchains. The
aim of this paper is to extend the results bfj[considering the case of infinitely many
free generators. The results dff] were heavily based on the fact that the Boolean
subalgebras of finitely generated algebras in the varieties generated phBins are
finite. Therefore the methods df(] cannot be applied to the general case.

As a preliminary step we characterize the Boolean algebra of idempotent elements
of afree algebra itV V), the variety of MV-algebras generated by the finite MV-chain
L,. Itis the free Boolean algebra over a poset which is the cardinal sum of chains of
lengthn — 1. In the proof of this result a central role is played by the Moisil algebra
reducts of algebras inmMV,,.

Free algebras in varieties of BL-algebras generated by a singleBdinL , v B
are then described in terms of weak Boolean products of BL-algebras that are ordinal
sums of subalgebras &f, and free algebras in the variety of basic hoops generated
by B. The Boolean products are taken over the Stone spaces of the Boolean algebra
of idempotent elements of free algebrasht)’,,. An important intermediate step
is the characterization of the variety of generalized BL-algebras generatd®l by
(Corollary 3.5).

The paperis organized as follows. In the first section we recall, for further reference,
some basic notions on BL-algebras and on the varieti€g,. We also recall some
facts about the representation of free algebras in varieties of BL-algebras as weak
Boolean products. The only new result is given in Theotef In Section2, after
giving the necessary background on Moisil algebra reducts of algebr&lip, we
characterize the Boolean algebras of idempotent elements of free algelvé¥,in
These results are used in Secti®to give the mentioned description of free algebras
in the varieties of BL-algebras generated by g ®8hbain. Finally in Sectiod we give
some examples and we compare our results with thoseEobahd [17].
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1. Preliminaries

1.1.BL-algebras: basic notions A hoop[7]isanalgebrd = (A, %, —, T) oftype
(2, 2,0), such that A, %, T) is a commutative monoid and for adl y, z € A:

1) x—>x=T,

(2) xx(X—=>y)=yx(y—>X),

B) xX=>(Yy=>2)=Xx*xYy) > Z

A basic hoofd 1] or ageneralized BL-algebrEL8], is a hoop that satisfies the equation

(1.2) (X=>Y)—=>2Dx((Yy—>X)—>2)—>z=T.

It is shown in [L] that generalized BL-algebras can be characterized as algebras
A= (A AV, x,—, T)oftype(2, 2,2, 2, 0) such that
(1) (A, %, T), is an commutative monoid,

(2) L(A):= (A, A, vV, T),is alattice with greatest element
(B) x—>x=T,

4 X—>(Yy—>2=XxYy)— Z

(5) XAYy=Xx(X—Y),

6) X=>yVy—->x=T,.

A BL-algebraor bounded basic hoofs a bounded generalized BL-algebra, that
is, it is an algebraA = (A, A, V,*x, —, 1L, T) of type (2,2, 2,2,0,0) such that
(A, A, Vv, %, —, T)is a generalized BL-algebra, andis the lower bound of (A).

In this case, we define the unary operatierby the equation-x = x — 1. The
BL-algebra with only one element, that i, = T, is called thetrivial BL-algebra
The varieties of BL-algebras and of generalized BL-algebras will be denot&l’by
andGBL, respectively.

In every generalized BL-algebrawe denote by the (partial) order defined oA
by the latticel (A), that is, fora, b € A, a < bif and only ifa = a A bif and only if
b = avb. This order is called theatural orderof A. When this natural order is total
(that is, for eacta, b, € A,a < borb < a), we say thaf is ageneralized BL-chain
(BL-chainin caseA is a BL-algebra). The following theorem makes obvious the
importance of BL-chains and can be easily derived fra8) Lemma 2.3.16].

THEOREM1.1. Each BL-algebra is a subdirect product of BL-chains.

In every BL-algebraA we define a binary operation® y = —(—=x*—y). For each
positive integek, the operations* andk x are inductively defined as follows:
(@) x!=xandx*! = xkxx,
(b) Ix =xand(k+ 1)x = (kx) & X.
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MV-algebras the algebras of Lukasiewicz infinite-valued logic, form a subvariety
of BL, which is characterized by the equatiorx = x (see [L9]). The variety of
MV-algebras is denoted hj1V. Totally ordered MV-algebras are call&tlV-chains
For each BL-algebra, the set

MV(A) :={xe A: ==X =X}

is the universe of a subalgelv&/ (A) of A which is an MV-algebra (sed §]).

A PL-algebrais a BL-algebra that satisfies the two axioms:
(1) (=zx((xx2) —> (Y*2) > x> y) =T,
(2) xA—=x= L.
PL-algebras correspond pooduct fuzzy logicsee 5] and [19].

It follows from Theoreml.1that for each BL-algebrA the latticelL (A) is distrib-
utive. The complemented elementslafA) form a subalgebr8(A) of A which is a
Boolean algebra. Elements BfA) are calledBoolean elementsf A.

1.2. Implicative filters

DEFINITION 1.2. An implicative filterof a BL-algebraA is a subseF C A satisfy-
ing the conditions

Q) TekF.
(2) Ifx e Fandx - y e F,theny € F.

An implicative filter is calledproper provided thatF # A. If W is a subset of a
BL-algebraA, the implicative filter generated By will be denoted byW). If U is
a filter of the Boolean subalgebBgA), then the implicative filtefU) is calledStone
filter of A. An implicative filter F of a BL-algebraA is calledmaximalif and only if
it is proper and no proper implicative filter &f strictly containsF.

Implicative filters characterize congruences in BL-algebras. Indeefd,iff an
implicative filter of a BL-algebra it is well known (see 19, Lemma 2.3.14]), that
the binary relation=r on A defined by

x=rgy Iifandonlyif x—>yeF and y—xekF

is a congruence oA. Moreover,F = {x € A: x =g T}. Conversely, if=is a
congruence relation oA, then{x € A : x = T} is an implicative filter, anc = y if
and only ifx - y= T andy — x = T. Therefore, the correspondenge—=¢ is
a bijection from the set of implicative filters &f onto the set of congruencesAf

LEMMA 1.3 (see 17]). Let A be a BL-algebra, and leF be a filter of B(A).
Then(=f) = {(a,b) € Ax A:aAc=DbAacforsomec € F} is a congruence
relation onA that coincides with the congruence relation given by the implicative
filter (F) generated byF.
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1.3. MV, -algebras Forn > 2, we define:

0 1 2 n—-1
I—n: 5 . ey .
n—-1 n-1 n-1 n-1

The setL, equipped with the operations«y = max0,x+y—1), X > y =
min(1, 1 — x + y), and with L. = 0 defines a finite MV-algebra, which shall be
denoted byt ,. ClearlyB(L,) = {0, 1}.

A BL-algebraA is said to besimpleprovided it is nontrivial and the only proper
implicative filter of A is the singleton{T}. In [14], it is proved thatL,, is a simple
MV-algebra for each integer.

We shall denote byM V), the subvariety oMV generated by.,,. The elements
of MYV, are calledMV,-algebras A finite MV-chain L, belongs toMYV, if and
only if m— 1 is a divisor ofn — 1. Therefore it is not hard to corroborate that every
MV ,-algebra is a subdirect product of a family of algebilas ,i € |) wherem, — 1
dividesn — 1 for each € I.

It can be deduced froml{i, Corollary 8.2.4 and Theorem 8.5.1] th&tV, is the
proper subvariety afM ) characterized by the equations

(an) X(n—l) — Xn’
and ifn > 4, for every integep = 2, ..., n — 2 that does not divida — 1
(Bn) (pXP~H" =nxP.

If A is an MV, -algebra, it is not hard to verify that for eaghe A\ {T}, X" = L
and foreacty € A\ {L},ny=T.

1.4. Ordinal sum and decomposition of BL-chains LetR = (R, %g, —g, T) and
S= (S, *s, —>s, T)betwo hoops such th&N S = {T}. Following [7] we can define
the ordinal sumR W S of these two hoops as the hoop given U S, x, —, T)
where the operationg, —) are defined as follows:

xxpY if X,yeR,
X*xsy if X,ye€S,

X*Yy = .
X if xe R\ {T}andy e S,
y if ye R\ {T}andx € S.
T if xeR\({T},yesS,
X y— X—>rY Iif X,yeR,

X—>sy if x,yesS,
y if ye R\ {T}andx € S.
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If RN S#{T}, RandScan be replaced by isomorphic copies whose intersection
is {T}, thus their ordinal sum can be defined. WHens a generalized BL-chain
andSis a generalized BL-algebra, the hoop resulting from their ordinal sum satisfies
equation {.1). ThusRw Sis a generalized BL-algebra. MoreoverRifs a BL-chain,
thenR W Sis a BL-algebra, whereg. = L. If Sis totally ordered it is obvious that
the chainR W S'is subdirectly irreducible if and only i§ is subdirectly irreducible.
Notice also that for any generalized BL-algeld., W Sis the BL-algebra that arises
from adjoining a bottom element &

Given a BL-algebra\, we can consider the sBt(A) := {x € A: =x = L}. Itis
shown in [Lg], thatD(A) = (D(A), A, V, %, —, T) is a generalized BL-algebra.

THEOREM 1.4 (see10]). For each BL-chairA, we have that = MV (A) WD(A).

THEOREM1.5. Let A be a BL-algebra such théflV (A) = L, for some integen.
ThenA = MV (A) W D(A) = L, wD(A).

PrROOF. From Theoremnil.1, we can think of each non trivial BL-algebra as a
subdirect product of a familgA;, i € 1) of non trivial BL-chains, that is, there exists
an embedding : A — [],_, Ai, such thatr;(e(A)) = A, for eachi € |, wherer;
denotes each projection. We shall iden#fywith e(A). Then each element &is a
tuplex and coordinaté is x; € A;. With this notation we have that for eaghe A,

T, (X) = X;. We will prove the following items:

(1) Foreachi € I,MV (A)) is isomorphic ta_,.

Since for each € I, 7; is a homomorphism ang,(MV (A)) C A;, we have that
7 (MV(A)) € MV (A;). Thenm; (MV (A)) is a subalgebra a1V (A;). On the other
hand, given < |, letx; € MV (A;). Then——x = X; and there exists an element
X € Asuch thatr; (X) = x;. Takingy = =—x € MV (A) we have thatr; (y) = x; and
X € 1y (MV(A)). HenceMV (A)) C 7;(MV (A)).

In conclusionMV (A;) = 7;(MV (A)) = =i (L,) = L, , becausd., is sim-
ple.
(2) Ifxe A thenx e MV(A)U D(A).

Letx € Aand lety = n(—=x). If x; € L, \ {T}, then=x; € L, \ {L}. From
equation(a,) we obtain thaty, = n(—x) = T. On the other hand, if-x; = L,
theny, = n(=x) = L. Now letz = (—=—=x)". If x, € L, \ {T}, thenz = L, but if
——=x = T,thenz = T.

Suppose there exisise A such thax ¢ MV (A) andx ¢ D(A). It follows from
Theoreml.4that for each € I, A; = MV (A)) W D(A;). Then there exist, j € I,
such thatx € MV (A) \ {T} = L, \ {T}andx; € D(A)\ {T}.

Lety = n(—x). Theny, = T,y; = L, andyx € {L, T} foreachk € | \ {i, j}.
Now letz = (—=—x)". We have thatz; = T,z = 1, andz € {L, T} for each
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kel \{ij}. Itfollows thaty andz are elements in the chaMV (A) = L,,, which
are not comparable, and this is a contradiction.
(3) Ifxe MV(A)\ {T}andy € D(A), thenx <.

The statement is clear¥ € MV (A)) \ {T} for everyi € | orif y; = T for each
i € |. Otherwise, supposg = T for somei € |. Sincex # T, there must exist
j € I suchthatx; # T. If y; = T for eachi € | such thatx, = T, thenx <y.
If not, letz = x A'y. Since operations are coordinatewigec MV (A;) \ {T} and
z € D(A) \ {T}, forsomei € |. Hencez ¢ MV (A) andz ¢ D(A), contradicting
the previous item.

4) Ifxe MV(A)\ {T}andy € D(A), theny — x = x andy * X = X.
Since—y = | we have that

y—>X=y—> " X=yY—>(X—>1L)=-X—>(Y—> 1)
=—X—> 1l =—--x=X,
and
X=YAX=Y*x(Yy > X)=Yx*xX.

From the previous items it follows that = MV (A) w D(A) = L, W D(A). O

1.5. Free algebras in varieties of BL-algebras generated by a Btkchain Recall
that an algebra in a variety is said to bdree over a seY if and only if for every
algebraC in IC and every functionf : Y — C, f can be uniquely extended to a
homomorphism oA into C. Given a varietyk of algebras, we denote iyreec (X)
the free algebra ifC over X. As mentioned in the introduction, we definBlg,-chain
as a BL-chain that is an ordinal sum of the MV-chaipand a generalized BL-chain.
Once we fixed the generalized BL-chd® we study the free algebraree,; (X),
whereV is the variety of BL-algebras generated by the,Bhain

Th,:=L,wB.

Notice thatMV (T,) = L,and ifx ¢ MV (T,) \ {T}, thenx € D(T,) = B.

Recall that aveak Boolean produatf a family (Ay, y € Y) of algebras over a
Boolean spac¥ is a subdirect produdk of the given family such that the following
conditions hold:

(1) Ifa,be A thenf[a=b]={ye Y :a, =bh}isopen.
(2) Ifa,be AandZis aclopen inX, thenal; Ub|x,z € A.

Since the variety3 L is congruence distributive, it has the Boolean Factor Congru-
ence property. Therefore each nontrivial BL-algebra can be represented as a wea
Boolean product of directly indecomposable BL-algebras (Sgarfd [23]). The



426 Manuela Busaniche and Roberto Cignoli [8]

explicit representation of each BL-algebra as a weak Boolean product of directly
indecomposable algebras is given 7] by the following lemma.

LEMMA 1.6. Let A be a BL-algebra and leSpB(A) be the Boolean space of
ultrafilters of the Boolean algebrB(A). The correspondence

ar— (a/{U))uespaa
gives an isomorphism @& onto the weak Boolean product of the family
(A/{U)) : U € SpB(A)

over the Boolean spac®pB(A). This representation is called the Pierce representa-
tion. Any other representation #f as a weak Boolean product of a family of directly
indecomposable algebras is equivalent to the Pierce representation.

Therefore, to describEree),(X) we need to describB(Free), (X)) and the quo-
tientsFree, (X)/(U) for eachU € SpB(Freey(X)).

In Section2 we obtain a characterization of the Boolean algab¢Bree); (X)).
Once this aim is achieved, we consider the quoti€ne®,(X)/(U).

2. B(Freey, (X))

The next two results can be found ibd.
THEOREM2.1. For each BL-algebraA, B(A) = B(MV (A)).

THEOREM2.2. For each varietyk of BL-algebras and each sét

MV (Freec (X)) = Freeyyni (——X).
THEOREM2.3. V N MYV is the varietyM V.

PROOF. SinceL, = MV (T,) isinV N MYV, we have thatmV, € VN MYV. On
the other hand, led be an MV-algebra i’ N MV. Supposé\ is notin MV ,,. Then
there exists an equatiatx,, ..., X,) = T that is satisfied by, and is not satisfied
by A, that is, there exist elemerds, ..., a, in Asuch thae(a,, ..., a,) # T. Since
(==by, ..., —=by) is in (Ly)P, for each tuple(b,, ..., bp) in (T,)P, the equation
€(Xy, ..., Xp) = €(——Xq, ..., Xp) = T is satisfied in). SinceA € VN MV,
it follows that T = €(ay,...,ap) = e(——a,...,~—ay) = e(a,...,ap) # T, a
contradiction. HencéV, =V N MV. O

From these results we obtain the following theorem.

THEOREM2.4. B(Free) (X)) = B(Freeyy, (——X)).
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2.1. n-valued Moisil algebras Boolean elements dfreeyy, (——X) depend on
some operators that can be defined on eachsllgebra. Such operators provide each
MV ,-algebra with an n-valued Moisil algebra structure, in the sense of the following
definition.

DEFINITION 2.5. For each integen > 2, ann-valued Moisil algebrg[8, 11]) or
n-valued tukasiewicz algebi@4, 12, 13)) is an algebra

A=A AV, =00 ...,00,,01)

of type (2,2,1,...,1,0,0) such that(A, A, Vv,0,1) is a distributive lattice with
unit 1 and zero O, anéh, o7, ..., o, are unary operators defined @nthat satisfy
the following conditions:

(1) —=—x=x,

(2) ~(xVy)=—xA-y,

(3) o"(xVvy) =o"xXValy,

(4) o"xVv —o"x =1,

(5) oinajnx = ol-”x, fori,j=12...n—1,

(6) o"(=x) = —(oq_;X),

(7) o™xVvoli x=0,,X fori=212...,n-2

8) xvol x=0" X,

Q) XA=o"xAolL,yyvy=y, fori=12..,n-2

Properties and examples wfvalued Moisil algebras can be found i and [8].
The variety ofn-valued Moisil algebras will be denotetdt,,.

THEOREM2.6 (see11]). LetA be inM,. Thenx € B(A) if and only if

ol (X) =X.
Furthermore,
on (x)=minfb € B(A): x <b} and o;'(X) =maxaec B(A):a<x}.

DEFINITION 2.7. For each integen > 2, aPost algebra of orden is a system
A= (Av/\vv’_|’0]r_17"'70':_11617"'731—1101 1)

such that(A, A, v, =, 0], ..., 0" 1,0, 1) is ann-valued Moisil algebra and, ...,

" Y n—=1°

e,_1 are constants that satisfy the equations:

0 ifit+j<n,

.ne-=
=N g en
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For everyn > 2, we can define one-variable term§(x), ..., o} ;(x) in the
language—, —, T) such that evaluated on the algebkasgive

( j ) 1 ifi+j>n,
O. =
"\ inZ1 0 ifi+j<n,

fori =1,...,n—1(see L3 or[24]). Itis easy to check that

MLy = (Lp, A, VvV, =07, ..., 00 ;,0,1)

» Y'n—1°

is an-valued Moisil algebra. Since these algebras are defined by equatiors, and
generates the variety1V,, we have that eacA € M)V, admits a structure of an
n-valued Moisil algebra, denoted B (A). The chairM (L) plays a very important
role in the structure ofi-valued Moisil algebras, since eankvalued Moisil algebra
is a subdirect product of subalgebrash\dfL ) (see ] or [12]). If we add to the
structureM (L ,) the constantg =i/(n— 1), fori =1,...,n— 1, thenPT(L,) =
(Lo, A, Vv, =00, ... 00 4,81, ..., 6.1, 0,1) is a Post algebra.

Not everyn-valued Moisil algebra has a structure of \dlgebra (seeZl]). For
example, a subalgebra bf(L ) may not be a subalgebra bf, as MV,,-algebra. For

instance, the set
c_|9 Lt 34
B {4’ 4’ 4° 4}
is the universe of a subalgebraMf(L ), but not the universe of a subalgebralgf
On the other hand, every Post algebra has a structure of-&itjébra (seeZ4,
Theorem 10]).
The next example will play an important role in what follows.

ExamMPLE 2.8. LetC = (C, A, Vv, —, 0, 1) be a Boolean algebra. We define

CVi={z=(z,....2-) €C" i zn < < ... <74}
Foreacte = (7, ..., z,_1) € C", we define
“nZ=("Z_1,...,"2),
0=(,...,0),
1=0@1,...,1,
0" =(z,z,....,z) fori=1...,n—-1
With A and v defined coordinatewiseC"' = (C", A, v, =y, 07, ...,0" ;,0,1)

is an n-valued Moisil algebra (see8] Chapter 3, Example 1.10]). If we define
€ =(€1,...,€n1) by
0 ifi<j,

€ = . .
1 ifi>j,
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thenC" = (C", A, Vv, =, 07, ...,0" ;. €, ...,€.1,0,1) is a Post algebra. Con-
sequentlyC" has a structure of My*algebra.

It is easy to see that for each NalgebraA, B(A) = B(M(A)).

We need to show that the Boolean elements of the,MMebra generated by a
setG coincide with the Boolean elements of thesalued Moisil algebra generated
by the same set. In order to prove this result it is convenient to consider the following
operators on eaahmvalued Moisil algebra\. Foreach =0,...,n—1,

J(x) = 0:4 ) A _'Gr?,i,l(x)v

whereo('(x) = 0 ando'(x) = 1. InM(L ) we have

3 ( i ) )1 ifi=j,
‘\n-1/) " o ifi#j.
LEMMA 2.9. LetA be an M\;-algebra, and leG C A. If (G) vy, is the subalgebra

of A generated by the s& and (G) ., is the subalgebra df1 (A) generated by,
thenB((G) mv,) = BUG)um,)-

PROOF Since (G) ., is always a subalgebra d¥1 ((G).sy,), we have that
B((G) A4,) is @ subalgebra @ ((G) ay,)-

We will see thatB((G) r11,) € B((G)rq,). The casesG = @ is clear. Suppose
thatG is a finite set of cardinalityp > 1. Since M\-algebras are locally finite (see
[9, Chapter Il, Theorem 10.16]), we obtain th&) ..y, is a finite MV,-algebra. Since
finite MV -algebras are direct products of simple algebras, there exists afinite
suchtha{G) vy, = ]‘[:‘:l L, where eacim; — 1 dividesn—1, foreach =1, ..., k.

If k =1, then(G) », and(G) ry,, are finite chains whose only Boolean elements are
their extremes. Otherwise, we can think of the element€0f.,,, as k-tuples, that
is, if X € (G) pmqy,, thenx = (X, ..., X). We shall denote b§’ the k-tuple given by

@y ={+ =

0 ifi#j.
It is clear that for each) = 1,...,k, 1) isin (G) xy,. From this it follows that for
every pairi # j,i, ] € {1,...,k}, there exists an elemerte G such thatx; # x;.

Indeed, suppose on the contrary that there exist< k such thatx, = x;, for every
x € G. Then for every € (G) 4y, We would havez; = z contradicting the fact that
1'isin <G>MVn-

To see that every Boolean element(i@) ,,y, is also in{(G)r4,, it is enough to
prove thatl! is in (G),, for everyj = 1,...,k. For a fixedj, for eachi # j,
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i =1,...k wechoos& e G such thaix} # x!. Let j; be the numerator of‘j eL,.
It is not hard to verify that

k
U= A J,00.
i=1,i#j

Thereforel! € (G)q, andB((G) amy,) € B((G)q,)-

If G is notfinite, lety be a Boolean element (&) »(,,. Hence, there exists a finite
subsetG, of G such thaty belongs to the subalgebra (&) .y, generated bys,.
Therefore, sincg is Booleany belongs to the subalgebra @) », generated by, ,
and we conclude tha@((G) r1y,) S B((G) ) for all setsG. O

Given an algebra in a variety/C, a subalgebr& of A, and an element € A, we
shall denote byS, x) the subalgebra ok generated by the s&U {x} in K.

LEMMA 2.10.LetC be in M, andx € C. LetSbe a subalgebra of such that
o"(X) belongs toB(S) for eachi = 1,...,n — 1. ThenB((S, x)»1,) = B(S).

ProOOF Clearly B(S) is a subalgebra oB((S, x).¢,). It is left to check that
B((S, X)s,) € B(S). To achieve this aim, we shall study the form of the elements in
(S, X) mq,- We define for each € S,

a(S) =S AKX,
B(S) =S A =X,
%(8) =S A 0 (X), fori=1,...n—1,
5i(s)=sA-0"(x), fori=1...n—1
For alls € Swe have thay; (s) ands; (s) are inSfori =1,...,n— 1. Let
ky pj
M:=1y= \//\ fi(s): fi e {a, B, y1, 81, ... ¥n-1, n_1} @nds € S¢ .
j=li=1

We shall see thalS, x),;, =M = (M, A, v, —, 0], ...,0" 1,0,1). Indeed, for all
se€ S, s=y(5) Vvéis),and therS C M. Besidesx € M because = «(1). Lastly,
it is easy to see tha¥l is closed under the operations mivalued Moisil algebra.
Thus (S, X) o, IS @ subalgebra dl. From the definition ofM, it is obvious that
M C (S, x) s, and the equality follows.

Now letz € B((S, X) »1,). By Theoren?.6, 0 ,(z) = zandz = \/'J.‘Z:1 Pfi(s)
with f; € {«, B, ¥1, 81, ..., ¥n_1, 0n_1} @ands € S. Then we have

k;  Pj k;  Pj
z2=o0p4(2) =074 (\/ A\ i (s)) =\/ /\or.(fis).

j=1i=1 j=1i=1
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is in B(S) becauser;) ,(fi(s)) = w(oy 1(s)) or ol (fi(s)) = é(o) 1(s)), for
somek=1,...,n—1. O

THEOREM2.11. LetC be an M\4-algebra andx € C. LetS be a subalgebra of
such that"(x) belongs toB(S) for eachi =1,...,n— 1. Then

BUS, X)mv,) = B(S).

PrROOF ByLemma2.9and Lemm&.10we obtairB((S, X) vy,) = B((S, X)A1,) =
B(S). O

2.2. Boolean elements in Fregy, (Z) Recall that a Boolean algebBais said to
be free over a poseY if for each Boolean algebr&@ and for each non-decreasing
function f : Y — C, f can be uniquely extended to a homomorphism f®mto C.

THEOREM 2.12. B(Freeny,(2)) is the free Boolean algebra over the poZét=
{oM2):ze Z,i=1...,n—-1}.

PROOF. Let S be the subalgebra @ (Freeu,,(Z)) generated by’. Let C be a
Boolean algebra and ldt: Z' — C be a non-decreasing function. The monotonicity
of f implies that the prescription

f'(2) = (f(o] (@), ..., flo7_ ()

defines a functionf’ : Z — CI". SinceC"' € MYV, there is a unique homo-
morphismh’ : Freeyy, (Z) — C" such thath'(z) = f’(z) for everyz € Z. Let
7w : CI"W — C be the projection over the first coordinate. The compositionh’
restricted tdSis a homomorphisnh : S — C, and fory = 0(z) € Z' we have

h(y) = 7N (0](2)) = 7 (0] (N (@) = 7 (" (f'(2)))
= 2@ (f (0! @). ... f(O @)
=2(f (6! @)..... (0! @) = f©]'@) = f (Y.

HenceSis the free Boolean algebra over the poget However, sincer'(z) is in S
forallze Zandj =1,...n— 1, TheorenR.11asserts that

S=B(S =B(S, 2) mv,)
for everyz € Z. From the fact thaS is a subalgebra d@ (Freey,,, (Z)) we obtain
S=B(S, Z) mv,) = B(Freexy,(2))

that is,B(Free,y, (Z)) is the free Boolean algebra generated by the paset [
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From Theoren?.4we obtain the follwoing result.

COROLLARY 2.13. B(Free, (X)) is the free Boolean algebra generated by the poset
Y:={o"(—X):xe X,i=1,...,n—1}

REMARK 2.14.If n = 2, that is, the variety considerédis generated by a BE
chain, thenff(x) = x for eachx € X. Therefore, in this cas&, = {—=—x : X € X},
and the cardinality ol equals the cardinality oX. It follows thatB(Freey (X)) is
the free Boolean algebra over the ¥et

3. Free,(X)/(U)

Following the program established at the end of SecHpwour next aim is to
describeFree), (X)/(U) for each ultrafiltelJ in the free Boolean algebra generated
byY = {o"(——x) : x € X,i =1,...,n— 1}, where(U) is the BL-filter generated
by the Boolean filtetJ.

The plan is to prove thatV (Freey,(X)/(U)) is a subalgebra of,, and then,
using Theoreni.5 decompose each quotidfree),(X)/(U) into an ordinal sum. To
accomplish this we need the following results.

THEOREM3.1. LetA be a BL-algebra antl € SpB(A). Then
MV (A/(U)) =MV (A)/((U) N MV (A)).

PROOF. LetV =: (U)NMV (A) and letf : MV (A)/V — MV (A/{U)) be given
by f(a/V) =a/(U), foreacha € MV (A). Itis easy to see thdtis ahomomorphism
into MV (A/(U)). We have that

(1) fisinjective.

Leta/(U) =b/(U), witha,b € MV (A). From Lemmal.3, we know that there
existsu € U suchthabAu=bAu. SinceU € MV (A), we have thati € V. From
the factthatiis Boolean (se€l[7, Lemma 2.2]), we have thaku = aAu = bAau < b,
thusu < a — b and similarlyu < b — a. Thena — bandb — a are inV and this
means thah/V =b/V.

(2) fis surjective.

Leta/(U) € MV(A/(U)). Thena/{U) = —=—(a/(U)) = ——a/(U), and since

——a e MV (A) we obtain thatf (-—a/V) = a/(U). O

By Theorem2.4, if U € SpB(Free, (X)), thenU is an ultrafilter in

B(Freeyy, (——X)).
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Moreover,(U) N MV (Free,, (X)) = (U) N Free,, (——X) is the Stone ultrafilter of
Freeny, (——X) generated by . From [L4, Chapter 6.3], we have that

(U) N Freeyy, (——X)

is a maximal filter ofFreey, (——X). It follows from [14, Corollary 3.5.4] that the
MV-algebraMV (Free,,(X))/({(U) N MV (Freey,(X))) is an MV-chain inMV,,, thus
from TheorenB.1we have the follwoing result.

THEOREM3.2. MV (Free,(X)/(U)) = Ls withs — 1 dividingn — 1.

From Theorem4.5and3.2we obtain the next result.
THEOREM3.3. For eachU € SpB(Freey; (X)), we have that
Free,(X)/(U) = Ls ¥ D(Free,(X)/(U))
for somes — 1 dividingn — 1.

In order to complete the description Bfee), (X) we have to find a description of
D(Free,(X)/({U)) for eachU e SpB(Free,(X)). This last description depends on
the characterization of the variely/ of generalized BL-algebras generated by the
generalized BL-chaiB. Therefore, we shall firstly consider such variety.

3.1. The subvariety ofGB L generated by B We recall thad’ is the variety of BL-
algebras generated by the BL-chd@in= L ,wB. LetW be the variety of generalized
BL-algebras generated by the ch&n

Let{e, i € |} be the set of equations that defind)’,, as a subvariety oBL,
and{d;, j € J} be the set of equations that defil€ as a subvariety o/ BL.
For eachi € I, let € be the equation that results from substitutingx for each
variablex in g, and for eachj € J, let de be the equation that results from substi-
tuting ——x — x for each variablex in the equatiord;. Let)’ denote the variety
of BL-algebras characterized by the equations of BL-algebras plus the equations
g, ieltuld], jed}

THEOREM3.4. V' C V.

PROOF. LetA be a subdirectly irreducible BL-algebra¥#. From Theoreni.1, A
is a BL-chain, and by Theorefin4, A = MV (A)wD(A). Since foreaclkk € MV (A),
we have——x = X, MV (A) satisfies equationg, i € 1}. ThenMV (A) is a chain
in MV, thatis,MV (A) = L, with s — 1 dividingn — 1. Moreover, since for each
x € D(A), we have——x — x = X, D(A) satisfies equationf;, j € J}. Hence



434 Manuela Busaniche and Roberto Cignoli [16]

D(A) = C is a generalized BL-chain inV. SinceA is subdirectly irreducibleC
is also subdirectly irreducible, and sinG&L is a congruence distributive variety,
we can apply dnsson’s Lemma (seé)]) to conclude thalC € HSP,(B). Hence
there is a sed # ¢ and an ultrafiltetd over J such thatC is a homomorphic image
of a subalgebra oB’/U. From the proof of 2, Proposition 3.3] it follows that
(L,wB)’/U =L;]/U wB’/U, and since., is finite, L) /U = L,. Now it is easy
toseethaA = Ls;wWC € HSP,(L,wB) C V. O

The next corollary states the main result of this section.

COROLLARY 3.5. The variety)V of generalized BL-algebras generated®yon-
sists of the generalized BL-algebr@ssuch that.,, W C belongs to).

PrOOF. GivenC e W, L,wW C € V' C V. On the other hand, i€ is a generalized
BL-algebra such thdt, W C € V), then the elements & satisfy equationd; for each
j € J and since-—x — x = x for eachx € C, the elements of satisfy equations
d; for eachj € J. HenceCisinW. d

3.2. D(Freey(X)/(U)) We know that the ultrafilters of a Boolean algebra are
in bijective correspondence with the homomorphisms from the algebra into the two
elements Boolean algebra, Since every upwards closed subset of the p¥set
{o"(=—=x) : x € X,i = 1,...,n— 1} is in correspondence with an increasing
function fromY onto 2, and every increasing function froivi can be extended to
a homomorphism fronB(Free,, (X)) into 2, the ultrafilters ofB(Freey, (X)) are in
correspondence with the upwards closed subse®. ofrhis is summarized in the
following lemma.

LEMMA 3.6. Consider the poseY = {¢o/"(—m—x) : x € X, i = 1,...,n—1}.
The correspondence that assigns to each upwards closed ssilgsét the Boolean
filter Us generated by the s&U {—y : y € Y \ S}, defines a bijection from the set of
upwards closed subsets6fonto the ultrafilters oB(Free), (X)).

We shall refer to each member of BgFree), (X)) by Us making explicit reference
to the upwards closed subs®that corresponds to it.

LEMMA 3.7. LetFs be the subalgebra of the generalized BL-algebra

D(Free, (X)/(Us))

generated by the s&s := {x/(Us) : x € X, =—=x € (Us)}. Then

Fs = D(Free,(X)/(Us)).
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PROOF. Free,(X)/(Us) is the BL-algebra generated by the 28t = {x/(Us) :
x € X}. From Theoren3.3, there exists an integen such that

Free, (X)/(Us) = Lm & D(Free, (X)/(Us)).

Hence each element & is either inL, \ {T} oritis in D(Free,(X)/{Us)).

If Xs= 0, thenFs= D(Free,(X)/(Us)) = {T}. So let us suppos¥s = @. Let
y € D(Free),(X)/(Us)). Recalling thafs is the generalized BL-algebra generated
by Xs, we will check thaty is in Fs. Sincey € Free),(X)/(Us), y is given by a term
on the elementg/(Us) € Zs. By induction on the complexity of, we have:

e If yis a generator, that i3y = x/(Us) for somex/(Us) € Zs, sincey €
D(Freey(X)/(Us)), we have thal” = ==y = ==(x/(Us)) = (==x)/(Us).
This happens only i=—x € (Us).

e Suppose that for each elemenie D(Free, (X)/(Us)) of complexity less
thank, z can be written as a term in the variabbesUs) in Xs. Lety €
D(Free,(X)/(Us)) be an element of complexity. The possible cases are
the following:

(1) y =a — bfor some elements, b of complexity < k. In this case the
possibilities are

(@ a<bh. Thismeansa — b =T andy can be written ag/(Us) —
x/{Us) for anyx/(Us) € Xs, and thusy € Fs,

(b) a £b. Sincey =a — bisin D(Free,(X)/(Us)), the only possi-
bility is thata, b € D(Free,,(X)/(Us)) and by inductive hypothesis
yisin Fs.

(2) y = ax* b for some elements, b of complexity < k. In this case
necessarilya, b € D(Free,(X)/(Us)) and by inductive hypothesigis

in Fs.
Then for eachy € D(Free,(X)/(Us)), y can be written as a term on the elements
of Xs. Thereforey € Fs and we conclude thdts = D(Freey,(X)/(Us)). O

With the notation of the previous lemma, we have the following theorem.

THEOREM 3.8. For eachUs in SpB(Free, (X)),
D(Freey (X)/(Us)) = Freey (Xs).

PrOOF. From Theoren®.6 and Lemma3.6 we can deduced thai—x € (Usg) if
and only ifo'(—=—x) € Sifand only if 6"(=—x) € Sfori =1,...,n— 1. Hence if
——=X ¢ (Us) there is gj such thab|'(—=—x) ¢ S. We define, for eack € X,

Nt if —=—x e (Us),
b= maxi € {1,...,n—1}:6"(——x) ¢ S} otherwise
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LetC e W and letC’' = L, wC. From Theoren8.5 C'is in V. Given a function
f : Xs — C, definef : X — C’ by the prescriptions:

foo = L TO/Us) if ==X & (Us),
(n—jx—1/(n—1) otherwise

There is a unique homomorphism: Free,(X) — C’ such thath(x) = f(x)
for eachx € X. We have thaUs € h™*({T}). Indeed, if—=—x e (Us), then
h(o"(==X)) = o"(==(h(X)) = 0" (== f (X/{Us))) = o"(T) = T. If ==X & (Us),
then

ﬁ(ain(_‘_‘x)) =o' (—.—.M) =o" (M) — {J- it i<

n—1 n—-1 T otherwise

Hence there is a unique homomorphism : Free,,(X)/(Us) — C’ such that
hi(a/(Us)) = ﬁ(a) for all a € Free,(X). By Lemma3.7, D(Freey,(X)/(Usg)) is
the algebra generated B{s. Then the restrictiom of h; to D(Free,,(X)/(Us)) is a
homomorphisnh : D(Free,,(X)/(Us)) — C, and for each such that-—x € (Us),

h(x/(Us)) = hi(x/(Us)) = h(x) = f(x) = f(x/(Us)).
Therefore we conclude th&(Freey,(X)/({Us)) = Freey (Xs). O

THEOREM 3.9. The free BL-algebraFree,(X) can be represented as a weak
Boolean product of the familyFree,(X)/(Us)) : Us € SpB(Free, (X)), where
B(Free\, (X)) is the free Boolean algebra over the podet= {o"(——X) : X € X,

i =1,...,n—1}. Moreover, for eactUs € SpB(Free, (X)), there existan > 2
such thatm — 1 dividesn — 1 and

Freey(X)/(Us) = L & Freey(Xs),

whereXs := {X/(Us) : =—x € (Us)} andW is the variety of generalized BL-algebras
generated by.

4. Examples

4.1. PL-algebras Let G be a lattice-ordered abelian groupdroup), andG~ =
{x € G : x < 0} its negative cone. For each pair of elemexty € G~, we define
the following operators:

Xxy=X+y and X —>y=0A(y—X).

ThenG~ = (G, A, V, %, —, 0) is a generalized BL-algebra. The following result
can be deduced fron3] (see also§] and [L5]).
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THEOREM 4.1. The following conditions are equivalent for a generalized BL-
algebraA:

(1) Ais a cancellative hoop.

(2) There is ar¢-group G such thatA = G™.

(3) Aisinthe variety of generalized BL-algebras generated bywhereZ denotes
the additive group of integers with the usual order.

Let us considedV, the variety of generalized BL-algebras generated bythat
is, the variety of cancellative hoops. Ihf a description ofree), (X) is given for
any setX of free generators. Therefore we can have a complete description of free
algebras in varieties of BL-algebras generated by the ordinal sum

PLo=L,wZ".

Indeed, if we denote byPL, the variety of BL-algebras generated BY.,, from
Theorem3.9 we obtain thatrreep ., (X) is a weak Boolean product of algebras of
the formL W Freey,, (X’) with s — 1 dividing n — 1 and some seX’ of cardinality
less or equal thaiX. Therefore, in the present case, the BL-algdbeep -, (X) can
be completely described as a weak Boolean product of ordinal sums of two known
algebras.

From[15, Theorem 2.8]P L, is the variety of PL-algebrg8L. From Remark.14,
SpB(Freep (X)) is the Cantor spac2*!. From Theoren8.9, the free PL-algebra
over a setX can be describe as a weak Boolean product over the Cantor 8gace
of algebras of the fornh, W Freey, (X’) for some seX’ of cardinality less or equal
thanX.

Given a BL-algebra&\, the radicalR(A) of A is the intersection of all maximal
implicative filters ofA. We have that (A) = (R(A), *, —, A, Vv, T) is a generalized
BL-algebra. Let

PL ={R:R=r(A) forsomeA € PL}.

PL" is a variety of generalized BL-algebras. 7] a description ofFreep . (X) is

given. From Example 4.7 and Theorem 5.7 in the mentioned paper we obtain that
Freep(X) is the weak Boolean product of the family, & Freep . (S) : S C 2IX)

over the Cantor spac*!. In order to check that our description and the one given in
[17] coincide it is only left to check tha® L™ = V. From Corollary3.5we have that

W consist on the generalized BL-algebfasuch thal., w C € PL.

THEOREM4.2. PL" = W.

PrROOF. LetC € PL". Thenthere exists a BL-algebdac PL suchthat (A) = C.
It is not hard to check thdt, W C is a subalgebra oA, thusL, W C is in PL. It
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follows thatC € W. On the other hand, 162 € WW. ThenL,w Cis in PL, and
CePL. O

4.2. Finitely generated free algebras As we mentioned in the introduction, when
the set of generatorX is finite, let us say of cardinality, the algebraree), (X) is
described in]0] as a direct product of algebras of the fotgw Free), (X'), withs—1
that dividesn — 1 and some seX’ of cardinality less than or equal to the cardinality
of X, where)V is again the subvariety @BL generated by. The method used to
describe the algebras strongly relies on the fact that the Boolean elemErggofX)
form a finite Boolean algebra. Indeeéiee, (X) is a direct product ofi* algebras
obtained by taking the quotients by the implicative filters generated by the atoms of
B(Free), (X)). In this case, once you know the form of the atom that generates the
ultrafilter U you also know the numbersuch thaMV ((Free,,(X))/(U)) = L.

When the seiX of generators is finite, of cardinality, thenY = {¢"(—=—x) :
xe X, i=1,...,n— 1} is the cardinal sum df chains of lengtm — 1. Therefore
the number of upwards closed subset¥ a n*. Since weak Boolean products over
discrete finite spaces coincide with direct products, The@&msserts thatree), (X)
is a direct product oh* BL-algebras of the fornk s W Freey,(Y), with s — 1 that
dividesn — 1 and some set of cardinality less than or equal ko

Therefore the description given in the present paper coincides with the ob@.in [
However, the description given if()], based on a detailed analysis of the structure of
the atoms oB(Free,, (X)) for a finite X, is more precise because it gives the number
of factors of each kind appearing in the direct product representation.
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