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a b s t r a c t

Preselection of sex before conception has been one of the objectives pursued by scientists and breeders
for many years. The donkey milk industry has shown a greater commercial interest, since jennies' de-
mand is increasing nowadays. Therefore, to get a female animal, the oocyte must be fertilized with
previously sexed semen. The current technique used for sperm sexing separates spermatozoa containing
the X or Y chromosome based on each cell DNA content. However, this technique exposes spermatozoa to
high-pressure speed flow, DNA fluorescent stain, and UV light, factors that may affect sperm quality. The
aim of this study was to test a new technique to isolate spermatozoa carrying the X chromosome by
means of magnetic nanoparticles (MNPs). Results show that the MNP technique is highly effective in
select X spermatozoa, without affecting several physiological sperm parameters. In conclusion, the MNP
technique provides an X sperm population with similar sperm physiological state than the control
sample. The new sexing technology presented here can be mainly applied to improve the donkey's milk
industry.

© 2018 Elsevier Inc. All rights reserved.
1. Introduction

Preselection of sex before conception has been one of the ob-
jectives pursued by scientists and breeders for many years. The
financial benefit of selecting one sex has been already evaluated by
dairy and meat cattle industries, where females or males are
preferred, respectively [1], or mares for polo sports due to her
better sport performance. In addition, since the use of donkey milk
is preferred as replacement of cow's milk for allergic children, di-
etary complement, and cosmetic industry [2e4], the demand of
cedures were approved and
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jennies is increasing nowadays. Therefore, to get a female animal,
the oocyte must be fertilized with previously sexed semen.

The current technique used for sperm sexing separates sper-
matozoa containing the X or Y chromosome based on DNA content,
by cell sorting [5]. However, this technique exposes spermatozoa to
high flow pressure, DNA fluorescent stain, and UV light, factors that
may affect sperm quality [6e9]. Moreover, the number of selected
spermatozoa obtained by this method is not enough to inseminate
mares that require a large number of sperm [10]. In equines, the
efficiency of this sexing technique is around 90% with a bias to the
spermatozoa containing the X chromosome [11]. Furthermore,
when mares are deep-horn inseminated with sexed semen, the
pregnancy rate per cycle is highly variable and low (0%e60%)
[12e15]. Thus, the application of the current sperm sexing tech-
nique is not only limited by the logistics of having the stallion, mare
and flow cytometer in the same facility, but also by the poor success
with frozen/thawed sorted sperm.

To obtain a good-quality sperm subpopulation, different sperm
selection techniques have been developed [16]. For instance,
nanoparticles combined to fluorescent dyes, antibodies, or
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Fig. 1. The experimental procedure to obtain sexed spermatozoa by the MNP tech-
nique. MNP, magnetic nanoparticle.
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magnetism have been used to separate out apoptotic spermatozoa
from the semen sample [17]. Magnetic nanoparticles (MNPs) have
been successfully used to select spermatozoa with better cryo-
preservation tolerance and fertilization potential for assisted
reproduction in humans [18,19]. Considering that the Z electrical
potential occurs between the sperm plasma membrane and the
surrounding environment [20e22], this property may be used to
discriminate the X and Y spermatozoa according to their differen-
tial capability to migrate along an electrophoretic field. Thus, most
Y spermatozoa have a Z potential of �16 mV, whereas the X sper-
matozoa have Z potential of �20 mV [23]. Therefore, the use of
MNPs combined to the sperm Z potential could be used as an
alternative sperm sexing technique that might be useful for don-
keys where sperm separation according to the sexual chromosome
has not been performed yet.

The aim of this study was to test a new technique to isolate
spermatozoa carrying the X chromosome by means of MNPs.

2. Materials and Methods

2.1. Semen Collection

Three Jack Donkeys of different breeds (aged 3e8 years) were
used. To deplete spermatozoa from the sperm reservoir, semen
were collected three to four times per week during 3 weeks, sta-
bilizing daily sperm output. Afterward, donkey's ejaculates were
collected three times in 1 week until a total of nine, by using a
Missouri artificial vagina.

2.2. Sperm Sexing by Magnetic Nanoparticles

Gel-free semen samples were diluted to a concentration of 50
million sperm/mL with an extender (Equiplus, Mintube, Germany)
and then centrifuged at 300 g for 15 minutes. The pellet was
resuspended in HTF (modified Human Tubal Fluid; Irvine Scientific,
CA) at 100 million sperm/mL. Then, the sperm sample was divided
into two groups: one was incubated with three MNPs per sper-
matozoon (sample that was going to be sexed, hereafter called
“sexed group”), and the other one was not incubated with MNPs
(called “control group”). After that, each group was slowly mixed
for 5 minutes by hand. The MNPs have a diameter of 50 nanome-
ters, are composed of an ironmagnetite nucleus coveredwith silica,
and are negatively charged (provided by Clemente Associates Inc).
The interaction between the negative charge of MNPs and the Z
electrical potential of spermatozoa is different for those sperma-
tozoa carrying an X chromosome (�20 mV) and those carrying a Y
chromosome (�16 mV). Therefore, the Y chromosome bearing
spermatozoa remained closer to MNPs, to which they bind forming
a complex. Both sperm samples (sexed group and control group)
were exposed to a magnet for 20 minutes. As a consequence, in the
sexed group, the Y bearing sperm-MNP complexes remained
attached to the tube inner wall due to the magnetic force, whereas
the X chromosome spermatozoa did not bind to the MNP and
remained suspended in the medium. Then, suspended spermato-
zoa carrying the X chromosome were slowly aspirated by a
vacuum-controlled pump, transferred to a new tube, and cry-
opreserved. In the control group, the sperm suspension was also
vacuum aspirated and cryopreserved. A summary of this process is
presented in Fig. 1.

2.3. Cryopreservation and Thawing

Each sample has been frozen at 200 million spermatozoa per
mL, in 0.5 mL straws using BotuCrio (Botupharma, Brazil) equine
freezing extender, following the manufacturer's indications and
standard cryopreservation protocols [24,25]. Briefly, samples were
placed in a styrofoam box, using the following cooling and freezing
curves: 1.3�C/minute (þ25�C to þ5�C), 6.3�C/minute (þ5
to �120�C), and 76�C/minute (�120�C to�196�C). The straws were
then thawed at 37�C for 30 seconds.
2.4. Sperm DNA Content and Viability

The efficiency of the sperm sex sorting and viability were
evaluated by flow cytometry. For sperm DNA content determina-
tion in sexed and control samples, sperm number was adjusted at 6
million sperm/mL and stained with Hoechst 33342 (Sigma-Aldrich)
at 0.5 mg/mL concentration for 30 minutes in a warm bath. For each
experimental group (sexed and control), 100 mL of the cell sus-
pension were placed in a cytometer tube, and 100 nM propidium
iodide (PI) was used to determine sperm viability, which was added
1 minute before collecting data. Data were recorded as individual
cellular events using an FACSCanto II cytometer (Becton Dickinson).
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Forward scatter (FSC) and side scatter (SSC) fluorescence data were
collected from 20,000 events per sample. Threshold levels for FSC
and SSC were set to exclude signals from cellular debris. To better
determine the DNA content, the fluid speed was adjusted to
improve spermatozoa orientation. Thus, the sheath flow velocity
setting was low (14 mL/min), allowing for a small core size (~10 mm).
Appropriate cytometer settings were selected for Hoechst and PI.
Hoechst 33342 was excited using a UV laser (350 nm) and their
fluorescent signal detected as fluorescence of wavelength 461 nm,
and PI was excited using a 488-nm argon excitation laser. Nonviable
cells became PI positive, and their red fluorescent signal detected as
fluorescence of wavelength >670 nm. Unstained control samples
were used to verify that threshold settings were appropriate and to
create the corresponding gates needed to discriminate debris from
cells. Positive control for PI was performed with dead sperm cells.
Data were analyzed using FACSDiva, FlowJo, and RStudio software.
The rationale for flow cytometry analysis is explained in Fig. 2.
2.5. Physiological Sperm Parameters

2.5.1. Motility Parameters
Video camera and microscope settings were established ac-

cording to Giaretta et al. [26] with few modifications. A light mi-
croscope (Nikon Instruments Inc, NY) with a 10x negative phase-
contrast plan objective was used. The video camera, Nikon Cam-
era CMOS USB 2.0 (Nikon Instruments Inc, NY), was coupled to the
microscope. The videos were registered for 5 seconds at a resolu-
tion of 800 � 600 and 30 frames/s (fps) using the NIS Elements
Imaging Software 3.01 (Nikon Instruments Inc, NY) and converted
to avi format. Ten microliters of spermatozoa (30 � 106 sperm/mL)
was put on a prewarmed slide at 38�C, covered with an 18 � 18
mm2 coverslip, and sealed with mineral oil. Immediately after, the
slide was placed over a thermal plate (38�C), and five seconds-
recording were taken from 5 different fields per slide. The sperm
motility percentage, curvilinear velocity, straight line velocity, and
average path velocity were determined by CASA-bmg plugin using
ImageJ software (version 1.46j; NIH).
2.5.2. Sperm Capacitation
After incubating spermatozoa in Biggers, Whitten and

Whittingham media (0.3% bovine serum albumin and 25 mM of
bicarbonate) for 45 minutes at 38.5�C with 5% CO2, the capacitation
was evaluated by two techniques: the ability of capacitated
Fig. 2. Representative frequency distribution histogram of Hoechst fluorescence intensity o
ulation that are not spermatozoa (data positioned before the doted blue line) and were ex
sentative experiment. The doted blue line represents the median of the control (black lin
correspond to 20,000 events.
spermatozoa to undergo the pharmacologically induced acrosome
exocytosis and by protein tyrosine phosphorylation.
2.5.2.1. Induced Acrosome Reaction. The percentage of spermatozoa
that underwent the induced acrosome reaction was determined as
an indirect indicator of the level of capacitated spermatozoa, as
previously described [27]. The acrosome status was visualized by
in vivo Pisum sativum agglutinin fluorescein staining (PSA-FITC)
[28,29]. Briefly, the sperm suspensionwas divided into two aliquots
incubated with or without 8 mM of calcium ionophore A23187 and
10 mg/mL of PSA-FITC in culture medium, for 30 minutes at 38.5�C.
Then the cells were fixed in 2% formaldehyde in PBS for 20 minutes
at room temperature. The sperm suspensions were washed by
centrifugation in distilled water, and the pellet was let dry on a
slide. The status of the acrosome was observed at 1,000� under a
fluorescence microscope (Olympus BX 50; Center Valley). The
acrosome-reacted spermatozoa had a green fluorescent acrosome
while the acrosome-intact ones were unlabeled. The percentage of
capacitated spermatozoa was determined as the difference in the
percentage between induced and spontaneous acrosome-reacted
spermatozoa in 200 cells.
2.5.2.2. Protein Tyrosine Phosphorylation. This parameter was
determined by immunocytochemistry [30]. Spermatozoa were
washed with PBS, fixed with 2% formaldehyde, smeared on slides,
and air dried. Cells were permeabilized for 15 minutes in 0.2%
Triton X-100 in PBS at room temperature. To block nonspecific sites,
the slides were incubated for 1 hour in 5% bovine serum albumin-
0.2% Triton X-100 in PBS and then incubated with the monoclonal
anti-phosphotyrosine G410 mouse antibody (1:500) overnight at
4�C, in a humidified chamber. After that, the spermwere incubated
with an anti-mouse Alexa-Fluo 488 antibody (1:500; Invitrogen,
Carlsbad, CA). Negative controls were prepared by using a
non-immune mouse immunoglobulin G instead of the anti-
phosphotyrosine antibody. Finally, cells were mounted with Vec-
tashield H-1100 (Vector Laboratories, Burlingame, CA) containing
40,6-diamidino-2-phenylindole nuclear stain and were observed
and photographed under a fluorescence microscope (Olympus,
Center Valley). The state of PY was observed at 1,000� in 200 cells
counted at random, in duplicated slides. The percentage of sper-
matozoa showing immunoreactivity on the principal piece of the
flagellum was determined.
f sexed and control samples. (A) Data collected for Cytometry show an unusual pop-
cluded from the analysis. (B) Sperm populations showing DNA content of one repre-
e, 50%). All cells above this value correspond to X sperm population (red line). Data



Table 2
Percentage of spermviability inMNP sexed and control samples from three different
donors.

Donkey Sample A B C % Viability

Sexed 18 59 20 32 ± 13.3
Control 15 44 39 33 ± 8.9

MNP, magnetic nanoparticle.
Data are expressed as a mean ± standard error of mean.

E. Domínguez et al. / Journal of Equine Veterinary Science 65 (2018) 123e127126
2.5.3. Sperm DNA Fragmentation
The level of DNA fragmentation was evaluated by means of the

sperm chromatin dispersion assay as described by Fernandez et al.
[31] with minor modifications [32]. The sperm suspension was
mixedwith 1% low-melting point aqueous agarose at 37�C. Aliquots
of 50 mL were put on a slide precoated with 0.65% standard agarose
dried at 80�C. After adding a coverslip, the samples were left to
solidify at 48�C for 30 minutes. The coverslips were carefully
removed, and slides were immediately immersed horizontally in a
tray with freshly prepared acid denaturation solution (0.08 N HCl)
for 7 minutes at 22�C in the dark. DNA denaturation was stopped,
and proteins were removed by a neutralizing and lysis solution 1
(0.4 M Tris, 5% 2-mercaptoethanol, 1% SDS, and 50 mM EDTA, pH
7.5) for 10 minutes at room temperature, followed by incubation in
neutralizing and lysis solution 2 (0.4 M Tris, 2 M NaCl, and 1% SDS,
pH 7.5) for 5 minutes at room temperature. Slides were thoroughly
washed in Tris borate-EDTA buffer (0.09 M Tris-borate and 0.002 M
EDTA, pH 7.5) for 2 minutes and dehydrated in sequential ethanol
series. Dried sperm samples were stained with Hoechst (1 mg/mL).
Images of sperm heads were captured under a fluorescence mi-
croscope (Olympus BX 50; Olympus, Center Valley, PA) coupled to a
Nikon digital camera (Nikon Instruments Inc, NY), whereas at least
200 cells were analyzed per treatment. The halo area of each
spermatozoon was measured using the Fiji program. Sperm were
classified into different patterns according to the size of the halo
(mm2). Four halo patterns were identified: large 60 ± 10 mm2, me-
dium 30 ± 10 mm2, small 10 ± 10 mm2, and without halo. The first
two patterns were considered sperm without DNA fragmentation
and the other two as fragmented DNA. The percentage of DNA
fragmentation was determined in sexed and control samples.
2.6. Statistical Analysis

Physiological sperm data were expressed as the mean ± stan-
dard error of mean of at least three independent experiments.
Differences between treatments were determined by means of
one-way analysis of variance, and a posteriori Tukey test performed
with the GraphPad Prism 6.01 (La Jolla, CA) otherwise indicated,
considering statistically significant differences at a level of confi-
dence of 0.05. The parameters expressed as percentages were
previously transformed to the arcsine square root of the proportion.
Cytometry data were analyzed with the FACS Diva and FlowJo
software, and the statistical analysis was performed using the
RStudio software, v1.0143 [33]. All data were verified to accomplish
the parametric assumptions of homogeneity of variances and
normality.
3. Results

The efficiency of the new sex-sorting technique was verified
using a flow cytometer, where 90% of the sperm population showed
a significant increase in fluorescence intensity, corresponding to
the spermatozoa containing the X chromosome (Table 1). Next,
sperm physiology was assessed in sexed and control samples. No
statistical differences were observed between sexed and control
samples related to sperm viability (Table 2), motility and several
Table 1
Percentage of X spermatozoa in MNP sexed samples from three different donors.

Donkey Sample A B C % X Spermatozoa

Sexed 92 97 80 90 ± 5

MNP, magnetic nanoparticle.
Data are expressed as mean ± standard error of mean.
velocity parameters (Fig. 3), sperm capacitation determined by the
induction of the acrosome reaction and by protein tyrosine phos-
phorylation (Fig. 3), and the percentage of spermatozoa with DNA
fragmentation (Fig. 4).
4. Discussion

In this study, we observed that those spermatozoa carrying the
X chromosome can be easily isolated when the sperm sample is
previously incubated with MNPs and then exposed to a magnetic
field. This was the first report using flow cytometry where sperm
sexing was achieved by means of the MNPs. Indeed, based on flow
cytometry, 90% of the spermatozoa contained the X chromosome.
Therefore, this simple technique provided a similar percentage of X
spermatozoa as those achieved by means of cell sorting [34].
Additional experiments are currently being performed to confirm
our findings by qPCR (cuantitative polimerase chain reaction).

However, sperm physiology (e.g., sperm membrane and DNA
damage) is significantly affected by the cell sorter [7e9]. In
contrast, the MNP technique provided a sperm population not only
enriched in X containing spermatozoa but also viable, motile,
uncapacitated spermatozoa with intact DNA similar to the control
samples. Although viability and motility are relatively low in both
treatments, this fact may be due to the frozen-thawed process,
which is not yet standardized for donkeys. Although sperm
capacitation procedure is not well defined yet for donkeys, the
values are similar to those obtained for frozen-thawed equine
spermatozoa (unpublished data). Although the level of sperm DNA
fragmentation in sexed samples is quite low as compared to that
observed in samples sexed by the cell sorter, this parameter does
not differ from control samples.

It is worth noting that the embryo recovery and pregnancy rates
in cows and mares artificially inseminated with frozen-thawed
sexed semen by the cell sorter were significantly lower than
those in unsexed samples [13,35,36]. Furthermore, the in vitro
embryo production using bovine frozen-thawed sexed semen
samples by the cell sorter is lower than that obtained with unsexed
Fig. 3. Motility parameters in sexed and control donkey semen samples. Percentage of
motility (MOT), curvilinear velocity (VCL), straight line velocity (VSL), and average path
velocity (VAP) are represented in sexed (white bars) and control (gray bars) semen
samples. Data are expressed as the mean ± standard error of mean of three inde-
pendent experiments.



Fig. 4. Physiological sperm parameters in sexed and control donkey semen samples.
Sperm capacitation defined by the induced acrosome reaction (AR) and protein tyro-
sine phosphorylation (PY), and sperm DNA fragmentation are represent in sexed
(white bars) and control (gray bars) semen samples. Data are expressed as the mean ±
standard error of mean of three independent experiments.
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semen samples [37]. Preliminary experiments in stallions using
spermatozoa sexed byMNPs showa pregnancy rate of 79%, and 96%
of the fetus were females as determined by ultrasound [38], sug-
gesting that the MNP technique does not significantly affect the
outcome of artificial insemination. Similar experiments are
currently carried out in donkeys.

5. Conclusion

In summary, the MNP technique provided an X sperm popula-
tion with sperm physiological quality as the control sample.
Although both techniques are similarly effective to select X sper-
matozoa, theMNP technique is faster and easier than the cell sorter,
and it does not require high-cost equipment and specialized tech-
nicians. The new sexing technology presented here can be mainly
applied to improve the donkey's milk industry.
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