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CYCLIC HOMOLOGY OF CLEFT EXTENSIONS OF ALGEBRAS

JORGE A. GUCCIONE, JUAN J. GUCCIONE, AND CHRISTIAN VALQUI

Abstract. Let k be a commutative algebra with Q ⊆ k and let (E,p, i) be a cleft extension of
A. We obtain a new mixed complex, simpler than the canonical one, giving the Hochschild and
cyclic homologies of E relative to ker(p). This complex resembles the canonical reduced mixed
complex of an augmented algebra. We begin the study of our complex showing that it has a
harmonic decomposition like to the one considered by Cuntz and Quillen for the normalized
mixed complex of an algebra.

Introduction

Let k be a commutative ring such that Q ⊆ k, and let A be an associative unital k-algebra. A cleft
extension of A is a triple (E,p, i), consisting of a k-algebra E and k-algebra morphisms i∶A→ E

and p∶E → A, such that p○i = idA. When applications i and p are evident we simply say that E is
a cleft extension of A instead of saying that (E,p, i) it is. A morphism f ∶ (E,p, i) Ð→ (F, q, j), of
a cleft extension of an algebra A to a cleft extension of an algebra B, is a morphisms of algebras
f ∶E → F such that there exists a (necessarily unique) morphism ϕ∶A → B satisfying f ○ i = j ○ϕ
and q ○ f = ϕ ○ p.

For example, given a graded algebra E = ⊕i≥0Ai, each subalgebra of E including A0 is a
cleft extension of A0, and the same is true for each quotient E/I, of E by a two sided ideal
I ⊆ A+ ∶= ⊕i>0Ai. This includes a lot of well known examples of constructive nature, such
as tensor algebras, truncated tensor algebras, truncated quiver algebras, symmetric algebras,
exterior algebras, general quadratic algebras, monomial algebras, Rees algebras, etcetera. Let
R be a commutative ring such that k ⊆ R. As was point out in [3], also there are examples
appearing for structural reasons. For instance:

(1) An R-algebra E is a cleft extension of A ∶= E/J(E), where J(E) denotes the Jacobson
radical of E, when:

(i) E is a basic semiperfect algebra or A is R-projective, J(E) is nilpotent and the
Hochschild dimension of A is lesser or equal than 1 (see [19] and [21]),

(ii) R is a field and dimR(E) <∞ (see [8] and [18]).

(2) If R is a field, then, by the Levi-Malcev Theorem (see [1]), the universal enveloping
algebra U(L), of a finite-dimensional Lie algebra L, is a cleft extension of U(L/J),
where J is the radical of L.

(3) If A is quasi-free, then any nilpotent extension of A is cleft (see [6]).

A special interesting type of cleft extensions are the split-by-nilpotent extension algebras (see [2],
[16] and [17]).
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There is a canonical way to construct a cleft extension of an algebra A. Given a an A-bimodule
M endowed with an associative A-bimodule map

M ⊗A M M,

m⊗m′ m ▿m′

the triple (A ⋉▿M,i, p), where A ⋉▿M is the algebra with underlying vector space A ×M and
multiplication map

(a,m)(a′,m′) ∶= (aa′, am′ +ma′ +m ▿m′),
i∶A Ð→ A ⋉▿M is the map defined by i(a) ∶= (a,0) and p∶A ⋉▿M Ð→ A is the map defined by
p(a,m) ∶= a, is a cleft extension of A, that is called the ▿-extension of A or the cleft extension of
A associated with ▿. Moreover it is not difficult to see that each clef extension is isomorphic to
one of this type.

Let k be a commutative ring and let C be a k-algebra. If K is a subalgebra of C, we will
say that C is a K-algebra. In this paper we begin the study of the Hochschild, cyclic, negative
and periodic homologies of cleft extensions (E,p, i) of a K-algebra A. It is easy to see that
these homologies are the direct sum of the corresponding homologies of the K-algebra A and the
corresponding homologies of the K-algebra E, relative to ker(p). So we restrict our attention to
the last ones. Moreover, by the previous discussion, we can assume that E is a cleft extension
A ⋉▿M associated with an associative A-bimodule map ▿. Our main result is Theorem 2.2, in

which we obtain a double mixed complex (X̂, b̂, d̂, B̂), given these homologies, whose associated

mixed complex (X̆, b̆, B̆) is simpler than the canonical mixed complex of A ⋉▿ M relative to
M . We also introduce an begin the study of an harmonic decomposition of this complex. In
a forthcoming paper we are going to obtain an still simpler complex under the hypothesis that
M is isomorphic to A ⊗k V as a left A-module. We hope that this allows us to get explicit
computations.

The paper is organized in the following way:

In Section 1 we recall some well known definitions and results. Among them, the perturbation
lemma, which we will use again and again in the rest of the paper, and the definition of double
mixed complex, which we got from [4].

Section 2 is devoted to establishing the main results in this paper. In fact, (X̂, b̂, d̂, B̂) can
be thought as a double mixed complex associated to the 3-tuple (A,M,▿), and this association
is functorial in an evident sense. For 0 ≤ 2w ≤ v, let Xvw be the direct sum of all the tensor
products X0 ⊗⋯⊗Xn such that X0 =M , Xi = M for w indices i > 0 and Xi = A for the other
ones, where n = v+w and A = A/k. Let b∶Xvw Ð→Xv−1,w be the map given by the same formula
as the Hochschild boundary map of an algebra, where the meaning of the concatenation xixi+1

of two consecutive factors in a simple tensor is the one given in item (3) of Notation 0.2. Let
t∶Xvw Ð→Xvw be the map defined by

t(x0 ⊗⋯⊗ xn) = (−1)inxi ⊗⋯⊗ xn ⊗ x0 ⊗⋯⊗ xi−1,

where i denotes the last index such that xi ∈M and let N = id+t+ t2 +⋯+ tw . The double mixed
complex (X̂, b̂, d̂, B̂) has objects X̂vw =Xvw ⊕Xv−1,w. The boundary maps are given by

b̂(x,y) = (b(x) + (id−t)(y),−b(y)) and d̂(x,y) = (d(x),−d′(y)),

where d, d′∶Xvw Ð→Xv,w−1 are maps depending on the map ▿, and the Connes operator is given

by B̂(x,y) = (0,N(x)). So, it resembles the reduced mixed complex of an augmented algebra.
Since the maps t and N satisfy

Im(1 − t) = ker(N) and Im(N) = ker(1 − t), (0.1)
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the cyclic homology of E relative to M is the homology of the quotient complex of (X,b, d) by
the image of id−t. Indeed, this also follows from the fact that (X̂, b̂, d̂, B̂) satisfies the Connes
property ([7]), which is another consequence of the equalities (0.1).

Our purpose in Section 3 is to show that (X̆, b̆, B̆) has a harmonic decomposition like the one
studied in [7]. In order to carry out this task we need to define a de Rham coboundary map and

a Karoubi operator on (X̆, b̆). Actually it will be convenient for us to work with a new double

mixed complex, namely (Ẍ, d̈, b̈, B̈), whose associated mixed complex is also (X̆, b̆, B̆). As in [7]

the Karoubi operator κ̈ of (Ẍ, d̈, b̈) commutes with b̈ and d̈ and satisfies a polynomial equation

Pw(κ) on each Ẍvw. Thus we have the harmonic decomposition Ẍ = P (Ẍ) ⊕ P ⊥(Ẍ), where
P is the spectral projection onto the generalized nullspace for id−κ̈ and P ⊥ = 1 − P . The first
component of this decomposition is B̈-acyclic and the second one is d̈-acyclic and killed by B̈.
Hence (Ẍ, d̈, b̈) has the Connes property. We finish the section by giving an explicit description

of P (Ẍ).
Next we introduce some notations that we will use throughout this paper.

Notations 0.1. Let V be a K-bimodule and let M be a C-bimodule.

(1) We set C ∶= C/K. Moreover, given c ∈ C, we also denote by c the class of c in C.

(2) We use the unadorned tensor symbol ⊗ to denote the tensor product ⊗K .

(3) We let V ⊗
n

denote the n-fold power tensor of V .

(4) Given c0, . . . , cr ∈ C and i < j, we write c
j
i ∶= ci ⊗⋯⊗ cj .

(5) Given a K-bimodule M , we let M⊗ denote the quotient M/[M,K], where [M,K] is the
k-vector subspace of M generated by all the commutators mλ − λm, with m ∈ M and
λ ∈K. Moreover, for m ∈M , we let [m] denote the class of m in M⊗.

Notations 0.2. Let E ∶= A ⋉▿M be a cleft extension.

(1) We let

πA∶E Ð→ A and πM ∶E Ð→M

denote the maps defined by πA(a,m) ∶= a and πM (a,m) ∶=m, respectively.

(2) Given x, y ∈ A⋃M we set

x ▿ y ∶=
⎧⎪⎪⎨⎪⎪⎩
x ▿ y if x, y ∈M ,

0 otherwise.

We extend this definition for x, y ∈ E by linearity.

(3) Given x, y ∈ A⋃M we set

xy ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

the product of x and y in A if x, y ∈ A,
the left action of x on y if x ∈ A and y ∈M ,

the right action of y on x if x ∈M and y ∈ A,
0 if x, y ∈M .

We extend this definition for x, y ∈ E by linearity.

(4) For 0 ≤ w ≤ n, let Bn
w ⊆ E

⊗n

be the k-submodule spanned by the simple tensors xn
1

such that exactly w of the xi’s belong to M , while the other ones belong to A. To unify
expressions we make the convention that B0

0 ∶= k and Bn
w ∶= 0, for w < 0 or n < w.

(5) We will say that a simple tensor xn
0 ∈ E ⊗E

⊗n

⊗ is very simple if xi ∈ A ∪M for all i.
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(6) For xn
0 ∈ (M ⊗Bn

w⊗)⋃(A⊗Bn
w+1⊗) and 0 ≤ l ≤ n, we define µj(xn

0 ) by

µj(xn
0 ) ∶=

⎧⎪⎪⎨⎪⎪⎩
(−1)jxj−1

0 ⊗ xjxj+1 ⊗ xn
j+2 if 0 ≤ j < n,

(−1)nxnx0 ⊗ xn−1
1 If j = n.

Moreover we set

µA
0 (xn

0 ) ∶= πA(x0x1)⊗ xn
2 , µA

n (xn
0 ) = (−1)nπA(xnx0)⊗ xn−1

1 ,

µM
0 (xn

0 ) ∶= πM(x0x1)⊗ xn
2 , µM

n (xn
0 ) = (−1)nπM(xnx0)⊗ xn−1

1 .

(7) For xn
0 ∈ E ⊗E

⊗n

⊗ and 0 ≤ j ≤ n, we define ̺j(xn
0 ) by

̺j(xn
0 ) =

⎧⎪⎪⎨⎪⎪⎩
(−1)jxj−1

0 ⊗ xj ▿ xj+1 ⊗ xn
j+2 if 0 ≤ j < n,

(−1)nxn ▿ x0 ⊗ xn−1
1 If j = n.

(8) Let xn
0 ∈ E ⊗ E

⊗n

⊗ be a very simple tensor. We let i(xn
0 ) and denote the last index i

such that xi ∈M .

(9) For a very simple tensor xn
0 ∈ E ⊗E

⊗n

⊗, we define

t(xn
0 ) ∶= (−1)i(xn

0
)nxn

i(xn
0
) ⊗ x

i(xn
0
)−1

0 .

We extend this definition to E ⊗E
⊗n

⊗ by linearity.

1 Preliminaries

In this section we recall some well known definitions and results that we will use in the rest of
the paper. Let C be a k-algebra.

1.1 Double and triple complexes

A double complex X ∶= (X,dv, dh) of C-modules, is a family (Xpq)p,q∈Z of C-modules, together
with C-linear maps

dh∶Xpq Ð→Xp−1,q and dv ∶Xpq Ð→Xp,q−1,

such that dh ○dh = 0, dv ○dv = 0 and dv ○dh + dh ○dv = 0. The total complex of (X,dv, dh) is the
complex Tot(X) = (X,d), in which

Xn ∶=∏
p

Xp,n−p and d ∶= dv + dh.

A morphism of double complexes f ∶ (X,dv, dh) Ð→ (Y, δv, δh) is a family of maps f ∶Xpq Ð→ Ypq,

such that δv ○f = f ○dv and δh ○f = f ○dh. The morphism from Tot(X,dv, dh) to Tot(Y, δv, δh)
induced by f will be denoted Tot(f).

Similarly, one can give the notions of triple complex X ∶= (X,dv, dh, dd) and of morphism of
triple complexes. For a triple complex X , there are three ways for constructing a double complex
by taking total complexes of double complexes. We call each one of these double complexes a
partial total complex of X . The total complex Tot(X) of X , is the total complex of any of its
partial total complexes. Of course, Tot(X) is independently of the chosen way to construct it.
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1.2 Mixed complexes

In this subsection we recall briefly the notion of mixed complex. For more details about this
concept we refer to [3] and [15].

A mixed complex (X,b,B) is a graded k-module (Xn)n≥0, endowed with morphisms

b∶Xn Ð→Xn−1 and B∶Xn Ð→Xn+1,

such that

b○b = 0, B ○B = 0 and B ○b + b○B = 0.

A morphism of mixed complexes f ∶ (X,b,B) Ð→ (Y, d,D) is a family of maps f ∶Xn Ð→ Yn, such
that d○f = f ○b and D○f = f ○B. Let u be a degree 2 variable. A mixed complex X ∶= (X,b,B)
determines a double complex

BP(X) =

⋮ ⋮ ⋮ ⋮

⋯ X3u
−1 X2u

0 X1u X0u
2

⋯ X2u
−1 X1u

0 X0u

⋯ X1u
−1 X0u

0

⋯ X0u
−1

b b b b

B B B B

b b b

B B B

b b

B B

b

B

where b(xui) ∶= b(x)ui and B(xui) ∶= B(x)ui−1. By deleting the positively numbered columns
we obtain a subcomplex BN(X) of BP(X). Let BN′(X) be the kernel of the canonical surjection
from BN(X) to (X,b). The quotient double complex BP(X)/BN′(X) is denoted by BC(X).
The homology groups HC∗(X), HN∗(X) and HP∗(X), of the total complexes of BC(X), BN(X)
and BP(X) respectively, are called the cyclic, negative and periodic homology groups of X . The
homology HH∗(X), of (X,b), is called the Hochschild homology of X . Finally, it is clear that a
morphism f ∶X → Y of mixed complexes induces a morphism from the double complex BP(X)
to the double complex BP(Y).

Following [4] by a double mixed complex we will understand a bigraded module X equipped
with three k-linear maps of degree ±1: b, that lowers the first index and fixes the second one, β,
that fixes the first index and lowers the second one, and B, that fixes the first index and increases
the second one. These maps satisfy

0 = b2 = β2 = B2 = β ○b + b○β = β ○B +B ○β = b○B +B ○b.

The total mixed complex of a double mixed complex (X,b, β,B) is the mixed complex (X,b+β,B),
where (X,b + β) ∶= Tot(X,b, β) and Bn ∶= ⊕i+j=n Bij . By definition, the Hochschild, cyclic,
periodic and negative homologies of (X,b, β,B) are the Hochschild, cyclic, periodic and negative
homologies of (X,b + β,B), respectively.

A morphism of double mixed complexes f ∶ (X,b, β,B) Ð→ (Y, d, δ,D) is a family f ∶Xij Ð→ Yij ,
such that d ○ f = f ○ b, δ ○ f = f ○ β and D ○ f = f ○B. It is obvious that the correspondence
(X,b, β,B) ↦ (X,b + β,B) is functorial.
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1.3 The relative Hochschild and cyclic homologies

Let C be a K-algebra. By definition, the normalized mixed complex of the K-algebra C is the

mixed complex (C ⊗C
⊗∗

⊗, b,B), where b is the canonical Hochschild boundary map and the
Connes operator B is given by

B([c0r]) ∶=
r

∑
i=0

[(−1)ir ⊗ cir ⊗ c0,i−1].

The cyclic, negative, periodic and Hochschild homology groups HCK
∗ (C), HNK

∗ (C), HPK
∗ (C) and

HHK
∗ (C) of C are the respective homology groups of (C ⊗C

⊗∗

⊗, b,B).
Let I be a two sided ideal of C and let D ∶= C/I. The cyclic, negative, periodic and Hochschild

homologies HCK
∗ (C, I), HNK

∗ (C, I), HPK
∗ (C, I) and HHK

∗ (C, I), of the K-algebra C relative to I,
are by definition the respective homologies of the mixed complex

ker( (C ⊗C
⊗∗

⊗, b,B) (D ⊗D
⊗∗

⊗, b,B)π ),

where π is the map induced by the canonical projection from C onto D.

1.4 The perturbation lemma

Next, we recall the perturbation lemma. We present the version given in [5].

A homotopy equivalence data

(Y, ∂)(b) (X,d)p

i
X∗ X∗+1

h

consists of the following:

(1) Chain complexes (Y, ∂), (X,d) and quasi-isomorphisms i, p between them,

(2) A homotopy h from i○p to id.

A perturbation of (b) is a map δ∶X∗ Ð→X∗−1 such that (d+δ)2 = 0. We call it small if id−δ○h
is invertible. In this case we write A = (id−δ ○h)−1 ○δ and we consider de diagram

(Y, ∂1)(c) (X,d)p1

i1
X∗ X∗+1

h1

where

∂1 ∶= ∂ + p○A○ i, i1 ∶= i + h○A○ i, p1 ∶= p + p○A○h, h1 ∶= h + h○A○h.

A deformation retract is a homotopy equivalence data such that p○i = id. A deformation retract
is called special if h○ i = 0, p○h = 0 and h○h = 0.

In all the cases considered in this paper the morphism δ○h is locally nilpotent. Consequently,
(id−δ ○h)−1 = ∑∞n=0(δ ○h)n.
Theorem 1.1 ([5]). If δ is a small perturbation of (b), then the diagram (c) is an homotopy
equivalence data. Furthermore, if (b) is a special deformation retract, then so it is (c).
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1.5 The suspension

The suspension of a chain complex (X,b) is the complex (X,b)[1] ∶= (X[1], b[1]), defined by

X[1]∗ ∶=X∗−1 and b[1]∗ ∶= −b∗−1.
Similarly, the suspension of a chain double complex (X,b, β) is the complex

(X,b, β)[0,1] ∶= (X[0,1], b[0,1], β[0,1]),
defined by X[0,1]∗∗ ∶=X∗,∗−1, b[0,1]∗∗ ∶= −b∗,∗−1 and β[0,1]∗∗ ∶= −β∗,∗−1.

2 The relative cyclic homology of a cleft extension

Let C be a k-algebra and let p∶C → A be a morphism of k-algebras. Assume there exists a
k-algebra morphism i∶A → C such that p○ i = id. Then M ∶= ker(p) is naturally an A-bimodule
endowed with an associative multiplication ▿∶M ⊗A M Ð→ M and C is isomorphic to the cleft
extension E ∶= A ⋉▿M . Let K be a k-subalgebra of A and let

(X̆, b̆, B̆) ∶= ker((E ⊗E
⊗∗

⊗, b,B) (A⊗A
⊗∗

⊗, b,B)),π

where π is the morphism induced by the canonical surjection of E on A. Using that E is a cleft
extension of A, it is easy to see that the short exact sequence

0 (X̆, b̆, B̆) (E ⊗E
⊗∗

⊗, b,B) (A⊗A
⊗∗

⊗, b,B) 0
π

splits. Hence,

HHK(E) = HHK(A)⊕HHK
∗ (E,M),

HCK(E) = HCK(A)⊕HCK
∗ (E,M),

HPK(E) = HPK(A)⊕HPK
∗ (E,M),

HNK(E) = HNK(A)⊕HNK
∗ (E,M).

So in order to compute the type cyclic homologies of the K-algebra E, it suffices to calculate
those of the K-algebra A and those of the K-algebra E relative to M . With this in mind, in this
section we obtain a double mixed complex, simpler than the canonical one, giving the Hochschild,
cyclic, periodic and negative homologies of the K-algebra E relative to M . Then we show that
the cyclic homology of the K-algebra E relative to M is also given by a still simpler complex.
From now on we often will use indices v,w and n, which always will satisfy the relation n = v+w.

Let X̂vw ∶= (M ⊗Bn
w⊗) ⊕ (A ⊗Bn

w+1⊗). It is evident that (X̆, b̆) is the total complex of the
second quadrant double complex

⋮ ⋮ ⋮

. . . X̂22 X̂21 X̂20

. . . X̂12 X̂11 X̂10

. . . X̂02 X̂01 X̂00,

b̂ b̂ b̂

d̂ d̂

b̂

d̂

b̂ b̂

d̂ d̂

b̂

d̂

b̂ b̂

d̂ d̂ d̂
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where the boundary maps

b̂∶ X̂vw Ð→ X̂v−1,w and d̂∶ X̂vw Ð→ X̂v,w−1

are defined by the formulas

b̂(x,y) ∶= (b0(x) + α(y),b1(y)) and d̂(x,y) ∶= n

∑
j=0

(̺j(x), ̺j(y)),

in which

b0 ∶=
n

∑
j=0

µl, b1 ∶= µA
0 +

n−1

∑
j=1

µl + µA
n and α ∶= µM

0 + µ
M
n .

Furthermore (X̂, b̂, d̂, B̂), where B̂ is defined by

B̂(x,y) ∶= (0,B(x) +B(y)),
is a double mixed complex and its total mixed complex is (X̆, b̆, B̆).

2.1 Complexes for the relative homologies

For v,w ≥ 0, let Xvw ∶= M ⊗ Bn
w⊗. By convenience we put Xvw ∶= 0, otherwise. Consider the

triple diagram

X ∶=

−b b −b

X11 X11 X11

−d′ d −d′

X10 X10 X10

−b b −b−d′ d −d′

id−t N id−t N

id−t N id−t N

X01 X01 X01

−b b −b

id−t N id−t N

X00 X00 X00

id−t N id−t N

−b b −b

−d′ d −d′

−d′ d −d′

where

b(xn
0 ) ∶=

n

∑
j=0

µj(xn
0 ), d′(xn

0 ) ∶=
n−1

∑
j=0

̺j(xn
0 ),

d(xn
0 ) ∶= d′(xn

0 ) + ̺n(xn
0 ), N(xn

0 ) ∶=
w

∑
l=0

tl(xn
0 ),

the middle face (X,b, d) is the 0-th face and the bottom row is the 0-th row. Note that the map
N ∶Xv0 Ð→Xv0 is the identity map and the map id−t∶Xv0 Ð→Xv0 is the zero map.

For l ∈ Z, let τ l(X) be the subdiagram of X obtaining by deleting the faces (X,b, d) and
(X,−b, d′) placed in columns with index greater than l, and let τ0(X) and τ10 (X) be the quotient
triple diagrams of X by τ−1(X) and τ1(X) by τ−1(X), respectively.
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Theorem 2.1. X is a triple complex. Moreover

HHK
∗ (E,M) = H∗(Tot(τ10 (X))),

HCK
∗ (E,M) = H∗(Tot(τ0(X))),

HPK
∗ (E,M) = H∗(Tot(X)),

HNK
∗ (E,M) = H∗(Tot(τ1(X))).

Consequently, the following equalities hold:

d○b = −b○d, d′ ○b = −b○d′, d′ ○N =N ○d,

d○(id−t) = (id−t)○d′, b○N =N ○b, t○b = b○ t.

We will use these equalities freely throughout the paper.

Theorem 2.1 is a consequence of Theorem 2.2, which we enounce below and whose proof will
be relegated to Appendix A. For v,w ≥ 0, let X̂vw ∶= Xvw ⊕ Xv−1,w. Consider the diagram

(X̂, b̂, d̂) where the maps

b̂∶ X̂vw Ð→ X̂v−1,w and d̂∶ X̂vw Ð→ X̂v,w−1

are defined by

b̂(x,y) ∶= (b(x) + (id−t)(y),−b(y)) and d̂(x,y) ∶= (d(x),−d′(y)).
Note that (X̂, b̂, d̂) is one of the partial total complexes of the triple complex τ10 (X), and so

Tot(τ10 (X)) = Tot(X̂, b̂, d̂) (but we have not proven that τ10 (X) is a triple complex, yet). Let

B̂∶ X̂vw Ð→ X̂v+1,w, θ̂∶ X̂vw Ð→ X̂vw and ϑ̂∶ X̂vw Ð→ X̂vw

be the maps defined by

B̂(x,y) ∶= (0,N(x)),
θ̂(x,y) ∶= (x + t(y), µM

0 (y)),
ϑ̂(x,y) ∶=

n−i(y)

∑
l=0

(x,1 ⊗ tl(y)),
where t(y0 ⊗⋯⊗ yn−1) ∶= (−1)n−1yn−1 ⊗ y0 ⊗⋯⊗ yn−2.

Theorem 2.2. The following assertions hold:

(1) (X̂, b̂, d̂, B̂) is a double mixed complex.

(2) Let (X̆, b̆) be the total complex of (X̂, b̂, d̂). The maps

ϑ̂∶ (X̂, b̂, d̂, B̂) Ð→ (X̂, b̂, d̂, B̂) and θ̂∶ (X̂, b̂, d̂, B̂)Ð→ (X̂, b̂, d̂, B̂),
are morphisms of double mixed complexes such that θ̂○ϑ̂ = id. Moreover ϑ̆○θ̆ is homotopic
to the identity map, where

ϑ̆∶ (X̆, b̆)Ð→ (X̆, b̆) and θ̆∶ (X̆, b̆) Ð→ (X̆, b̆),
are the morphisms induced by ϑ̂ and θ̂, respectively.

(3) The Hochschild, cyclic, periodic and negative homologies of (X̂, b̂, d̂, B̂) are the Hoch-
schild, cyclic, periodic and negative homologies of the K-algebra E relative to M , respec-
tively.

Proof. See Appendix A. �
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Proof of Theorem 2.1. Let (X̆, b̆, B̆) be the mixed complex associated with (X̂, b̂, d̂, B̂). The-
orem 2.1 follows immediately from Theorem 2.2 and the fact that

Tot(τ10 (X)) = (X̆, b̆),
Tot(τ0(X)) = Tot(BC(X̆, b̆, B̆)),
Tot(X) = Tot(BP(X̆, b̆, B̆)),
Tot(τ1(X)) = Tot(BN(X̆, b̆, B̆)),

which can be easily checked. �

The following result was proven in [12].

Lemma 2.3. The rows of the triple complex X are contractible.

Proof. For v,w ≥ 0, let σ,σ′∶Xvw Ð→Xvw be the maps defined by

σ ∶=
1

w + 1
id and σ′ ∶=

w−1

∑
j=0

w − j
w + 1

tj .

A direct computation shows that:

σ ○N = N ○σ =
1

w + 1
N, (2.2)

(id−t)○σ′ = σ′ ○(id−t) = w−1

∑
j=0

w − j
w + 1

tj −
w

∑
j=1

w − j + 1
w + 1

tj = id−
1

w + 1
N. (2.3)

The result follows immediately from these equalities. �

Theorem 2.4. Let (X,b, d) be the cokernel of id−t∶ (X,−b,−d′)Ð→ (X,b, d). The relative cyclic

homology HCK
∗ (E,M) is the homology of (X,b, d).

Proof. This follows immediately from Theorem 2.1 and Lemma 2.3. �

2.2 Graded algebras

Let E = A0 ⊕A1 ⊕A2 ⊕⋯ be a graded algebra. Let M ∶= A1 ⊕A2 ⊕⋯ be the augmentation ideal
of E. Clearly E is a cleft extension of A ∶= A0 by M . Let K be a k-subalgebra of A. As it is

well known, the double mixed complex (X̂, b̂, d̂, B̂) decompose as the direct sum

(X̂, b̂, d̂, B̂) = ⊕
i∈N

(X̂(i), b̂, d̂, B̂), (2.4)

where X̂
(i)
vw is the k-submodule of X̂vw generated by the simple tensors a0⊗⋯⊗an such that each

aj is homogeneous of degree ∣aj ∣ and ∑j ∣aj ∣ = i. Similarly, the double mixed complex (X̂, b̂, d̂, B̂)
decompose as the direct sum

(X̂, b̂, d̂, B̂) = ⊕
i∈N

(X̂(i), b̂, d̂, B̂),

where X̂(i) is defined in the same manner as X̂
(i)
vw, and the morphisms ϑ̂ and θ̂ are compatible

with these decompositions. Moreover these maps induce homotopy equivalence between the

complexes (X̂(i), b̂, d̂, B̂) and (X̂(i), b̂, d̂, B̂). In order to check this fact it suffices to note that the
homotopy ǫ̆, introduced in item 4) of Lemma A.3, is compatible with the decomposition (2.4).
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3 The harmonic decomposition

As in the proof of Theorem 2.1, we let (X̆, b̆, B̆) denote the mixed complex associated with the

double mixed complex (X̂, b̂, d̂, B̂), introduced in Theorem 2.2. Our purpose in this section is

to show that (X̆, b̆, B̆) has a harmonic decomposition like the one studied in [7]. In order to
carry out this task we need to define a de Rham coboundary map and a Karoubi operator on

(X̆, b̆). As we said in the introduction we are going to work with a new double mixed complex

(Ẍ, b̈, d̈, B̈), whose associated mixed complex is also (X̆, b̆, B̆). In the first three subsections we
follow closely the exposition of [7].

3.1 The Rham coboundary map and the Karoubi operator

It is easy to see that τ10 (X) is the total complex of the double complex

(Ẍ, b̈, d̈) ∶=

⋮ ⋮ ⋮

. . . Ẍ22 Ẍ21 Ẍ20

. . . Ẍ12 Ẍ11 Ẍ10

. . . Ẍ02 Ẍ01 Ẍ00,

b̈ b̈ b̈

d̈ d̈

b̈

d̈

b̈ b̈

d̈ d̈

b̈

d̈

b̈ b̈

d̈ d̈ d̈

where Ẍvw ∶=Xvw ⊕Xv,w−1 and the boundary maps are defined by

b̈(x,y) ∶= (b(x),−b(y)) and d̈(x,y) ∶= (d(x) + (id−t)(y),−d′(y)).
The de Rham coboundary map d̈R∶ Ẍvw Ð→ Ẍv,w+1 is defined by d̈R(x,y) ∶= (0,x). It is obvious
that (Ẍ, d̈R) is acyclic. We now define the Karoubi operator of Ẍ. Let

κ̈(0)∶ Ẍvw Ð→ Ẍvw and κ̈(1)∶ Ẍvw Ð→ Ẍvw

be the maps defined by

κ̈(0)(x,y) ∶= (t(x), t(y)) and κ̈(1)(x,y) ∶= (0, d′(x) − d(x)).
The Karoubi operator κ̈ of Ẍ is the degree zero operator defined by

κ̈ ∶= κ̈(0)+ κ̈(1).
Let d̆R∶ X̆n Ð→ X̆n+1 and κ̆∶ X̆n → X̆n be the maps defined by

d̆Rn ∶=
n

⊕
w=0

d̈Rn−w,w and κ̆n ∶=
n

⊕
w=0

κ̈n−w,w,

respectively. A direct computation shows that

id−κ̈ = d̈○ d̈R + d̈R○ d̈ and 0 = b̈○ d̈R + d̈R○ b̈. (3.5)

In particular, κ̈ is homotopic to the identity with respect to either of the differentials d̈, d̈R, and
so it commutes with them. From (3.5) it follows that

id−κ̆ = b̆○ d̆R + d̆R○ b̆.
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Consequently κ̆ commutes with b̆ and d̆R. Hence κ̈ also commutes with b̈ (which can be also proven

by a direct computation). Let B̈∶ Ẍvw Ð→ Ẍv,w+1 be the map defined by B̈(x,y) ∶= (0,N(x)).
An easy computation shows that (Ẍ, b̈, d̈, B̈) is a double mixed complex and that its associated

mixed complex is (X̆, b̆, B̆). Furthermore,

B̈(x) = w

∑
i=0

κ̈i ○ d̈R(x) for all x ∈ Ẍvw.

Using this we obtain

B̈ ○ κ̈ = κ̈○ B̈ = B̈ and d̈R○ B̈ = B̈ ○ d̈R = 0.

3.2 The harmonic decomposition

From the definition of κ̈ it follows immediately that

(κ̈w − id)○(κ̈w+1 − id)(Ẍvw) ⊆ (κw − id)(0⊕Xv,w−1) = 0.
This implies that κ̈ satisfies the polynomial equation Pw(κ̈) = 0 on Ẍvw, where

Pw = (Xw+1 − 1)(Xw − 1).
The roots of Pw are the r-th roots of unity, with r = w + 1 and r = w. Moreover, 1 is a double
root and the all other roots are simple. Consequently Ẍvw decomposes into the direct sum of
the generalized eigenspace ker(κ̈ − id)2 and its complement Im(κ̈ − id)2. Combining this for all
v,w we obtain the following decomposition

Ẍ = ker(κ̈ − id)2 ⊕ Im(κ̈ − id)2,
Each of these generalized subspaces is stable under any operator commuting with κ̈, for instance,
b̈, d̈, d̈R and B̈.

3.3 The harmonic projection and the Green operator

Let P be the harmonic projection operator, which is the identity map on ker(κ̈ − id)2 and the
zero map on Im(κ̈ − id)2. Thus we have

Ẍ = P (Ẍ)⊕ P ⊥(Ẍ),
where P ⊥ ∶= id−P . It is clear that (P (Ẍ), b̈, d̈, B̈) and (P ⊥(Ẍ), b̈, d̈, B̈) are double mixed sub-

complexes of (Ẍ, b̈, d̈, B̈). On P ⊥(Ẍ) the operator

id−κ̈ = d̈○ d̈R + d̈R○ d̈

is both invertible and homotopic to zero with respect to either differential d̈ and d̈R. Hence the
complexes (P ⊥(Ẍ), d̈) and(P ⊥(Ẍ), d̈R) are acyclic. Let

P (X̆n) =
n

⊕
w=0

P (Ẍn−w,w) and P ⊥(X̆n) =
n

⊕
w=0

P ⊥(Ẍn−w,w).

The same argument shows that (P ⊥(X̆), b̆) and (P ⊥(X̆), d̆R) are also acyclic. The Green operator

G∶ Ẍ → Ẍ is defined to be zero on P (Ẍ) and the inverse of id−κ̈ on P ⊥(Ẍ). It is clear that
G○P = P ○G = 0 and P ⊥ = G○(id−κ̈) = G○(d̈○ d̈R + d̈R○ d̈). (3.6)

Moreover P and G commute with each operator that commutes with κ̈.



CYCLIC HOMOLOGY OF CLEFT EXTENSIONS OF ALGEBRAS 13

Proposition 3.1. The following equality holds:

P ⊥(Ẍ) = d̈○P ⊥(Ẍ)⊕ d̈R○P ⊥(Ẍ).
Furthermore d̈R maps d̈○P ⊥(Ẍ) isomorphically onto d̈R○P ⊥(Ẍ) with inverse G○ d̈ and d̈ maps

d̈R○P ⊥(Ẍ) isomorphically onto d̈○P ⊥(Ẍ) with inverse G○ d̈R.

Proof. The proof of [7, Proposition 2.1] works in our setting. �

The above proposition gives a new proof that (P ⊥(Ẍ), d̈) and (P ⊥(Ẍ), d̈R) are acyclic.

Proposition 3.2. An element x ∈ Ẍvw belongs to P (Ẍvw) if and only if d̈R(x) and d̈R ○ d̈(x)
are κ̈-invariant.

Proof. The proof of [7, Proposition 2.2] works in our setting. �

For v,w ≥ 0 let X̀vw and X́vw be the image of the canonical inclusions of Xvw into Ẍvw and
Ẍv,w+1 respectively, and let κ́∶ X́vw Ð→ X́vw be the map induced by κ̈. For x = (x0,0) ∈ X̀vw we
write

b̀(x) ∶= (b(x0),0) and d̀(x) ∶= (d(x0),0),
and, for y = (0,y0) ∈ X́vw, we write

b́(y) ∶= (0, b(y0)), d́′(y) ∶= (0, d′(y0)) and t́(y) ∶= (0, t(y0)).
It is obvious that κ́ coincides with t́. Note that κ̈ has finite order on d̈R(Ẍ) = X́ in each degree.

In fact κ̈w+1 = id on X́vw. By the discussion in the page 86 of [7],

X́vw = ker(id−κ́)⊕ Im(id−κ́), (3.7)

P (d̈R(X̀vw)) = P (X́vw) = ker(id−κ́), (3.8)

P ⊥(d̈R(X̀vw)) = P ⊥(X́vw) = Im(id−κ́), (3.9)

and the maps P
X́vw

and G
X́vw

, defined as the projection onto ker(id−κ́) associated with the

decomposition (3.7) and the Green operator for id−κ́∶ X́vw Ð→ X́vw, respectively, satisfy:

P
X́vw
=

1

w + 1

w

∑
i=0

κ́i and G
X́vw
=

1

w + 1

w

∑
i=0

(w
2
− i) κ́i. (3.10)

Consequently, for all x ∈ Ẍvw,

P ○ d̈R(x) = 1

w + 1

w

∑
i=0

κ̈i ○ d̈R(x) = 1

w + 1
B̈(x) (3.11)

and

G○ d̈R(x) = 1

w + 1

w

∑
i=0

(w
2
− i) κ̈i ○ d̈R(x). (3.12)

Formula (3.11) implies that

B̈(P ⊥(Ẍ)) = 0 (3.13)

and

B̈(x) = (w + 1)d̈R(P (x)) for all x ∈ Ẍvw.

So, since (P ⊥(Ẍ), d̈R) is acyclic,
H∗(P (Ẍ), B̈) =H∗(P (Ẍ), d̈R) =H∗(Ẍ, d̈R) = 0. (3.14)

In the terminology of [7] this says that (P (Ẍ), d̈, b̈, B̈) is B̈-acyclic. Lastly, (3.10) combined
with (3.12) and the second formula of (3.6), allows us to obtain an explicit formula for P . In
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fact, for x ∈ X́vw, this is given by the first equality in (3.10). Hence, assume x ∈ X̀vw. Since

by (3.12) we know that G○ d̈R(x) ∈ X́vw, we have:

G○ d̈○ d̈R(x) = d̈○G○ d̈R(x) = −d́′ ○G○ d̈R(x) + sw○(id−t́)○G○ d̈R(x),
where sw∶ X́vw Ð→ X̀vw is the map defined by sw(0,x) ∶= (x,0). Using this, the second equalities

in (3.6) and (3.10), and the fact that t́○ κ̈i ○ d̈R(x) = κ̈i+1 ○ d̈R(x), we obtain:

(1) If w = 0, then P (x) = x.
(2) If w > 0, then

P (x) = x −G○ d̈R○ d̀(x) −G○ d̈○ d̈R(x)
= x −

1

w

w−1

∑
i=0

(w − 1
2
− i) κ̈i ○ d̈R○ d̀(x)

+
1

w + 1

w

∑
i=0

(w
2
− i) d́′ ○ κ̈i ○ d̈R(x)

−
1

w + 1

w

∑
i=0

(w
2
− i) sw○(id−t́)○ κ̈i ○ d̈R(x)

=
1

w + 1
sw○ B̈n(x) − 1

w

w−1

∑
i=0

(w − 1
2
− i) κ̈i ○ d̈R○ d̀(x)

+
1

w + 1

w

∑
i=0

(w
2
− i) d́′ ○ κ̈i ○ d̈R(x).

Summarizing,

P (0,y) = 1

w
(0,N(y)) for (0,y) ∈ Ẍvw with w > 0, (3.15)

P (x,0) = (x,0) for (x,0) ∈ Ẍv0, (3.16)

P (x,0) = 1

w + 1
(N(x),0)

−
1

w

w−1

∑
i=0

(w − 1
2
− i)(0, ti(d(x))) for (x,0) ∈ Ẍvw with w > 0. (3.17)

+
1

w + 1

w

∑
i=0

(w
2
− i)(0, d′(ti(x))).

Remark 3.3. Take x ∶= (x0,x1) ∈ Ẍvw, with x0 ∈ Xvw and x1 ∈ Xv,w−1. By Proposition 3.2 we

know that x ∈ P (Ẍ) if and only if x0 and d(x0)+(id−t)(x1) are t-invariant. From this it follows

immediately that if x ∈ P (Ẍ), then (x0,x
′
1) ∈ P (Ẍ) for all x′1 ∈ Xv,w−1 such that x′1 − x1 is a

t-invariant element. Conversely, if x and (x0,x
′
1) belong to P (Ẍ), then z ∶= (id−t)(x′1 − x1) is

t-invariant, but this implies that

wz = N(z) = N ○(id−t)(x′1 − x1) = 0.
In other words, that x′1 −x1 is t-invariant (note that if w = 0, then x′1 = x1 = 0). Let tP (Ẍvw) be
the set of all elements of the shape (0,x1) ∈ Ẍvw with x1 a t-invariant element. By the previous
computations

tP (Ẍvw) = P (Ẍvw) ∩ X́v,w−1.

It is evident that (tP (Ẍ),−b́,−d́′) is a subcomplex of (P (Ẍ), b̈, d̈).
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Proposition 3.4. Assume that w > 0. Then

P (t(x),0) = P (x,0) + 1

w
(0,N ○̺n(x)) − 1

w(w + 1)(0,N ○d(x)) and P (0, t(y)) = P (0,y)
for all (x,0), (0,y) ∈ Ẍvw.

Proof. By equality (3.16), for (0,y) ∈ Ẍvw we have

P (0,y) = 1

w
(0,N(y)) = 1

w
(0,N(t(y))) = P (0, t(y)).

Next we obtain the formula for P (t(x),0). By equality (3.17),

P (t(x),0) − P (x,0) = 1

w

w−1

∑
i=0

(w − 1
2
− i)(0, (ti − ti+1)○d(x))

+
1

w + 1

w

∑
i=0

(w
2
− i)(0, d′ ○(ti+1 − ti)(x))

=
1

w

w−1

∑
i=0

(w − 1
2
− i)(0, (ti − ti+1)○d(x))

+
1

w + 1

w

∑
i=0

(w
2
− i)(0, d○(ti+1 − ti)(x))

−
1

w + 1

w

∑
i=0

(w
2
− i)(0, ̺n ○(ti+1 − ti)(x))

=
1

w

w−1

∑
i=0

(w − 1
2
− i)(0, (id−t)○ ti ○d(x))

+
1

w + 1

w

∑
i=0

(w
2
− i)(0, (t − id)○d′ ○ ti(x))

+ (0, ̺n(x)) − 1

w + 1
(0, ̺n ○N(x)),

because
w

∑
i=0

(w
2
− i)(ti+1 − ti) = −(w + 1)t0 +N.

Hence

P (t(x),0) −P (x,0) = (0, (t − id)(x′)) + (0, ̺n(x)) − 1

w + 1
(0, ̺n ○N(x)),

for some x′ ∈Xv,w−1. But by Remark 3.3 we know that

(t − id)(x′) + ̺n(x) − 1

w + 1
̺n ○N(x)

is t-invariant, and so

(t − id)(x′) + ̺n(x) − 1

w + 1
̺n ○N(x) = 1

w
N ○̺n(x) − 1

w(w + 1)N ○̺n ○N(x)

=
1

w
N ○̺n(x) − 1

w(w + 1)N ○d(x).
The desired formula for P (t(x),0) follows immediately from this fact. �

Proposition 3.5. For 1 ≤ i ≤ w and (x,0) ∈ Ẍvw, we have

P (ti(x),0) = P (x,0) + 1

w

i−1

∑
j=0

(0,N ○̺n ○ tj(x)) − i

w(w + 1)(0,N ○d(x)). (3.18)
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Proof. By induction on i. Case i = 1 is Proposition 3.4. Assume 0 < i < w and that formula (3.18)
is valid for i. Then, again by Proposition 3.4,

P (ti+1(x),0) = P (ti(x),0) + 1

w
(0,N ○̺n ○ ti(x)) − 1

w(w + 1)(0,N ○d○ t
i(x))

= P (ti(x),0) + 1

w
(0,N ○̺n ○ ti(x)) − 1

w(w + 1)(0,N ○d(x)),
where the last equality follows from the fact that N○d○ti = d′○N○ti = d′○N =N○d. Consequently,
by the inductive hypothesis,

P (ti+1(x),0) = P (x,0) + 1

w

i

∑
j=0

(0,N ○̺n ○ tj(x)) − i + 1
w(w + 1)(0,N ○d(x)),

as desired. �

Corollary 3.6. For w ≥ 1 and (x,0) ∈ Ẍvw, we have

P (x,0) = 1

w + 1
(N(x),0) + w−1

∑
j=0

w

∑
i=0

2j + 2i − 2w + 1
2w(w + 1) (0, tj ○̺n ○ ti(x)).

Proof. By Proposition 3.5,

P (x,0) = 1

w + 1
P (N(x),0) − 1

(w + 1)w
w

∑
i=0

(w − i)(0,N ○̺n ○ ti(x)) + 1

2(w + 1)(0,N ○d(x))

=
1

w + 1
P (N(x),0)+ w

∑
i=0

2i −w
2w(w + 1)(0,N ○̺n ○ t

i(x)).
On the other hand, by formula (3.17)

1

w + 1
P (N(x),0) = 1

w + 1
(N(x),0) − 1

(w + 1)w
w−1

∑
j=0

(w − 1
2
− j)(0, tj ○d○N(x))

+
1

(w + 1)2
w

∑
j=0

(w
2
− j)(0, d′ ○N(x))

=
1

w + 1
(N(x),0) − 1

(w + 1)w
w−1

∑
j=0

(w − 1
2
− j)(0, tj ○d′ ○N(x))

−
1

(w + 1)w
w−1

∑
j=0

(w − 1
2
− j)(0, tj ○̺n ○N(x))

=
1

w + 1
(N(x),0) − 1

(w + 1)w
w−1

∑
j=0

(w − 1
2
− j)(0, tj ○̺n ○N(x)),

where the second equality follows from the facts that d = d′ + ̺n and ∑w
i=0 (w2 − i) = 0; and the

last equality, from the facts that ti ○d′ ○N = ti ○N ○d = N ○d and ∑w−1
i=0 (w−12

− i) = 0. So,
P (x,0) = 1

w + 1
(N(x),0) + w−1

∑
j=0

w

∑
i=0

2j + 2i − 2w + 1
2w(w + 1) (0, tj ○̺n ○ ti(x)),

as desired �

We now consider the chain complex (Ẍ, b̈, d̈) and we denote by ker(B̈) and Im(B̈) the kernel

and image of B̈ respectively. These are subcomplexes of (Ẍ, b̈, d̈). By (3.13) and (3.14), we have

ker(B̈)/ Im(B̈) = P ⊥(Ẍ).



CYCLIC HOMOLOGY OF CLEFT EXTENSIONS OF ALGEBRAS 17

Consequently,
H∗(ker(B̈)/ Im(B̈), b̈, d̈) = 0.

That is, the double mixed complex (Ẍ, d̈, b̈, B̈) has the Connes property ([7]).

Let us define the reduced cyclic complex C
λ

X to be the quotient double complex

C
λ

X ∶= Ẍ/ker(B̈).
It is easy to check that

C
λ

X =
P (Ẍ)⊕P ⊥(Ẍ)
Im(B̈)⊕P ⊥(Ẍ) =

P (Ẍ)
Im(B̈)

and that B̆ induces the isomorphism of complexes Tot(Cλ

X)[1] ≃ Im(B̆). So, we have the short
exact sequence of double complexes

0 C
λ

X[0,1] P (Ẍ) C
λ

X 0
i j

where j is the canonical surjection and i is induced by B̆. Taking total complexes we obtain the
short exact sequence

0 Tot(Cλ

X)[1] P (X̆) Tot(Cλ

X) 0
i j

3.4 A description of P (Ẍ)
In this subsection we obtain a precise description of the double mixed complex (P (Ẍ), b̈, d̈, B̈).
The main result is Theorem 3.9. We relegate its proof to Appendix B.

Recall from Theorem 2.4 that Xvw is the cokernel of id−t∶Xvw Ð→Xvw. Consider the double
complex

(X̃, b̃, d̃) ∶=

⋮ ⋮ ⋮

. . . X̃22 X̃21 X̃20

. . . X̃12 X̃11 X̃10

. . . X̃02 X̃01 X̃00,

b̃ b̃ b̃

d̃ d̃

b̃

d̃

b̃ b̃

d̃ d̃

b̃

d̃

b̃ b̃

d̃ d̃ d̃

where X̃vw ∶=Xvw ⊕Xv,w−1 and the boundary maps are defined by

b̃(x,y) ∶= (b(x),−b(y)) and d̃(x,y) ∶= (d(x),−d(y)),
respectively. Let p∶Xvw Ð→Xvw be the map defined by

p(x) ∶= 1

w + 1
[x] for each very simple tensor x ∈ Xvw,

where [x] denotes the class of x in Xvw . Let N ∶Xvw Ð→ Xvw be the map induced by N . It is
easy to check that

N ○b = b○N, N ○d = d′ ○N and p○N = id . (3.19)

Let
ξ̃∶ X̃vw Ð→ X̃v,w−1
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be the maps defined by ξ̃(x,y) ∶= (0, ξ(x)), where ξ∶Xvw Ð→Xv,w−2 is given by

ξ(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

1
w+1

p○d′ ○σ′ ○d○N(x) if w > 1,
0 if w ≤ 1,

where σ′∶Xv,w−1 Ð→Xv,w−1 is the morphism introduced in the proof of Lemma 2.3.

Proposition 3.7. For x ∈Xvw with w > 1, we have

ξ(x) = − 1

w + 1
p○̺n−1 ○σ′ ○̺n ○N(x).

Proof. In fact

(w + 1)ξ(x) = p○d○σ′ ○d○N(x) − p○̺n−1 ○σ′ ○d○N(x) = −p○̺n−1 ○σ′ ○d○N(x),
since

p○d○σ′ ○d○N(x) = w

w − 1
d○p○σ′ ○d○N(x)

=
w−2

∑
j=0

w − j − 1
w − 1

d○p○ tj ○d○N(x)

=
w−2

∑
j=0

w − j − 1
w(w − 1)d○d([N(x)])

= 0,

where [N(x)] denotes the class of N(x) ∈Xvw in Xvw. But

p○̺n−1 ○σ′ ○d○N(x) = p○̺n−1 ○σ′ ○d′ ○N(x) + p○̺n−1 ○σ′ ○̺n ○N(x) = p○̺n−1 ○σ′ ○̺n ○N(x),
since

p○̺n−1 ○σ′ ○d′ ○N(x) = p○̺n−1 ○σ′ ○N ○d(x)
=
w − 1
2

p○̺n−1 ○N ○d(x)
=
1

2
d○d(x)

= 0,

which finishes the proof. �

Proposition 3.8. Let xn
0 ∈ Xvw with w > 1 and let 0 = i0 < ⋯ < iw ≤ n be the indices such that

xij ∈M . Then

ξ(xn
0 ) = ∑

0≤j<l≤w

(−1)(il+1)(n+1)+ij (w + 2j − 2l + 1)(w − 1)w(w + 1)[̺ij ○̺il(x
n
o )],

where [̺ij ○̺il(xn
o )] denotes the class of ̺ij ○̺il(xn

o ) ∈Xv,w−2 in Xv,w−2.

Proof. This follows from Proposition 3.7. We leave the details to the reader. �

Given a t-invariant element x ∈Xvw, let

Υ(x) ∶=
⎧⎪⎪⎨⎪⎪⎩
(− id+N ○p)○σ′ ○d(x) ∈Xv,w−1 if w > 0,
0 if w = 0.
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Theorem 3.9. Let B̃∶ X̃vw Ð→ X̃v,w+1 be the map defined by B̃(x,y) ∶= (0,x). The diagram

(X̃, b̃, d̃ + ξ̃, B̃) is a mixed double complex and the map

Ψ∶ (X̃, b̃, d̃ + ξ̃, B̃) Ð→ (P (Ẍ), b̈, d̈, B̈),
defined by

Ψvw(x,y) ∶= 1

w + 1
(N(x),Υ○N(x)) + (0,N(y)),

is an isomorphism of double mixed complexes.

Proof. See Appendix B. �

Proposition 3.10. The following assertions hold:

(1) The map

Γ∶Tot(X,b, d) Ð→ TotBC(X̃, b̃ + d̃ + ξ̃, B̃),
defined by

Γvw(x) ∶= ((x,0), (−ξ(x),0), (ξ2(x),0), (−ξ3(x),0), (ξ4(x),0), . . . ),
is a morphism of complexes.

(2) The map

Π∶TotBC(X̃, b̃ + d̃ + ξ̃, B̃)Ð→ Tot(X,b, d),
defined by

Πvw((x0,y0), (x1,y1), (x2,y2), (x3,y3), (x4,y4), . . . ) ∶= x0,

is a morphism of complexes.

(3) Π○Γ = id and Γ○Π is homotopic to the identity map. A homotopy is the family of maps

Ξ∶TotBC(X̃, b̃ + d̃ + ξ̃, B̃)w Ð→ TotBC(X̃, b̃ + d̃ + ξ̃, B̃)w+1,
defined by

Ξvw(z) ∶= ((0,0), (−y0,0), (−y1,0), (−y2,0), (−y3,0), . . . ),
where

z ∶= ((x0,y0), (x1,y1), (x2,y2), (x3,y3), . . . ) and yi ∶=
i

∑
j=0

(−1)jξj(yi−j).
Proof. Consider the following special deformation retract

Tot(X,b, d) TotBC(X̃, d̃ + d̃, B̃),Π
′

Γ
′

Ξ′,

where Γ′, Π′ and Ξ′ are given by

Γ′vw(x) ∶= ((x,0), (0,0), (0,0), (0,0), (0,0), . . .),
Π′vw((x0,y0), (x1,y1), (x2,y2), (x3,y3), (x4,y4), . . . ) ∶= x0

and

Ξ′vw(((x0,y0), (x1,y1), (x2,y2), . . . ) ∶= ((0,0), (−y0,0), (−y1,0), (−y2,0), . . . ),
endowed with the perturbation

Ω′∶⊕
i≥0

X̃∗,∗−i Ð→⊕
i≥0

X̃∗,∗−1−i,

given by

Ω′vw((x0,y0), (x1,y1), (x2,y2), . . . ) ∶= ((0, ξ(x0)), (0, ξ(x1)), (0, ξ(x2)), . . . ).
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The proposition follows applying the perturbation lemma to this datum. �

Let i∶Xv,w−1 Ð→ X̃vw and π∶ X̃vw Ð→ Xvw be the canonical maps. The short exact sequence
of double complexes

0 (X∗,∗−1, b, d) (X̃∗∗, b̃, d̃ + ξ̃) (X∗∗, b, d) 0
i π (3.20)

splits in each level via the maps s∶Xvw Ð→ X̃vw and r∶ X̃vw Ð→ Xv,w−1, given by s(x) ∶= (x,0)
and r(x,y) ∶= y. From this it follows immediately that the connection map of the homology long
exact sequence associated with (3.20) is induced by the morphism of double complexes

ξ∶ (X∗∗, b, d) Ð→ (X∗,∗−2, b, d).
Proposition 3.11. The maps

Sn∶HCn(E,M) Ð→ HCn−2(E,M),
Bn∶HCn(E,M) Ð→ HHn+1(E,M)

and

in∶HHn(E,M) Ð→ HCn(E,M),
are induced by −ξ, i and π, respectively.

Proof. This follows by a direct computation using Proposition 3.10. We leave the details to the
reader. �

Proposition 3.12. Let P̃ ∶ Ẍ → X̃ be the map Ψ−1 ○P . We have

P̃ (0,y) = 1

w
(0, [y]) for (0,y) ∈ Ẍvw with w > 0. (3.21)

and

P̃ (x,0) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

([x],0) if (x,0) ∈ Ẍn0,

([x],0) + w

∑
i=0

2i −w
2w(w + 1)(0, [̺n ○ t

i(x)]) if (x,0) ∈ Ẍvw with w > 0. (3.22)

Proof. See Appendix B. �

Remark 3.13. Let M be an associative nonunital k-algebra. Let E be the augmented algebra
obtained adjoin the unit of k to M . In [7] the authors introduced and studied the the harmonic
decomposition of the mixed complex of E. Applying Theorem 3.9 to E we obtain a complex
isomorphic to the harmonic part of of this decomposition.

Appendix A

This appendix is devoted to prove Theorem 2.2.

Let E ∶= A ⋉▿M be a cleft extension and let K be a k-subalgebra of A. The w-th column

(X̂∗w, b̂) of the double complex (X̂, b̂, d̂) introduced at the beginning of Section 2 is the total
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complex of the double complex

(Xw,b,α) ∶=

⋮ ⋮

X0
2w X1

2w

X0
1w X1

1w

X0
0w X1

0w,

b
0

b
1

b
0

α

b
1

b
0

α

b
1

α

where X0
vw ∶=M ⊗Bn

w⊗ and X1
v−1,w ∶= A⊗Bn

w+1⊗.
Lemmas (A.1) and (A.2) below was proven in [12, Appendix A].

Lemma A.1. Let θ1∶ (X1
∗w,b

1) Ð→ (X∗w,−b) and ϑ1∶ (X∗w,−b)Ð→ (X1
∗w,b

1) be the morphisms
of complexes given by

θ1(yn+1
0 ) ∶= µM

0 (yn+1
0 ) and ϑ1(yn

0 ) ∶=
n−i(yn

0
)

∑
l=0

1⊗ tl(yn
0 ),

where t(y0⊗⋯⊗ yn) ∶= (−1)nyn ⊗ y0⊗⋯⊗ yn−1. Then, θ1○ϑ1 = id and ϑ1○θ1 is homotopic to id.
A homotopy is the family of maps ǫ∗w∶X1

∗−1,w Ð→ X1
∗w, defined by

ǫ(yn
0 ) ∶= −

n−i(yn
0
)

∑
l=0

1⊗ tl(yn
0 ).

Lemma A.2. For w ≥ 0, let τ10 (X∗w) be the double diagram with two columns

(X∗w, b) (X∗w,−b).id−t

The following assertions hold:

(1) τ10 (X∗w) is a double complex.

(2) The map ϑ∶ τ10 (X∗w) Ð→ (X∗w,b, α), defined by ϑ ∶= (ϑ0, ϑ1), where ϑ0 is the identity
map and ϑ1 is as in Lemma A.1, is a morphism of double complexes.

(3) The map θ̂∶ (X̂∗w, b̂) Ð→ Tot(τ10 (X∗w)), defined by

θ̂(xn
0 ,y

n
0 ) ∶= (xn

0 + t(yn
0 ), µM

0 (yn
0 )),

is a morphism of complexes.

(4) Let ϑ̂∶Tot(τ10 (X∗w)) Ð→ (X̂∗w, b̂) be the map induced by ϑ. It is true that θ̂ ○ ϑ̂ = id and

that ϑ̂○ θ̂ is homotopic to the identity map. A homotopy is the family of maps

ǫ̂v+1,w ∶X0
vw ⊕X1

v−1,w Ð→ X0
v+1,w ⊕X1

vw (v ≥ 0),
defined by ǫ̂(xn

0 ,y
n
0 ) ∶= (0, ǫ(yn

0 )), where ǫ is the homotopy introduced in Lemma A.1.

Recall from the proof of Lemma 2.1 that (X̆, b̆) ∶= Tot(X̂, b̂, d̂) and from the beginning of this

section that (X̆, b̆) ∶= Tot(X̂, b̂, d̂). The first item of the following lemma is part of item (1) of
Theorem 2.2.

Lemma A.3. The following assertions hold:
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(1) The diagram (X̂, b̂, d̂), introduced above Theorem 2.2, is a double complex.

(2) The map ϑ̂∶ (X̂, b̂, d̂) Ð→ (X̂, b̂, d̂) is a morphism of double complexes.

(3) The map θ̂∶ (X̂, b̂, d̂)Ð→ (X̂, b̂, d̂) is a morphism of double complexes.

(4) Let ϑ̆∶ (X̆, b̆) Ð→ (X̆, b̆) and θ̆∶ (X̆, b̆) Ð→ (X̆, b̆) be the maps induced by ϑ̂ and θ̂, respec-

tively. It is true that θ̆○ϑ̆ = id and that ϑ̆○θ̆ is homotopic to the identity map. A homotopy

is the family of maps ǫ̆n+1∶ X̆n Ð→ X̆n+1, defined by ǫ̆n+1 ∶= ⊕n
w=0 ǫ̂n+1−w,w, where ǫ̂n+1−w,w

is as in Lemma A.2.

Proof. By Lemma A.2 we have the following special deformation retract

⊕
w≥0

(X̂∗w, b̂) ⊕
w≥0

(X̂∗w, b̂),θ̂

ϑ̂

ǫ̂,

where ϑ̂ ∶= ⊕w≥0 ϑ̂∗w, θ̂ ∶= ⊕w≥0 θ̂∗w and ǫ̂ ∶= ⊕w≥0 ǫ̂∗w. Consider the perturbation d̂ ∶= ⊕w≥0 d̂∗w.
Applying the perturbation lemma to this datum, we obtain a special deformation retract

(X̆, b) (X̆, b̆),θ

ϑ
ǫ∗+1∶ X̆∗ Ð→ X̆∗+1.

To finish the proof it remains to check that b = b̆, ϑ = ϑ̆, θ = θ̆ and ǫ = ǫ̆, for which it suffices to
check that

θ̂ ○ d̂○ ϑ̂ = d̂, ǫ̂○ d̂○ ϑ̂ = 0, θ̂ ○ d̂○ ǫ̂ = 0 and ǫ̂○ d̂○ ǫ̂ = 0,
which follows by a direct computation. �

Lemma A.4. Let B̂ be as in Theorem 2.2. The following assertions hold:

(1) (X̂, b̂, d̂, B̂) is a double mixed complex.

(2) The maps

ϑ̂∶ (X̂, b̂, d̂, B̂) Ð→ (X̂, b̂, d̂, B̂) and θ̂∶ (X̂, b̂, d̂, B̂)Ð→ (X̂, b̂, d̂, B̂)
are morphisms of double mixed complexes.

(3) For W equals C, N and P , let

ϑ̌∶TotBW(X̆, b̆, B̆)Ð→ TotBW(X̆, b̆, B̆)
and

θ̌∶TotBW(X̆, b̆, B̆)Ð→ TotBW(X̆, b̆, B̆)
be the maps induced by the morphisms ϑ̆ and θ̆ introduced in item 4) of Lemma A.3. It
is true that θ̌○ϑ̌ = id and ϑ̌○θ̌ is homotopic to the identity map. A homotopy is the family
of maps

ǫ̌∶TotBW(X̆, b̆, B̆)∗ Ð→ TotBW(X̆, b̆, B̆)∗+1,
defined by applying ǫ̆ on each component.

Proof. 1) From the fact that b̂ ○ b̂ = 0 it follows easily that t ○ b = b ○ t. Thus we obtain that

b○N = N ○ b, which implies that b̂○ B̂ + B̂ ○ b̂ = 0. To prove that d̂○ B̂ + B̂ ○ d̂ = 0 we must check
that d′ ○N = N ○d. Let xn

0 ∈ Xvw be a very simple tensor. Let 0 = i0 < i1 < ⋯ < iw ≤ n be the
indices such that xij ∈M and let iw+1 = n+ 1. A direct computation shows that for 0 ≤ l ≤ n and
0 ≤ j < w,

tj ○̺l(xn
0 ) =

⎧⎪⎪⎨⎪⎪⎩
̺l+n+1−iw+1−j ○ t

j(xn
0 ) if l < iw+1−j − 1,

̺l−iw−j ○ t
j+1(xn

0 ) if l ≥ iw+1−j − 1.
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Hence

N ○d(xn
0 ) =

w−1

∑
j=0

n

∑
l=0

tj ○̺l(xn
0 ) =

n−1

∑
l=0

w

∑
j=0

̺l ○ tj(xn
0 ) = d′ ○N(xn

0),
as we want.

2) and 3) From Lemma A.3 we get a special deformation retract between the total complexes

of the double complexes BC(X̆, b̆,0) and BC(X̆, b̆,0). Consider the perturbation induced by

B̆. The result it follows by applying the perturbation lemma to this setting, and using that

B̆ = θ̆ ○B̆○ ϑ̆, B̆○ ǫ̆ = 0 and ǫ̆○B̆ = 0. �

Proof of Theorem 2.2. This follows immediately from Lemma A.4. �

Appendix B

Recall from the discussion above Proposition 3.7, that for each t-invariant element x ∈Xvw,

Υ(x) ∶=
⎧⎪⎪⎨⎪⎪⎩
(− id+N ○p)○σ′ ○d(x) ∈ Xv,w−1 if w > 0,
0 if w = 0.

We claim that Υ(x) is univocally determined by the following properties:

Υ(x) ∈ ker(p) and (x,Υ(x)) ∈ P (Ẍ).
First note that p ○Υ = 0, since p is a retraction of N . By Remark 3.3, in order to prove that
(x,Υ(x)) ∈ P (Ẍvw) it suffices to see that d(x) + (id−t)○Υ(x) is t-invariant. This is evident for
w = 0 and it is true for w > 0, since

d(x) + (id−t)○Υ(x) = d(x) + (t − id)○σ′ ○d(x) = 1

w
N ○d(x), (B.23)

where the first equality follows from the fact that t○N = N and the second one, from equality (2.3).

Conversely, assume that (x,y) ∈ P (Ẍvw) and let [y−Υ(x)] denote the class of y−Υ(x) in Xv,w+1.
Again by Remark 3.3, we know that y −Υ(x) is t-invariant, and so, if y ∈ ker(p), then

[y −Υ(x)] = p○N([y −Υ(x)]) = p○N(y −Υ(x)) = wp(y −Υ(x)) = 0,
which implies that y = Υ(x) (note that if w = 0, then y = Υ(x) = 0). Recall also from Remark 3.3,

that tP (Ẍvw) is the set of all elements of the shape (0,x) that belongs to P (Ẍvw), and that

tP (Ẍvw) = {(0,x) ∶ x ∈Xv,w−1 and t(x) = x} = P (Ẍvw) ∩ X́v,w−1.

Let
eP (Ẍvw) ∶= {(x,Υ(x)) ∈ Ẍvw ∶ x is t-invariant}.

Clearly, P (Ẍ) = eP (Ẍ) ⊕ tP (Ẍ). We assert that b̈(eP (Ẍvw)) ⊆ eP (Ẍv−1,w), for each v > 0. In
order to prove this we will need the following result.

Lemma B.1. For v > 0, we have b○p = p○b.

Proof. This is trivial. �

Proposition B.2. Assume that v > 0 and let x ∈Xvw be a t-invariant element. We have:

b̈(x,Υ(x)) = (b(x),Υ○b(x)).
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Proof. By definition

b̈(x,Υ(x)) = (b(x),−b(Υ(x))).
Since b(x) is t-invariant, in order to finish the proof it suffices to check that

(b(x),−b(Υ(x))) ∈ P (Ẍ) and p(b(Υ(x)) = 0.
The first fact follows immediately from the fact that P (Ẍ) is a subcomplex of (Ẍ, b̈, d̈) and the
second one follows easily from Lemma B.1. �

For each w > 0, let
ed∶ eP (Ẍvw) → eP (Ẍv,w−1) and eξ∶ eP (Ẍvw)→ tP (Ẍv,w−1)

be the maps defined by

ed(x,Υ(x)) + eξ(x,Υ(x)) ∶= d̈(x,Υ(x)).
We now want to compute these maps. To carry out this task we will need Proposition B.3 below.
First note that if x ∈Xvw is a t-invariant element, then d′(x) also is, since

N ○d(x) = d′ ○N(x) = (w + 1)d′(x). (B.24)

For w ≥ 1, let ξ∶ tXvw →Xv,w−2 be the map defined by

ξ(x) ∶= −w + 1
w

Υ○d′(x) − d′ ○Υ(x),
where tXvw denotes the set of t-invariant elements of Xvw.

Proposition B.3. Assume that w > 0 and let x ∈Xvw be a t-invariant element. Then,

ed(x,Υ(x)) = w + 1
w
(d′(x),Υ○d′(x)) and eξ(x,Υ(x)) = (0, ξ(x)).

In particular ξ(x) is t-invariant.

Proof. Since d′(x) is t-invariant,
(d′(x),Υ○d′(x)) ∈ eP (Ẍv,w−1). (B.25)

Moreover, by equalities (B.23) and (B.24),

d̈(x,Υ(x)) = ( 1
w
N ○d(x),−d′ ○Υ(x))

= (w + 1
w

d′(x),−d′ ○Υ(x))
=
w + 1
w
(d′(x),Υ○d′(x)) − (0, w + 1

w
Υ○d′(x) + d′ ○Υ(x))

=
w + 1
w
(d′(x),Υ○d′(x)) + (0, ξ(x)).

Consequently in order to finish the proof it suffices to note that

w + 1
w
(d′(x),Υ○d′(x)) ∈ eP (Ẍv,w−1) and (0, ξ(x)) ∈ P (Ẍ),

since P (Ẍ) is a subcomplex of (Ẍ, b̈, d̈). �

In Proposition B.5 below we will obtain another expression for ξ. In order to do this we will
need the following result.
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Lemma B.4. Assume that w > 0 and let x ∈Xvw be a t-invariant element. We have

N ○p○σ′ ○d(x) = (w − 1)(w + 1)
2w

d′(x).
Proof. In fact

N ○p○σ′ ○d(x) = w−2

∑
j=0

w − j − 1
w

N ○p○ tj ○d(x)

=
w−2

∑
j=0

w − j − 1
w2

N([d(x)])

=
w − 1
2w

N ○d(x)
=
(w − 1)(w + 1)

2w
d′(x),

where [d(x)] denotes the class of d(x) in Xv,w−1 and the last equality follows from (B.24). �

Proposition B.5. Assume that w > 1 and let x ∈ Xvw be a t-invariant element. We have

ξ(x) = 1

w − 1
N ○d′ ○σ′ ○d(x).

Proof. In fact, by Lemma B.4

d′ ○N ○p○σ′ ○d(x) = N ○p○σ′ ○d○d′(x) = 0.
Hence

ξ(x) = −w + 1
w

Υ○d′(x) − d′ ○Υ(x) = w + 1
w

σ′ ○d○d′(x) + d′ ○σ′ ○d(x).
Combining this with the fact that ξ(x) is t-invariant, we obtain

ξ(x) = 1

w − 1
N ○ξ(x)

= N ○p○ξ(x)
=
w + 1
w

N ○p○σ′ ○d○d′(x) +N ○p○d′○σ′ ○d(x)
= N ○p○d′ ○σ′ ○d(x)
=

1

w − 1
N ○d′ ○σ′ ○d(x),

where the forth equality follows from Lemma B.4. �

Proof of Theorem 3.9. We claim that ξ ○N = (w + 1)N ○ ξ on Xvw. This is obvious if w ≤ 1,
because both terms in this equality are zero. Assume that w > 1. Then, by Proposition B.5,

ξ ○N =
1

w − 1
N ○d′ ○σ′ ○d○N = N ○p○d′ ○σ′ ○d○N = (w + 1)N ○ξ.
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Combining this with Proposition B.3 and the second equality in (3.19), we obtain that

d̈○Ψvw(x,y) = d̈( 1

w + 1
(N(x),Υ○N(x)) + (0,N(y)))

=
1

w + 1
ed (N(x),Υ○N(x)) + 1

w + 1
eξ (N(x),Υ○N(x)) + (0,−d′ ○N(y))

=
1

w
(d′ ○N(x),Υ○d′ ○N(x)) + 1

w + 1
(0, ξ ○N(x)) − (0, d′ ○N(y))

=
1

w
(N ○d(x),Υ○N ○d(x)) + (0,N ○ξ(x)) − (0,N ○d(y))

= Ψv,w−1 ((d(x),−d(y)) + (0, ξ(x)))
= Ψv,w−1 ○(d̃ + ξ̃)(x,y),

and using Proposition B.2 and the first equality in (3.19), that

b̈○Ψvw(x,y) = b̈( 1

w + 1
(N(x),Υ○N(x)) + (0,N(y)))

=
1

w + 1
(b○N(x),Υ○b○N(x)) − (0, b○N(y))

=
1

w + 1
(N ○b(x),Υ○N ○b(x)) − (0,N ○b(y))

= Ψv−1,w(b(x),−b(y))
= Ψv−1,w ○ b̃(x,y).

These facts show that Ψ is a morphism of double complexes. Since

B̈ ○Ψvw(x,y) = B̈ ( 1

w + 1
(N(x),Υ○N(x)) + (0,N(y)))

= (0,N(x)) = Ψv,w+1(0,x) = Ψv,w+1 ○ B̃(x,y),

Ψ is a morphism of mixed complexes. To finish the proof it suffices to note that Ψ is bijective. �

Proof of Proposition 3.12. By equality (3.15) and the definition of Ψ (see Theorem 3.9), we
have

P (0,y) = 1

w
(0,N(y)) = 1

w
Ψ(0, [y]),

which proves equality (3.21). The case w = 0 of equality (3.22) follows from the fact that, by
equality (3.16),

P (x,0) = (x,0) = Ψ([x],0).
Assume now that w > 0. Then, by Corollary 3.6,

P (x,0) = 1

w + 1
(N(x),0) + w−1

∑
j=0

w

∑
i=0

2j + 2i − 2w + 1
2w(w + 1) (0, tj ○̺n ○ ti(x))
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and by the definitions of Υ, σ′ and Lemma B.4,

Υ○N([x]) = (w − 1)(w + 1)
2w

d′ ○N([x]) − σ′ ○d○N([x])
=
(w − 1)(w + 1)

2w
d′ ○N([x]) − σ′ ○d′ ○N([x]) − σ′ ○̺n ○N([x])

=
(w − 1)(w + 1)

2w
N ○d([x]) − σ′ ○N ○d([x])) − σ′ ○̺n ○N([x])

=
w − 1
2w

N ○d([x]) − w−1

∑
j=0

w − 1 − j
w

tj ○̺n ○N([x])

=
w − 1
2w

N ○d(x) − w−1

∑
j=0

w

∑
i=0

w − 1 − j
w

tj ○̺n ○ ti(x).

Hence,

P (x,0) −Ψ([x],0) = P (x,0) − 1

w + 1
(N([x]),Υ○N([x]))

=
w−1

∑
j=0

w

∑
i=0

2i − 1
2w(w + 1)(0, t

j ○̺n ○ ti(x)) − w − 1
2w(w + 1)(0,N ○d(x))

=
w

∑
i=0

2i − 1
2w(w + 1)(0,N ○̺n ○ t

i(x)) − w

∑
i=0

w − 1
2w(w + 1)(0,N ○̺n ○ t

i(x))

=
w

∑
i=0

2i −w
2w(w + 1)(0,N ○̺n ○ t

i(x))

=
w

∑
i=0

2i −w
2w(w + 1)Ψ(0, [̺n ○ t

i(x)]),
as desired. �
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E-mail address: cvalqui@pucp.edu.pe


	1 Preliminaries
	1.1 Double and triple complexes
	1.2 Mixed complexes
	1.3 The relative Hochschild and cyclic homologies
	1.4 The perturbation lemma
	1.5 The suspension

	2 The relative cyclic homology of a cleft extension
	2.1 Complexes for the relative homologies
	2.2 Graded algebras

	3 The harmonic decomposition
	3.1 The Rham coboundary map and the Karoubi operator
	3.2 The harmonic decomposition
	3.3 The harmonic projection and the Green operator
	3.4 A description of P()

	Appendix A
	Appendix B

