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ABSTRACT: In multivariate curve resolution (MCR) analysis, a range of
feasible solutions is often encountered, because of the rotational
ambiguities associated with the bilinear decomposition of data matrices.
For quantitative purposes, the analysis is usually applied to a carefully
designed set of calibration and test samples having uncalibrated
interferents. Under the usual minimal constraints (non-negativity,
unimodality, species correspondence, etc.), concentration and spectral
profiles of the analyte in the test samples are not univocally recovered,
unlike those in the calibration samples, especially when profile overlapping
with the interferents is significant and selective regions do not exist for the
analyte. In this report, a quantitative measure of the prediction errors due
to rotational ambiguities is discussed, based on the calculation of the
differences between the maximum and minimum area under the analyte
concentration profiles calculated by the MCR-BANDS procedure. This
methodology can be applied in different analytical scenarios with any number of analytes and interferents. Both absolute and
relative quantitative errors due to rotation ambiguities are estimated and discussed in both simulated and experimental examples
derived from liquid chromatography with diode array detection. The proposed procedure can be generalized to most of the
analytical situations where every instrumentally measured sample produces a data table or data matrix.

Multivariate calibration based on the simultaneous analysis
of multiple datasets from calibration and test samples is

a well-established and powerful analytical methodology.1 When
these datasets are of chromatographic origin, i.e., one of the
data modes is the elution time, one possible chemometric
model to use is Multivariate Curve Resolution−Alternating
Least-Squares (MCR-ALS) in its extended format,2,3 i.e., MCR-
ALS applied simultaneously to multiple datasets. The MCR-
ALS model is based on a bilinear data matrix decomposition
subjected to several chemically driven constraints. Even under
naturally occurring constraints (non-negativity, unimodality or
closure), this bilinear decomposition may not be unique,
producing a range or area of feasible solutions (AFS), which is a
phenomenon usually called “rotational ambiguity”.4

Several approaches have been described in the literature for
estimating the MCR feasible solutions. In a recent review, the
methods have been classified in three groups.4 One of them
involves their explicit calculation based in geometrical
principles,5 which is of limited application to real systems
with more than three components in the presence of noise. The
second group includes computer-intensive grid searches or
other similar comprehensive search tools.6,7 For multi-
component analytical systems, as is often the case in real-
world applications, these comprehensive searches become
prohibitive.

Finally, a third approach was proposed by Gemperline8 and
Tauler,9 based on a nonlinear optimization with nonlinear
constraints, which seeks to maximize or minimize the signal
contribution of the different components of the system. This is
an attractive alternative, which can be applied to systems having
any number of components. In the MCR-BANDS method, for
every component of the system, a function defined by the ratio
of its contribution to the overall signal contribution by all
components is maximized and minimized under a variety of
sensible constraints.10

For a two-component system, the maximum and minimum
of the signal contribution function defined by MCR-BANDS
coincide with the boundaries of the set of solutions provided by
the comprehensive grid search methods in their two-dimen-
sional (plane) plots.11 However, for more than two
components, the solutions corresponding only to the two
extremes of the relative signal contribution function from each
sample component may not adequately describe the entire
multidimensional space of feasible solutions.4 This may be due
to the problem of defining a multidimensional volume or
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hyper-volume of feasible solutions using only two (maximum
and minimum) profiles in a two-dimensional space.
In the experimental systems of analytical interest, where

multiple samples are analyzed simultaneously by the extended
MCR-ALS procedure,2 the individual data matrices are
arranged in an augmented data matrix, typically including a
set of calibration samples with analytes at known nominal
concentrations, and one or more test samples having the
analytes at unknown concentrations together with uncalibrated
interferents. Data matrix augmentation is performed along one
of the experimental data modes (along the rows or the columns
of the data matrix), in such a way that the bilinearity of the
system is preserved. In chromatographic-spectral datasets, the
natural augmentation mode is in the direction of the elution
time (the matrix columns), preserving the spectral direction
common for all data matrices simultaneously analyzed. This is
because (1) the spectral measurements are reproducible, (2)
the component spectra (the matrix rows) are usually invariant
from sample to sample, and (3) the chromatographic time
profiles are seldom constant, because of run-to-run retention
time shifts. Once the column-wise augmented matrix is
decomposed into bilinear components defined by their
elution/concentration and spectral profiles, the area of the
concentration subprofiles for each sample can be integrated to
yield a series of score values: one for each analyte and for each
sample. A univariate pseudo-calibration procedure can be then
performed using the calibration scores and the known nominal
concentrations. Prediction of the analyte concentration
proceeds by interpolation of the analyte scores for the unknown
samples.1

If the elution/concentration profiles are subjected to
rotational ambiguity, this will be reflected in an uncertainty in
the quantitative estimations, as has already been suggested
based on grid search studies.12 However, the latter approach is
only applicable for samples with a small number of
components. In the general case of complex multicomponent
samples, the degree of uncertainty brought about by rotational
ambiguity in MCR-ALS studies can be still estimated by the
proposed MCR-BANDS procedure,10 adapted so that the
function to be minimized or maximized is the relative area
under the analyte profiles, instead of the relative signal
contribution function for each system component. This new
procedure is still a component-wise optimization, since, for
each component, the relative area of its concentration profile is
minimized or maximized, relative to the total area of all
components. Moreover, the spectral profiles of the different
components are all normalized to unit length, and thus the
different quantitative contribution of the components to the
entire signal is only measured by the different contribution of
the concentration profiles.
When the simultaneous analysis of multiple datasets from

carefully designed calibration sets includes samples with pure
analytes, unique solutions for their spectra and concentration
subprofiles in the calibration samples are obtained.13−15

However, in the presence of unknown interferents with strong
profile overlapping with the analyte, both in the spectral and
temporal modes, the recovery of the concentration profile for
the analyte in the test samples may not be unique, although the
number of feasible solutions can be significantly reduced,
because of the imposed constraints.16

In this work, both simulated and experimental data will be
investigated to illustrate the impact of the applied constraints
and of remaining rotational ambiguities in predicted concen-

trations using extended MCR-ALS for quantitative purposes.
Different simulated systems with two and three components are
employed to compare the results by the comprehensive grid
search and MCR-BANDS methods. For more components, the
grid search method becomes prohibitive, from a computational
point of view. However, conclusions can be generalized to
systems with a larger number of components. The experimental
system includes the determination of the herbicides carbaryl,
norfluorazon, and 1-naphthol, and the xenoestrogen bisphenol
A, in the presence of test sample interferents, using datasets
from liquid chromatography with diode array detection (LC-
DAD). MCR-BANDS was applied to assess the AFS under
various constraints, to estimate the prediction uncertainty that
can be expected for the analytes. No other approach would be
useful for this system, because the samples contain up to six
different components, which is a prohibitive number for
comprehensive search approaches.
In a previous MCR-ALS analytical study, prediction

uncertainties due to experimental noise were estimated using
error propagation calculations.17 However, rotational ambiguity
generates a different type of uncertainty in analyte predictions.
Although their differentiation can be difficult in practical
situations, in this work, a measure of the degree of uncertainty
(δRA) introduced by rotation ambiguities is calculated by the
modified MCR-BANDS approach and the obtained results are
discussed in detail.

■ THEORY
General. When MCR is used for quantitative purposes

where a data matrix is obtained for every analyzed sample, a
column-wise augmented data matrix Daug is built up from the
individual matrices obtained for calibration and test samples.
Decomposition of Daug is accomplished by means of a bilinear
model:2,13,14,16

= +D C S Eaug aug
T

aug (1)

where Caug is the column-wise augmented matrix of
concentration profiles of the various components in the
different samples (individual data matrices), ST the matrix of
associated spectra, and Eaug a matrix of model residuals. The
individual spectra can be scaled in different manners; here, their
2-norms (the square root of the sum of squared vector
elements) are set to 1. The concentration profiles, on the other
hand, reflect the relative component concentrations in each
sample; the area under each subprofile (its 1-norm) is
proportional to the component concentration in each of the
samples.
When the MCR-ALS procedure is used,2,13,14 the bilinear

decomposition of Daug is subjected to a variety of chemically
meaningful constraints, such as (1) non-negativity, because
concentrations of mixture constituents and their instrumental
(spectral) responses should be non-negative; (2) unimodality,
implying that a single peak is observed in the concentration
profiles (similar to that observed in chromatography); (3)
closure, which is related to chemical mass balance; (4)
correspondence between constituents in the different simulta-
neously analyzed samples (which forces to zero all elements of
the concentration profile of the components known to be
absent in a particular sample, e.g., the interferents in the
calibration samples); (5) concentration correlation between the
area of resolved profiles and reference values; and (6) local rank
and selectivity for those profiles that are known to be zero in a
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certain spectral or concentration region (which forces only
some of the elements of a concentration or spectral profile of a
particular component to zero, because it is known that the pure
component does not appear in those elements). In the case of
the simultaneous analysis of multiple datasets, it is also possible
to implement multilinear (trilinear or quadrilinear) con-
straints.13,14

Generally, except for the cases of multilinear and selectivity/
local rank constraints, the application of the above constraints
during the ALS optimization may produce a nonunique pair of
solutions for matrices Caug and ST. This implies that a set of
feasible solutions may exist, fitting equally well the data and
satisfying the same constraints, which can be described by a
rotation matrix T:

= −C S C TT SRA RA
T

aug
1 T

(2)

where the set of CRA and SRA profiles form the AFS in the
concentration and spectral modes, respectively. The AFS can be
estimated by different methods,4 such as the grid search6,7 or
the MCR-BANDS10 methods, as described in more detail in the
Supporting Information.
In this work, the MCR-BANDS method was modified to

maximize and minimize the relative area values under the
concentration profiles of the maximum and minimum feasible
solutions for the analyte in the test sample, i.e., max(atest) and
min(atest) (see more details in the Supporting Information).
They can be used to estimate the prediction error due to
rotational ambiguity (δRA) in concentration units as

δ =
−

=
Δa a

s
a
s

max( ) min( )
RA

test test test
(3)

where s is the slope of the univariate MCR-ALS calibration
graph of scores versus nominal analyte concentrations. If δRA =
0, it implies that the concentration profiles have been uniquely
recovered in the test sample. The corresponding relative error
(expressed in units of %) can be computed as

=
Δa
a

RE 100RA
test

test (4)

where atest is the area of the analyte concentration profile in the
test sample.
Simulations. Simulated datasets are intended to mimic

experimental LC-DAD data. Three datasets were obtained,
covering different scenarios, with the following number of
analytes and interferents: dataset 1, a single analyte and a single
interferent; dataset 2, two analytes and a single interferent; and
dataset 3, a single analyte and two interferents. Table 1 lists the
nominal concentrations of the analytes and interferents in the
three sets.
The individual sample matrices for these three simulated LC-

DAD cases, D, were built as the sum of the analyte and
interferent contributions defined by the bilinear model as

∑=
=

D c s
n

N

n n
1

T

(5)

where cn and sn are the concentration (elution) and spectral
profiles for the nth component (analyte or interferent). The
size of the D matrices is (J;K), where J and K are the number of
data points in the concentration (elution time) and spectral
directions respectively: J = 80 and K = 100 in the presently
simulated datasets.

In all cases, the augmented data matrix Daug was then built by
column-wise matrix augmentation, i.e., by appending the
individual data matrices D from the different samples analyzed
along the concentration (elution time) mode. In MATLAB
notation:18

=D D D D D[ ; ; ; ]aug test cal1 cal2 cal3 (6)

meaning that the matrices are placed on top of each other, and
that the size of Daug is (4 × J;K).
For the three simulated systems, the grid search method was

applied to estimate the presence of rotational ambiguity under
different constraints. The relevant elements of the rotation
matrices T describing the AFS according to eq 2 were
computed as detailed in the Supporting Information. In
addition, MCR-BANDS was independently applied to calculate
the set of profiles giving minimum and maximum area under
the analyte concentration profiles in the test samples for each of
the simulated systems and under the same constraints (see the
Supporting Information). The results were used to estimate the
values of δRA and RERA in each case.

Software. MATLAB18 version R2012a was used for all
simulations, for grid search studies, and for the application of
MCR-BANDS.10 The latter requires access to the MATLAB
optimization toolbox.

■ EXPERIMENTAL SECTION
The experimental system involves the agrochemicals 1-
naphthol (NAP), norfluorazon (NOR) and carbaryl (CBL),
and the xenoestrogen bisphenol A (BPA).19 Eight calibration
samples were prepared with concentrations following a factorial
design in the range 0−50 ng mL−1 for NAP, BPA and CBL, and
0−100 ng mL−1 for NOR, with two additional samples having
only pairs of analytes at intermediate concentrations. Four
spiked water samples were also prepared by adding aliquots of
standard analyte solutions. The compositions of calibration and
test samples are collected in Table 2. Chromatographic analysis
was performed using an Agilent 1200 liquid chromatograph
(Agilent Technologies, Waldbronn, Germany), equipped with a
DAD. Absorbance spectra were collected every 0.4 s, from 200
to 320 nm, each 2 nm. Further information can be found in ref
19.
The number of components for MCR-ALS was estimated by

principal component analysis: five components were required

Table 1. Composition of the Samples in the Simulated
Datasets

sample analyte 1 analyte 2 interferent 1 interferent 2

Dataset 1
Dtest 0.5 0.5
Dcal1 0 0
Dcal2 0.5 0
Dcal3 1 0

Dataset 2
Dtest 0.5 0.5 0.5
Dcal1 0 1 0
Dcal2 0.5 0.5 0
Dcal3 1 0 0

Dataset 3
Dtest 0.5 0.5 0.5
Dcal1 0 0 0
Dcal2 0.5 0 0
Dcal3 1 0 0
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for samples 1−3 and six components were required for sample
4, indicating that a single interferent occurred in the former
ones and two in the latter. MCR-ALS was initialized by
estimating the so-called purest spectra.20 Analytes were
identified by their spectral profiles, and their quantitation was
performed through the corresponding pseudo-univariate
calibration curves.1

■ RESULTS AND DISCUSSION
General. Details about the rotational ambiguity expected to

be present in the three simulated datasets are given in the
Supporting Information. All these systems meet the following
requirements: (1) a calibration procedure is designed with pure
analyte samples, and (2) test samples contain uncalibrated
interferents that are not present in the calibration set. Based on
the knowledge of the sample compositions, a correspondence
constraint can be applied both to the interferent and to
individual analytes to fix their concentration to zero where they
are known to be absent.
The main result from the Supporting Information is that, in a

general multicomponent case, the AFS of the augmented
concentration profiles of the analyte (cRA) under the species
correspondence constraint is defined by

∑= + pc c cRA int int (7)

where c and cint are the MCR-ALS augmented concentration
profiles for the analyte and for each of the interferents
respectively, and pint represents a rotation ambiguity parameter
measuring the degree of “mixing” of the pure analyte profile
with those of the interferents (see the Supporting Information).
The specific values of pint are dependent on the applied
constraints and on the degree of profile overlapping in both
data modes (spectral and concentration). In the event that pint
is practically zero, because of all of the imposed constraints, the
solution will be unique. Notice that, in eq 7, the profile for a
given analyte is not combined with those for other analytes,
because of the use of calibration samples, where every analyte is
present in its pure form.
The relationship between the signal contribution function ( f)

and the relative component area (α) is

= =
+ ∑( )

f
pc s

CS

c c s

CS
RA

T
2

T
2

int int
T

2
T

2 (8)

α =
+ ∑( )pc c

C

int int
1

1 (9)

where ||·||2 and ||·||1 indicate the 2-norm and 1-norm,
respectively. Because of the different meaning of the two
norms, and, consequently, the different behavior of f and α, as a
function of pint, the conditions for maximizing or minimizing f
for the analytes may differ, generally, from those maximizing or
minimizing α. Therefore, the separate maximization/minimiza-
tion of the relative areas when employing MCR-BANDS is
required to better estimate the effects of rotational ambiguity in
the quantitative predictions of the analyte concentrations,
which are better measured from the difference between
maximum and minimum analyte areas. This difference can be
directly ascribed to the test sample, because the concentration
profiles in the calibration samples can be uniquely recovered.
In the case of the interferents, neither their spectral nor their

concentration profiles may be recovered uniquely. This is
because only limited information on the interferents is available,
since they are only present in the test sample, and extensive
overlapping may occur among profiles in both data modes (i.e.,
with practically no selective regions). A complete discussion on
the interferent results can be found in the Supporting
Information. Notice that the ambiguity in the concentration
interferent profiles for datasets where a single interferent occurs
is only due to different vertical scales; if these AFS profiles are
normalized to unit 2-norm, they will show a unique profile.

Simulated Data. Figure 1 shows the concentration and
spectral profiles for the analyte(s) and interferent(s) for the

Table 2. Composition of the Calibration and Test Samples
in the Experimental Dataset

Composition (ng mL−1)

sample NAP NOR BPA CBL

Calibration
1 50.0 20.0 50.0 10.0
2 50.0 20.0 10.0 50.0
3 10.0 100.0 10.0 10.0
4 50.0 100.0 10.0 10.0
5 10.0 100.0 50.0 50.0
6 50.0 100.0 50.0 50.0
7 10.0 20.0 10.0 50.0
8 10.0 20.0 50.0 10.0
9 30.0 0.0 0.0 30.0
10 0.0 50.0 30.0 0.0

Test
1 30.0 82.0 25.0 12.0
2 8.0 26.0 42.0 16.0
3 10.0 34.0 38.0 9.0
4 7.0 91.0 28.0 8.0

Figure 1. Spectral (left) and augmented concentration (right) pure
component profiles for the simulated data sets. (A and B) dataset 1,
analyte, black line, interferent, red line; (C and D) dataset 2, analyte 1,
black line, analyte 2, red line, interferent, green line; (E and F) dataset
3, analyte, black line, interferent 1, red line, interferent 2, green line. In
panels (B), (D), and (F), concentration profiles are on the left for the
test sample and on the right for the remaining three calibration
samples. Different samples are separated by vertical dashed lines.
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pure components in the three simulated systems. A rather high
degree of spectral overlapping was introduced to highlight the
rotational ambiguity effects. In a first stage, the AFS was
computed by imposing the following constraints: non-
negativity in the profiles in both modes, and species
correspondence for analyte and interferent. In the case of the
simulated dataset 1 (Table 1), Figure 2 shows the AFS

computed using the grid search method for the analyte
concentration profile: the first left panel corresponds to the test
sample, and the subsequent three correspond to the three
calibration samples. The spectrum of the analyte is not shown,
because it is uniquely recovered. As can be seen in Figure 2, the
concentration profiles of the analyte in the calibration samples
are unique, while rotational ambiguity is concentrated in the
concentration profile of the analyte in the test sample (left
panel). The profiles corresponding to maximum values of f and
α are coincident, and shown as red lines in Figure 2.
The AFS of the interferent in its concentration and spectral

profiles are given in Figure S1 in the Supporting Information.
Grid search computations agree with the theoretical results, i.e.,
there is a significant rotation ambiguity for the interferent
profiles in both data modes under the applied constraints.
However, the concentration interferent profile becomes unique
after normalization to unit 2-norm (Figure S1A in the
Supporting Information).
It is important to note that the rotation ambiguities and the

AFS could be further reduced and even eliminated if additional
constraints are imposed to the system, e.g., local rank and
selectivity constraints. In Figures 1A and 1B, the presence of
concentration and spectral regions where only the interferent
responds is reflected. If this information is employed as a
selectivity constraint during the grid search, the profiles are
uniquely recovered for both sample components and in both
data modes. There are some limitations for the application of
local rank constraints, because of possible rank deficiencies in
some particular cases.21 However, in the present case local rank
constraints are applied in regions where it is known that the
analyte is not present. Therefore, generally, if proper local rank

conditions exist13,15 and they are applied as additional
restrictions, the solution will be unique. On the other hand,
when these local rank conditions do not exist or they exist but
are not used as a constraint (as in Figure 2), rotation
ambiguities will most probably be present and the AFS might
be significant.
Table 3 presents the results of the minimum and maximum

areas for the analyte in the test sample atest, as estimated by

MCR-BANDS under different imposed constraints. For dataset
1, and under non-negativity and correspondence constraints,
the quantitative relative error due to rotation ambiguity for the
single analyte under study is estimated as 34%. On the other
hand, the prediction uncertainty due to rotation ambiguity is
reduced to zero when local rank constraint is applied in
addition to the former restrictions.
In the case of dataset 2, Figures 3A and 3B show the

concentration profiles for analytes 1 and 2, respectively, because
of rotational ambiguity, when only non-negativity and species
correspondence are applied. As for dataset 1, the profiles for
maximum and minimum values of f and α are coincident (red
lines). The analyte concentration profiles in the calibration
samples, as well as their spectral profiles, are recovered
uniquely; however, rotational ambiguity significantly affects
the concentration profile of the analytes in the test sample. The
expected relative errors for the two analytes derived from
rotational ambiguity are reported by MCR-BANDS as 78% and
22%, respectively (see Table 3). In the case of the interferent,
the AFS shows a similar behavior to dataset 1, i.e., a significant
rotation ambiguity in the AFS for its spectral and concentration
profiles (if not normalized, see Figure S2 in the Supporting
Information). As in the previous dataset, when additional
restrictions are applied, e.g., local rank information for the
analyte elution profiles in the test sample (Figures 1C and 1D),
the solutions can be uniquely recovered (Table 3).

Figure 2. Area of feasible solutions for the augmented concentration
profile for the analyte 1 (see Figure 1B), calculated by the grid search
method. Red lines are the profiles giving the maximum and minimum
area and signal contribution values below them. Non-negativity and
correspondence constraints were applied. The left-hand side shows
data for the test sample, and the right-hand side shows data for the
three calibration samples. Different samples are separated by vertical
dashed lines.

Table 3. Prediction Errors Due to Rotation Ambiguities in
the Investigation of Simulated Data Systems 1, 2, and 3a

Dataset 1 Dataset 2 Dataset 3

parameter analyte analyte 1 analyte 2 analyte

Non-negativity Constraints
max(atest) 4.0 5.3 3.7 5.8
min(atest) 3.0 3.0 3.0 1.9
Δatest 1.0 2.3 0.7 3.9
atest 3.0 3.0 3.0 3.0
slope, s 6.0 6.0 6.0 6.0
δRA 0.17 0.39 0.11 0.57
RERA (%) 34 78 22 >100

Non-negativity, Correspondence, and Local Rank for the Analyte in Test
Sample Constraints

max(atest) 3.0 3.0 3.0 3.0
min(atest) 3.0 3.0 3.0 3.0
Δatest 0 0 0 0
atest 3.0 3.0 3.0 3.0
slope, s 6.0 6.0 6.0 6.0
δRA 0 0 0 0
RERA (%) 0 0 0 0

aFor the definition of Δatest, atest, δRA, and RERA, see eqs 3 and 4.
Rotational ambiguity error (δRA) is expressed in arbitrary concen-
tration units. Maximum and minimum areas were estimated by MCR-
BANDS.10
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Dataset 3 differs from the previous sets (two interferents
occur in the test sample). Figure 4A shows the AFS (blue area)
found by grid search for the augmented data matrix and for the
test data matrix, under non-negativity in both data modes and
species correspondence as constraints. The concentration
profiles for the analyte in the calibration samples are unique
(Figure 4A). In this dataset, the profile for the maximum of the
analyte signal contribution function f is coincident with the one
for the maximum relative area α. In contrast, the profile for the
minimum of the analyte signal contribution function f (green
line in Figure 4A) does not match with the one for minimum
relative area α of the analyte. Although these findings
correspond to the particular case under discussion, they may
appear for systems with more than one interferent. For the
interferents, AFS regions are shown in Figures S3 and S4 in the
Supporting Information. They follow the same trend as in the
previous two systems. If additional local rank constraints are
applied, as described above, the analyte profiles can be uniquely
recovered and those for the interferents are significantly
reduced (see Figures S5 and S6 in the Supporting Information).
Notice also in Figure 4A that the profiles for minimum and

maximum signal contribution, as provided by MCR-BANDS
(red lines), do not completely describe the borders of the
volume defined by the AFS profiles. This is better appreciated
in the expanded three-dimensional plot of Figure 4B.
The prediction errors computed with MCR-BANDS under

different constraints are reported in Table 3. As expected, when

only non-negativity and species correspondence are employed
as restrictions, quantitative analysis in dataset 3 is naturally
hindered by the large extent of rotational ambiguity in the
analyte score, leading to a very large error. However, under
application of the additional local rank constraint, the rotation
ambiguity is reduced to zero.

Experimental Data. Each of the four experimental test
samples was separately processed, joining each test data matrix
with the calibration samples in turn to build the augmented
data matrix before MCR-ALS processing. For these systems
having up to six components, comprehensive searches are
prohibitive to find the AFS, which can only be assessed by
MCR-BANDS.
When applying only non-negativity constraints, large

prediction errors are computed by the MCR-BANDS method,

Figure 3. Area of feasible solutions for the augmented concentration
profile for (A) analyte 1 and (B) analyte 2 in dataset 2 (see Figure
1D), calculated by the grid search method. Red lines are the profiles
giving the maximum and minimum area and signal contribution values
below them. Non-negativity and correspondence constraints were
applied. The left-hand side shows data for the test sample, and the
right-hand side shows data for the three calibration samples. Different
samples are separated by vertical dashed lines.

Figure 4. (A) Area of feasible solutions for the augmented
concentration profile for the analyte in dataset 3 (see Figure 2F),
calculated by the grid search method. Red lines define the profiles
giving the maximum and minimum area values below them. Green line
is the profile giving the minimum signal contribution function f, as
calculated by MCR-BANDS (the maximum one is coincident with the
upper one for maximum area in red). Non-negativity and
correspondence constraints were applied. The left-hand side shows
data for the test sample, and the right-hand side shows data for the
three calibration samples. Different samples are separated by vertical
dashed lines. (B) Three-dimensional plot of the AFS profiles for the
test sample only. The red lines show the profiles for minimum and
maximum signal contribution, according to MCR-BANDS.
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ranging from 37% to more than 100% (see Table 4). Notice
that when analyzing test sample 4, which has all four analytes
and two interferents, the rotation ambiguity errors are
considerably larger than for test samples 1−3, which only
have a single interferent. As expected, increasing the profile
overlapping with additional sample interferents increases the
analyte prediction errors.
The application of further constraints, such as unimodality

(for the analytes), as well as the correspondence of analyte
species between samples and constituents, leads, in this
experimental case, to unique decompositions. No analyte
local rank constraints were needed in this case. In this
experimental case, the overlapping among the elution/
concentration profiles of the analyte and interferents was not
so severe, in comparison with the simulated cases, and the
remaining rotation ambiguities could be easily drastically
reduced. This is proved in Table 4 by the fact that all
prediction errors due to rotational ambiguities are negligible for
the analytes in all samples. MCR-ALS results obtained in the
analysis of the experimental dataset using the non-negativity,
unimodality, and species correspondence constraints are shown
in Figure 5 in the analysis of test sample 4 (see spectral profiles
in Figure 5A and augmented concentration profiles in Figure
5B).

■ CONCLUSIONS

Quantitative determinations using multivariate curve resolution
methods should be accompanied by the corresponding
estimation of prediction errors stemming from propagation of
experimental uncertainties and from rotation ambiguities. The
latter can be estimated, for general multicomponent systems, by
the MCR-BANDS method based on a nonlinear optimization
with nonlinear constraints, which maximizes and minimizes the

Table 4. Prediction Errors Due to Rotation Ambiguities in the Investigation of the Experimental Systema

NAP NOR

test sampleb Δatest atest δRA RERA (%) Δatest atest δRA RERA (%)

Only Non-negativity Constraints
1 47.1 67.8 15.9 69 31.2 83.6 24.9 37
2 20.1 33.7 6.3 60 13.4 34.3 10.6 39
3 19.5 29.4 6.7 66 13.1 34.2 10.5 38
4 413.9 79.7 142.5 >100 376.2 94.6 329.4 >100

Non-negativity, Unimodality, and Correspondence Constraints
1 0 64.2 0 0 0 80.7 0 0
2 0 14.5 0 0 0 27.9 0 0
3 0 19.9 0 0 0 33.4 0 0
4 0 7.5 0 0 0 105.1 0 0

BPA CBL

Δatest atest δRA RERA (%) Δatest atest δRA RERA (%)

Only Non-negativity Constraints
1 28.8 24.8 27.5 >100 35.4 41.8 9.5 85
2 16.2 20.7 21.2 78 20.1 56.2 5.5 36
3 13.1 30.7 12.2 43 13.7 26.9 3.6 51
4 266.2 26 279.6 >100 304.6 38.8 83.5 >100

Non-negativity, Unimodality, and Correspondence Constraints
1 0 27.9 0 0 0 37.1 0 0
2 0 30.5 0 0 0 53.4 0 0
3 0 34.0 0 0 0 11.0 0 0
4 0 10.8 0 0 0 13.6 0 0

aFor the definition of Δatest, atest, δRA, and RERA, see eqs 3 and 4. The rotational ambiguity error δRA is expressed in ng mL−1. bTest samples 1−3
contain a single interferent; test sample 4 contains two interferents.

Figure 5. (A) MCR-ALS resolved spectra of the four analytes and two
interferents. (B) MCR-ALS resolved elution (time) profiles. The left-
hand side shows data for test sample 4 with the four analytes and two
interferents, and the right-hand side shows data for the 10 calibration
samples. [Legend: green lines, analyte NOR; blue lines, analyte NAP;
purple lines, analyte BPA; red lines, analyte CBL; and gray lines,
interferents in the real water sample. Vertical dashed lines separate the
different samples.] Applied MCR-ALS constraints show non-negativity
in both data modes, unimodality for the analytes in all subprofiles, and
species correspondence.
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signal contribution of the different species, adapted in this work
to the maximization and minimization of the relative area under
the concentration profiles of the different components or
species. The difference between the extreme area values,
converted to analyte concentrations, provides a way to estimate
the prediction errors due to rotation ambiguities. In this work
the MCR-BANDS method has been adapted to accomplish this
goal with satisfactory results. Critical application of constraints
apart from the basic non-negativity are needed to decrease and
eventually eliminate rotation ambiguities and have good
quantitative results, in particular, local rank and selectivity
constraints and the possibility to have pure analyte standard
samples. Results obtained in the present work can be
generalized to most of the situations where MCR-ALS method
is applied to get quantitative information from instrumentally
measured signals producing a data table or data matrix in the
analysis of single samples.
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