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a b s t r a c t

A coupled Gompertz-like system of delay differential equations is considered. We
prove the existence of T -periodic solutions under resonance assuming a Lazer–Leach
type condition.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most popular nonlinear models for self-limiting cell population growth is the equation
introduced by Gompertz in [1], namely

N ′(t) = −αN(t) ln(K/N(t)),

where N(t) is the density of the population, α is a positive constant called the intrinsic growth rate and
the positive constant K is usually referred to as the environment carrying capacity or saturation level. The
model was derived by Gompertz in 1825 and used in the context of actuarial statistics. In 1932, Winsor [2]
found out that it provides a good empirical description of decelerating tumor growth. In 1964 [3], the same
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model was used by Laird in the description of tumor growth, and later in 1965 [4], for the first time Laird
fitted the experimental data to the Gompertz curve. Since that time the Gompertz equation has been often
used in the formulation of equations modeling the population dynamics and to describe the inner growth of
a tumor and other processes of nature, e.g. [5–7].

To better reflect the reality some of the past states of the systems may be included, that is, ideally, a
more realistic system can be modeled by differential equations with a time delay:

N ′(t) = −αN(t) ln(K/N(t− τ)). (1)

It is clear that (1) has a unique positive equilibrium N ≡ K. It is observed, furthermore, that if K is replaced
by a positive continuous function of (minimal) period T , then for small values of τ the problem admits a
positive T -solution N of minimal period T . This is readily verified by several means: for instance, it suffices
to apply the implicit function theorem to the mapping

F (N, τ)(t) := N ′(t) + αN(t) ln(K(t)/N(t− τ))

defined over appropriate spaces, at the point (K, 0). However, since we are looking for solutions N > 0, a
more straightforward argument follows from the fact that the substitution u(t) := ln(N(t)) transforms the
equation into a linear one, namely

u′(t) = αu(t− τ) + p(t),

where p(t) := −α ln(K(t)). Thus, a simple computation shows that, in fact, the problem has a unique
T -periodic solution for almost all values of τ ; specifically, this happens for all values except for a finite
number, if we assume w.l.o.g. that τ < T . In order to make the statement more precise, consider the space
of continuous T -periodic functions

CT := {u ∈ C(R,R) : u(t+ T ) = u(t) for all t}.

Observe that any solution u ∈ CT has minimal period T because if u(t + S) = u(t) for all t, then
p(t+ S) = p(t). For convenience, denote ω := 2π

T , then it is seen that the homogeneous equation

u′(t) = αu(t− τ)

admits nontrivial solutions only when

cos(kωτ) = 0 = kω + α sin(kωτ)

for some k ∈ N, that is:

kω = α, τ =
m− 1

4
k

T, m = 1, . . . , k. (2)

Except for these specific choices of the parameters, a (unique) T -periodic positive solution exists for each
p. When (2) holds, the problem is called resonant and has (infinitely many) solutions if and only if p is
orthogonal in the L2 sense to the kernel of the operator Lu(t) := u′(t)−αu(t− τ) or, in terms of the original
equation: ∫ T

0
ln(K(t))eikωt dt = 0.

We are interested in extending the previous ideas to a system in which Gompertz equation is coupled
with a second equation and serves as a model in many biological situations (see e.g. [8–11], and for DDEs
see e.g. [12–14] and the references therein):{

N ′(t) = −αN(t) ln(K(t)/N(t− τ1)) +N(t)f(N(t− τ1), v(t− τ2))
v′(t) = βv(t) + g(t,N(t− τ1), v(t− τ2)). (3)
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We shall assume that f : (0,+∞) × R → R and g : R × (0,+∞) × R → R are continuous and bounded,
g is T -periodic in t, β ̸= 0 and, as before, α is a positive constant and K a positive continuous T -periodic
function. We look for T -periodic solutions (N, v) of system (3) with N > 0.

When the problem is non-resonant, the existence of such solutions follows from a direct application of
Schauder’s Theorem; thus, we shall focus on the case in which the resonance conditions (2) are satisfied for
the first equation and τ = τ1. We shall prove the existence of a constant R > 0 such that if the limits

f0 := lim
u→0+

f(u, v), f∞ := lim
u→+∞

f(u, v)

exist uniformly for |v| ≤ R and f0 ̸= f∞, then the problem admits at least one T -periodic solution when
the projection (in the L2 sense) of the function ln(K(t)) to the kernel of the operator L is sufficiently
small. In more precise terms, the existence of solutions is guaranteed under the following Lazer–Leach type
condition [15]: ⏐⏐⏐⏐⏐

∫ T

0
ln(K(t))eikωt dt

⏐⏐⏐⏐⏐ < 2
α

|f∞ − f0|. (4)

Theorem 1.1. Let R := ∥g∥∞
|β| and assume that the previous limits f0, f∞ exist uniformly for |v| ≤ R.

Then (3) has at least one T -periodic solution, provided that (4) holds.

The proof will follow from a slightly more general result (see Theorem 2.2).

2. A general abstract system

Let C1
T := CT ∩ C1(R,R) and consider the linear operator L : C1

T → CT given by Lu(t) := u′(t) −
Au(t) −Bu(t− τ). Writing u =

∑
n∈Zane

inωt, a simple computation shows that Ker(L) is nontrivial if and
only if

A+B cos(kωτ) = kω +B sin(kωτ) = 0

for some k ∈ N0. When k = 0, the condition simply says that A+B = 0; for k > 0, resonance situation may
occur only if |A| < |B| and T = 2πk√

B2−A2
, which is satisfied for finitely many values of τ ∈ [0, T ). Observe,

furthermore, that in this case

Ker(L) = span{cos(kωt), sin(kωt)}

and Im(L) = Ker(L)⊥, where orthogonality is understood in the L2 sense, namely:

Ker(L)⊥ =
{
u ∈ CT :

∫ T

0
u(t)eikωt dt = 0

}
.

In particular, Ker(L) = Ker(L∗), where the adjoint operator L∗ is given by

L∗u(t) = −u′(t) −Au(t) −Bu(t+ τ).

Moreover, it is clear that L : C1
T ∩ Ker(L)⊥ → Im(L) is bijective; thus, by the open mapping theorem

we deduce the existence of a constant c such that ∥u∥C1 ≤ c∥Lu∥∞ for all u ∈ C1
T ∩ Ker(L)⊥, namely,

c = ∥L−1∥.
Now consider the more general system{

L1u(t) = g1(u(t− τ1), v(t− τ2)) + p(t)
L2v(t) = g2(t, ut, vt)

(5)
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with g1 : R2 → R, g2 : R × C([−τ1, 0]) × C([−τ2, 0]) → R bounded continuous functions and Lju(t) :=
u′(t) − aju(t) − bju(t − τj). Assume that |a1| < |b1| and set T = 2πk√

b2
1−a2

1
for some k ∈ N. Define as before

ω = 2π
T and fix τ1 < T such that

cos(kωτ1) = −a1/b1, sin(kωτ1) = −kω/b1.

Moreover, we shall assume that a2 + b2 ̸= 0 and that the previous relations do not hold for the delay τ2 < T ;
thus, Ker(L2) = {0} and it is deduced as before that

∥u∥C1 ≤ c2∥L2u∥∞ (6)

for all u ∈ C1
T .

Remark 2.1. In particular, when b2 = 0 ̸= a2, it is readily verified that c2 = 1
|a2| . Indeed, if |u(t)| achieves

its absolute maximum value at t = t0 then L2u(t0) = −a2u(t0) which, in turn, implies: |a2|∥u∥∞ ≤ ∥L2u∥∞.

In order to state our Lazer–Leach type condition, we shall assume that the limits

ginf
1 (±∞) := lim inf

u→±∞
g1(u, v) (7)

gsup
1 (±∞) := lim sup

u→±∞
g1(u, v) (8)

exist uniformly for |v| ≤ c2∥g2∥∞ and that the following technical condition holds:∫ T

0
[g1(ρ cos(kωt) + ψ(t), ϕ(t)) − g1(ρ cos(kωt) + ψ(t), 0)] sin(kωt) dt → 0 (9)

as ρ → +∞ uniformly for ∥ϕ∥∞ ≤ c2∥g2∥∞ and ∥ψ∥∞ ≤ c1(∥g1∥∞ + ∥p∥∞) where, as before, c1 is the norm
of the right inverse of L1. For example, (9) is satisfied when g1(±∞) := limu→±∞g1(u, v) exist uniformly
for |v| ≤ c2∥g2∥∞.

In particular, setting u := lnN and g1(u, v) := f(eu, v) and taking into account Remark 2.1, the existence
of T -periodic solutions of (3) with N > 0 is an immediate consequence of the following main result of the
paper:

Theorem 2.2. Let |a1| < |b1| and fix T , τ1 and τ2 as before. Assume that g2 is T -periodic in its first
coordinate, p1 ∈ CT , the limits (7) and (8) exist uniformly for |v| ≤ c2∥g2∥∞ and (9) is satisfied.

If ⏐⏐⏐⏐⏐
∫ T

0
p(t)eikωt dt

⏐⏐⏐⏐⏐ < 2(ginf
1 (+∞) − gsup

1 (−∞)) (10)

or ⏐⏐⏐⏐⏐
∫ T

0
p(t)eikωt dt

⏐⏐⏐⏐⏐ < 2(ginf
1 (−∞) − gsup

1 (+∞)) (11)

then the problem admits at least one solution u ∈ CT . If furthermore p has minimal period T , then u has
minimal period T .
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Proof. According to the standard continuation method adapted to this context (see e.g. [16, Thm 2.1]),
let us firstly prove that the solutions (u, v) ∈ CT × CT of the system{

u′(t) = a1u(t) + b1u(t− τ1) + λ[g1(u(t− τ1), v(t− τ2)) + p(t)]
v′(t) = a2v(t) + b2v(t− τ2) + λg2(t, ut, vt)

(12)

with λ ∈ (0, 1) are a priori bounded. Indeed, suppose that (un, vn) is a sequence of solutions of (12) for
some λn ∈ (0, 1), then we already know from (6) that

∥vn∥∞ ≤ ∥vn∥C1 ≤ c2∥L2vn∥∞ ≤ c2∥g2∥∞.

Next, write

un = ũn + ρn cos(kωt− θn)

with ũn ∈ Ker(L)⊥, ρn ≥ 0 and θn ∈ [0, 2π), then ∥ũn∥C1 ≤ c1(∥g1∥∞ +∥p∥∞). We conclude that ρn → +∞
and, moreover, since Ker(L∗) = Ker(L) we deduce that

∫ T

0 Lun(t)eikωt dt = 0 for all n, that is∫ T

0
g1(un(t− τ1), vn(t− τ2))eikωt dt = −

∫ T

0
p(t)eikωt dt

for all n. Next, observe that the substitution kωs := kω(t− τ1) −θn and periodicity imply that the left-hand
side term can be written as

ei(kωτ1+θn)
∫ T

0
g1(ρn cos(kωs) + ψn(s), ϕn(s))eikωs ds,

where |ψn| ≤ c1∥g1∥∞ and |ϕn| ≤ c2∥g2∥∞. For convenience, let us fix A ∈ [0, 2π) such that
−eiA

∫ T

0 p(t)eikωt dt =
⏐⏐⏐∫ T

0 p(t)eikωt dt
⏐⏐⏐, then the previous equality simply reads

∫ T

0
g1(ρn cos(kωs) + ψn(s), ϕn(s)) cos(kωs+Rn) ds =

⏐⏐⏐⏐⏐
∫ T

0
p(t)eikωt dt

⏐⏐⏐⏐⏐
where Rn := kωτ1 + θn +A.

From the identity cos(kωs+Rn) = cos(kωs) cos(Rn) − sin(kωs) sin(Rn) and (9) we deduce, following the
ideas of Lemma 3 in [17], that∫ T

0
g1(ρn cos(kωs) + ψn(s), ϕn(s)) sin(kωs) ds =∫ T

0
[g1(ρn cos(kωs) + ψn(s), ϕn(s)) − g1(ρn cos(kωs) + ψn(s), 0)] sin(kωs) ds

+
∫ T

0
g1(ρn cos(kωs) + ψn(s), 0) sin(kωs) ds → 0

as n → ∞. Thus, assuming for example that (10) holds, by Fatou’s lemma we conclude:⏐⏐⏐⏐⏐
∫ T

0
p(t)eikωt dt

⏐⏐⏐⏐⏐ ≥ ginf
1 (+∞)

∫
I+

cos(kωs) ds− gsup
1 (−∞)

∫
I−

cos(kωs) ds

where I± ⊂ [0, 2π] are respectively the positivity/negativity sets of cos(kωs). Hence⏐⏐⏐⏐⏐
∫ T

0
p(t)eikωt dt

⏐⏐⏐⏐⏐ ≥ 2[ginf
1 (+∞) − gsup

1 (−∞)],

a contradiction.
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Next, identify Ker(L) with C by the mapping ρ cos(kωt− θ) ↦→ z := ρeiθ. We need to compute the degree
of the mapping

Φ(z) :=
∫ T

0
g(ρ cos(kωt− θ))eikωt dt−

∫ T

0
p(t)eikωt dt

over large balls centered at 0. Now observe that∫ T

0
g(ρ cos(kωt− θ))eikωt dt = eiθ

∫ T

0
g(ρ cos(kωt))eikωt dt

and, moreover, since g(ρ cos(kωt)) is even, we obtain as before∫ T

0
g(ρ cos(kωt))eikωt dt ≥ [ginf

1 (+∞) − gsup
1 (−∞)] >

⏐⏐⏐⏐⏐
∫ T

0
p(t)eikωt dt

⏐⏐⏐⏐⏐
for ρ ≫ 0. This implies

deg(Φ, Bρ(0), 0) = ±1

and so completes the proof. □
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