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Summary

This paper presents a model which can be used for fast landslides where

coupling between solid and pore fluid plays a fundamental role. The proposed

model is able to describe debris flows where the difference of velocities between

solid grains and fluid is important. The approach is based on the mathematical

model proposed by Zienkiewicz and Shiomi, which is similar to those of Pitman

and Le and Pudasaini. The novelty of the present work is the numerical

technique used, the smoothed particle hydrodynamics (SPH). We propose to

use a double set of nodes for soil and water phases, the interaction between

them being described by a suitable drag law. The paper presents both mathematical

and numerical models, describing the main assumptions and their limitations.

Then, the model is applied to (1) a simple case where shocks and expansion

waves appear, (2) a dam break problem on a horizontal plane with a frictional

soil phase, and (3) a debris flow which happened in Hong Kong. The main

conclusions that can be drawn from the applications are:

(i) Debris flows having 2 phases with important relative mobility present a rich

structure of shocks and rarefaction waves, which has to be properly

modeled. Otherwise, the model will have numerical damping or dispersion.

(ii) Dambreak exercises provide interesting information in simple and con-

trolled situations. We can see how both phases move relative to each other.

(iii) Real debris flows can be simulated with the proposed model, obtaining

reasonable results.
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1 | INTRODUCTION

The term “landslide” embraces a large variety of phenomena. According to Dikau,4 there are 2 main groups of landslides
referred to as slides and flows. The most interesting difference, from a geomechanical point of view, is that slides present
a failure surface while flows usually present a diffuse failure mechanism, with shear strains distributed along most of the
mass. Regarding flow type movements, we find rock avalanches, debris flows, mudflows, and flow slides.

In the case of rock avalanches, the flowing material consists on solid blocks which are disintegrating into smaller
particles as it propagates downhill. Segregation is also present, the larger blocks traveling at the front and on the upper
part. Discrete element models are able to describe both phenomena, but the computational cost of representing a real
Copyright © 2017 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/nag 1
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case is still too large. This is the reason why continuum models are frequently applied here, using a single‐phase
granular fluid.

Mudflows consist of mixtures of fine soil particles and water, and they can be modeled with continuum models using
a single‐phase viscous fluid.

Flowslides are mixtures of soil particles and water, with small relative displacements between both phases. The
tendency of the solid skeleton to dilate or contract results on pore pressure generation affecting the effective stresses.
To describe them, mathematical models formulated in terms of velocities and pore pressures, like the u−pw model pro-
posed in Zienkiewicz and Shiomi,1 provide a good approximation. According to Hutchinson,5 “...they present the essential
feature that the material involved has a metastable, loose or high porosity structure. ...This structure collapses transferring
the overburden load wholly or partially onto the pore fluid in which excess pressures are generated.”

Debris flows are the more complex phenomenon from the modeling point of view, as both solid particles and water
can have different velocities. The models have to include velocities of both solid and fluid phases, and the stresses acting
on them.

This paper is devoted to the case of debris flows, where both phases and their mutual interaction have to be modeled.
While models for debris flows are relatively modern in engineering geology, their origin can be tracked back along 2
different paths:

(i) Zienkiewicz, following Biot,6,7 proposed a general formulation which can be applied to debris flows.1 From here,
simpler approximations such as the u−pw model were derived. This model is used today in most of coupled prob-
lems of geotechnical engineering.

(ii) Within the area of physics of granular media, where important contributions have been made to study industrial
problems such as the fluidized beds, it is worth mentioning the work done by Bowen,8 Anderson and Jackson.9

Regarding applications to debris flows, Pitman and Le2 and Pudasaini3 have proposed 2‐phase models for debris
flows, arriving to most interesting 2‐phase simplified models of depth integrated type.

In the same manner than the general 2‐phase model of Zienkiewicz and Shiomi1 can be particularized to the u−pw
model, depth integrated models based on this approach have been proposed by Iverson and Denlinger10 and Pastor and
co‐workers.11,12

In Pitman and Le2, it is stated that triggering is different from propagation and has to be modeled using a different
approach, their model being applied only to propagation. However, in the authors' opinion, the same mathematical
model can be applied to initiation and propagation, the key being the constitutive model describing the behavior of
the material, from solid to fluidized states.

This problem has attracted the attention of researchers during past years. Prime and co‐workers13 have proposed to
use an indicator of fluidization to change from a solid model to a Bingham fluid. Berzi and co‐workers14 have investi-
gated the case of granular fluids. Finally, the authors have proposed the use of viscoplasticity for both situations.15,16

Regarding numerical models, there are nowadays some interesting approaches that could be used, for example, the
smooth particle hydrodynamics (SPH) and the material point model (MPM). The authors have explored the former
approach in Blanc and Pastor,17,18 finding that features such as coupling with pore water and failure mechanisms can
be accurately described. Both MPM and SPH are lagrangian approaches. They present, in comparison to the eulerian
approaches, the advantage of not needing special techniques such as level set to track interfaces.19-21

In the case of depth integrated models, both approaches can be used. So far, most of the models are of eulerian
type2,3,11 using finite volumes or elements or of lagrangian type (SPH).12,22,23

In a previous publication, the authors have addressed the problem of coupling SPH with a series of finite difference
(FD) meshes associated to each SPH node, which provides better accuracy to reproduce pore pressure changes.15

Here, we will model debris flows using 2 sets of nodes, describing the water and the solid phases, which can move
relative to each other.

The paper is structured as follows:

(i) We will present first the mathematical model which will be used, deriving it from Zienkiewicz‐Shiomi model,1 and
arriving to the depth integrated model proposed by Pitman and Le.2

(ii) Next, the SPH model for 2 phases will be described.
(iii) Finally, we will present some application cases where we will compare the results provided by the proposed model

against those obtained using more simplified models.
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2 | MATHEMATICAL MODEL

2.1 | Introduction

We will assume that the debris flow material is a saturated 2‐phase mixture, where the solid phase consists of solid par-
ticles of different sizes and the fluid phase is either water, or a mixture of water with very fine soil particles such as clay,
which can be considered as a fluid. We will denote them by the sub indexes s and w. Densities will be denoted as ρs and
ρw. The mixture is described using its porosity n (volume fraction of voids in the mixture), the void ratio e being related to
the porosity by

n ¼ e
1þ e

(1)

We will introduce the concept of phase densities as the mass of components per unit volume of mixture, which are
given by

ρ sð Þ ¼ 1−nð Þρs
ρ wð Þ ¼ nρw

(2)

One important feature of debris flows is that velocities of both phases can be different. Therefore, the mathematical

models describing the balance of mass and momentum for both phases use derivatives following the solid
d sð Þ

dt
and the

fluid
d wð Þ

dt
defined by

d sð Þ

dt
¼ ∂

∂t
þ vs

T : grad

d wð Þ

dt
¼ ∂

∂t
þ vw

T : grad

(3)

where vs and vw are the velocities of solid and fluid particles in the mixture. Both derivatives are related by

d wð Þ

dt
¼ d sð Þ

dt
þ vw−vsð ÞT : grad (4)

In classical Soil Mechanics, where relative velocities are small, a lagrangian framework is used for the solid, the
velocity of the fluid relative to the skeleton given by the Darcy's velocity w defined as

vw ¼ vs þw
n

(5)

from which we arrive to

d wð Þ

dt
¼ d sð Þ

dt
þwT

n
: grad (6)

Regarding the stresses, the total stress in the mixture (Cauchy) is denoted by σ and is related to stresses in the
phases as

σ ¼ 1−nð Þσs þ nσw

¼ σ sð Þ þ σ wð Þ (7)

where the partial stresses σ(s) and σ(w) have been introduced as

σ sð Þ ¼ 1−nð Þσs

σ wð Þ ¼ nσw

(8)
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Partial stresses are a decomposition of the stress tensor into the stress which is carried by both phases. They provide a
complementary explanation to the magnitudes used in geotechnical engineering, their range of application being
larger.2,8,9,24

The stress in the fluid phase can be written as:

σ wð Þ ¼ −npwI þ nsw (9)

where sw is the deviatoric stress, pw the pore pressure, and I the second‐order identity tensor. From here, the total
stress is:

σ ¼ σ sð Þ−npwI þ nsw (10)

In the case of an inviscid pore fluid, we can express the effective stress used in geotechnical engineering as:

σ' ¼ σ þ pwI (11)

which can be written as:

σ' ¼ 1−nð Þ σs þ pwIð Þ (12)

In the present work, compression is assumed negative. The effective stress is related to the solid partial stress by:

σ sð Þ ¼ σ'− 1−nð ÞpwI (13)

If we define the effective component stress as σeff=(σs+pwI), we arrive to:

σ' ¼ 1−nð Þσeff (14)

The effective stress in the more general case of a viscous porous fluid is:

σ' ¼ σ þ pwI−nsw (15)

2.2 | Balance of mass and momentum

The balance of mass equations are given by

d sð Þ

dt
1−nð Þρsð Þ þ 1−nð Þρs divvs ¼ 0

d wð Þ

dt
nρwð Þ þ nρw divvw ¼ 0

(16)

which can be written as:

1−nð Þ 1
ρs

d sð Þρs
dt

−
d sð Þn
dt

þ 1−nð Þ divvs ¼ 0

n
1
ρw

d wð Þρw
dt

þ d wð Þn
dt

þ n divvw ¼ 0

(17)

If we consider both the fluid and the solid grains as elastic, with volumetric deformations induced only by the fluid
pressure pw, then the volumetric stiffness moduli Ks and Kw can be introduced by
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1
ρs

d sð Þρs
dt

¼ 1
Ks

d sð Þpw
dt

1
ρw

d wð Þρw
dt

¼ 1
Kw

d wð Þpw
dt

(18)

Taking into account 18 and combining equations in 17, the following expression is obtained

1−nð Þ
Ks

d sð Þpw
dt

þ n
Kw

d wð Þpw
dt

þ d wð Þn
dt

−
d sð Þn
dt

þ 1−nð Þ divvs þ n divvw ¼ 0 (19)

and taking 6 into account the following mixture balance of mass is derived:

1−nð Þ
Ks

d sð Þpw
dt

þ n
Kw

d wð Þpw
dt

þ divwþ divvs ¼ 0 (20)

If solid grains are considered much stiffer than pore fluid, then the first term in 20 can be neglected arriving to

n
Kw

d wð Þpw
dt

þ divwþ divvs ¼ 0 (21)

For simplicity,1,24 a mixed volumetric stiffness Q can be introduced as:

1
Q
¼ 1−nð Þ

Ks
þ n
Kw

≈
n
Kw

(22)

In the case where the solid grains are much stiffer than pore fluid, the mass balance equation for the solid phase
reads:

−
d sð Þn
dt

þ 1−nð Þ divvs ¼ 0 (23)

These aspects are described in detail in Zienkiewicz et al24 and Lewis and Schrefler.25

Concerning balance of momentum equations, the form proposed by Zienkiewicz and Shiomi1 in 1984 for inviscid
pore fluids derives from:

1−nð Þρs
d sð Þvs
dt

¼ divσ'− 1−nð Þ grad pwð Þ þ 1−nð Þρsbþ 1−nð ÞRs (24)

nρw
d wð Þvw
dt

¼ −n gradpw þ nρwbþ nRw (25)

where:

b is the body forces vector

Rs and Rw characterize the interaction between phases:

nRw ¼ − 1−nð ÞRs ¼ −R

(26)

Equations 24 and 25 can be written alternatively in terms of either partial or total stress as:

1−nð Þρs
d sð Þvs
dt

¼ divσ þ n gradpw þ 1−nð Þρsbþ 1−nð ÞRs

nρw
d wð Þvw
dt

¼ divσ wð Þ þ pw gradnþ nρwbþ nRw

(27)
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and

1−nð Þρs
d sð Þvs
dt

¼ divσ sð Þ−pw gradnþ 1−nð Þρsbþ 1−nð ÞRs

nρw
d wð Þvw
dt

¼ divσ wð Þ þ pw gradnþ nρwbþ nRw

(28)

2.3 | Interaction laws

For a Darcy flow, R is given by:

R ¼ n2kw
−1 vw−vsð Þ ¼ nkw

−1w (29)

where kw is the permeability tensor. Its components have dimensions [kw]=L3TM−1. In case of isotropy, it is given by:

kw ¼ kin tr

μw
I (30)

where kin tr is the intrinsic permeability with dimensions L2 and μw is the viscosity of pore fluid. In geotechnical analysis,
the permeability is usually defined in a slightly different way as:

kw ¼ kwgρw (31)

where g is the acceleration of gravity. In this case, its dimensions are LT −1. Other alternatives2,9 can be used when the
relative velocity is larger:

R ¼ n 1−nð Þ
VTnm

ρs−ρwð Þg vw−vsð Þ (32)

where

VT
 is the terminal velocity of solid particles falling in the fluid

g
 the acceleration of gravity

m
 a constant
Please note that in both cases, we can express the interaction term as

R ¼ Cd vw−vsð Þ (33)

where Cd is

Cd ¼ n2k−1w Darcyð Þ (34)

or

Cd ¼ n 1−nð Þ
VTnm

ρs−ρwð Þg Andersonð Þ (35)

The equations describing the balance of mass and momentum for the mixture are, therefore, the same as those
proposed by Pitman and Le in 20052 in their 2‐fluid model. They have to be complemented by suitable constitutive
relations and kinematic equations relating velocities to rate of deformation tensors for both phases.
2.4 | The vs−vw−pw and vs−pw Biot‐Zienkiewicz models

The general model described by Equations 21, 23, 24, and 25 can be simplified in cases where velocities of both phases
are similar by assuming that
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d wð Þ

dt
≈

d sð Þ

dt
¼ d

dt
(36)

which implies that the term
wT

n
: grad is small. Taking 36 into account and adding up the balance of momentum

equations 24 and 25, the following balance of momentum for the mixture is obtained

ρ
dv
dt

þ nρw
d
dt

w
n

� �
¼ divσ'− gradpw þ ρb (37)

where ρ is the mixture density and v the velocity of the solid skeleton.
Moreover, if porosity is assumed to be constant, the resulting model is written in terms of the unknowns: vs , vw , σ',

and pw and consists of the following 4 equations: balance of mass of the mixture 21, balance of momentum of both the
mixture 37 and of the fluid phase 25, and a suitable constitutive equation relating the rate of deformation ds=gradsymvs
to the rate of effective stress tensors. The resulting model can be casted in terms of vs , vw and pw, hence its name.

In some cases,24,26 the relative velocity of the pore fluid can be eliminated. The resulting model is the much cele-
brated u−pw or vs−pw model which is found in most geotechnical finite element codes used today. The equations of
the vs−pw model are as follows:

(i) Balance of linear momentum equations for the solid and pore fluid can be combined using 36, which results on:

ρ
dv
dt

¼ divσ'− gradpw þ ρb (38)

(ii) From the balance of momentum for the pore fluid, the Darcy's relative velocity w is obtained as described before for
the general case:

1
Q
dpw
dt

þ divvs‐ div kw gradpwð Þ ¼ 0 (39)

where we have neglected1 the term div (−ρwb+ ρw(dv/dt)) because body forces will not depend in general on space coor-
dinates (except in centrifuge tests) and the space derivatives of accelerations are assumed to be small.

This model, proposed by Zienkiewicz and Shiomi in 19841 for the case of saturated soils, is referred to as u−pw and
consists of Equations 38 and 39, complemented by a constitutive relation for the soil and a kinematic relation linking the
velocities to the rate of deformation tensor. The model has been extended to unsaturated soils in Zienkiewicz et al,27

being worth mention25 by Lewis and Schrefler.
The original model was developed for solids, which were saturated with water. The authors have applied the model

for dry soils, with voids filled with air, to model the flowslide of Las Colinas caused by the first of 2001 earthquakes.
Collapse of a metastable soil caused the increase of air pressures, resulting on what it can be called dry liquefaction.11,28
2.5 | The two‐fluid vs−vw−pw depth averaged model of Pitman and Le

So far, we have considered three 3D continuum models which can describe flow of saturated geomaterials, the most gen-
eral being that of Equations 16 and 27, complemented by suitable constitutive/rheological and kinematic relations for
both phases, which can be applied to debris flows. It is important to notice that these equations describe both triggering
and propagation phase.

Debris flows propagate long distances, and the computational cost of a full 3D model can be very high. The problem
is similar to those found in coastal hydrodynamics and hydraulics engineering, where depth integrated models have
been used since the work of Barré de Saint Venant in 1871,29 as they provide a reasonable compromise between compu-
tational cost and accuracy.

Depth integrated models have been used to study landslide propagation since Savage and Hutter30 who proposed
their much celebrated 1D lagrangian model. Further research by Hutter and Koch,31 Hutter and co‐workers,32 and Gray
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and co‐workers33 extended it to more general conditions. It has been applied by many other researches,11,12,20-22,34,35

being worth mentioning the textbook by Pudasaini and Hutter.36 The interested reader will find in Hutter et al37 an inter-
esting account of the limitations of Savage‐Hutter and depth integrated models.

Regarding coupling with the pore fluid, pore pressures change, and so do effective stresses. In consequence, basal
friction and mobility of the soil mass will be much affected. Most of the models developed so far assume that velocities
of solid skeleton and pore fluid are similar (v−pw approximation). The first models addressing this issue are those of
Hutchinson,38 who proposed in 1986 a simple sliding‐consolidation mechanism for a block, Iverson39 and Iverson and
Denlinger.10 Wang and Hutter40 proposed a more general approach, based on mixture theory, in 1999.

We will show here how v−pw depth integrated models can be considered as a particular case of the 2‐fluid
vs− vw−pw depth averaged models.

We will use the reference system with axes {x1, x2, x3} sketched in Figure 1. Z will denote the basal surface elevation,
and h the depth of the flowing mass. Velocities will be denoted as {v1, v2, v3}, and sub indexes s and w will refer to solid
and fluid phases.

An over bar over a magnitude indicates it is a depth averaged value. For instance:

θ ¼ 1
h
ʃ Zþh
Z θdx3

We will define the mixture averaged velocity v

v ¼ 1−nð Þvs þ n vw (40)

and the “quasi material derivative” as:

d
dt

¼ ∂
∂t

þ vj
∂
∂xj

j ¼ 1; 2 (41)

Depth integration is performed taking into account Leibnitz's rule

b
a
∂
∂s
F r; sð Þdr ¼ ∂

∂s

b

a
F r; sð Þdr−F b; sð Þ∂b

∂s
þ F a; sð Þ∂a

∂s
(42)

After integrating along depth and applying 42 to the balance of mass equations 16, the following depth integrated
expressions are obtained:

d
sð Þ

dt
1−nð Þhð Þ þ 1−nð Þh divvs ¼ 1−nð Þ eR

d
wð Þ

dt
nhð Þ þ nh divvw ¼ neR

(43)
FIGURE 1 Reference system, coordinates, and notation used in the analysis [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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where eR is the erosion rate, defined as the increment of height of the moving soil per unit time. There are laws such as
that proposed by Hungr and coworkers41 in 2005, which relates it to the depth averaged velocity of the flowing material.
Both equations in 43 can be rewritten as:

d
αð Þ

dt
nα hð Þ þ nα h divvα ¼ nα eR or

d
αð Þ

dt
hαð Þ þ hα divvα ¼ nα eR

(44)

where

α ¼ s;wf g hα ¼ nαh

ns ¼ 1−nð Þ nw ¼ n
(45)

Above equations—without the erosion rates—have been proposed by Pitman and Le in their 2‐fluid model.2 If
velocities of solid and fluid particles are assumed to be similar, then 44 reads:

dh
dt

þ h divv ¼ eR (46)

where

dh
dt

≈
d

sð Þ
h

dt
≈

d
wð Þ
h

dt

Regarding the balance of momentum equations 24 and 25 for both phases, after integrating along depth (local x3
axis), we arrive to:

ρsh 1−nð Þd
sð Þ
vs

dt
¼ div hσ'ð Þ− 1−nð Þ grad hpwð Þ þ τb sð Þ þ 1−nð ÞhRs þ 1−nð Þρsbh− 1−nð ÞρsvseR

ρwhn
d

wð Þ
vw

dt
¼ −n grad hpwð Þ þ τb wð Þ þ nhRw þ nρwbh−nρwvweR

(47)

where we have introduced the shear basal stresses of the solid and fluid phases as:

τb i sð Þ ¼ −σi 3 sð Þ
��
Z τb i wð Þ ¼ −σi 3 wð Þ

��
Z (48)

In terms of the partial stress tensor, the balance of momentum for the solid phase is

ρsh 1−nð Þd
sð Þ
vs

dt
¼ div hσ sð Þ

� �
−hpw grad nð Þ þ τb sð Þ þ 1−nð ÞhRs þ 1−nð Þρsbh− 1−nð ÞρsvseR (49)

and, in terms of the total stress tensor 49 reads

ρsh 1−nð Þd
sð Þ
vs

dt
¼ div hσð Þ þ n grad hpwð Þ þ τb sð Þ þ 1−nð ÞhRs þ 1−nð Þρsbh− 1−nð ÞρsvseR (50)

One special case of interest is when stresses in the solid phase can be considered as hydrostatic and the pore fluid is
inviscid. If the pore fluid pressure is considered to be composed of an hydrostatic and an excess components, the latter
component denoted as Δpw, then the normal components of the total stress and the fluid partial stress σ(w) can be
written as:

σii ¼ 1−nð Þρs þ nρwð Þb3 h−x3ð Þ; i ¼ 1; 2; 3

σii wð Þ ¼ nρwb3 h−x3ð Þ−nΔpw; i ¼ 1; 2; 3
(51)

using 11 and 13, the normal components of the effective stress and the solid partial stress σ(s) can be written as:
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σii sð Þ ¼ 1−nð Þρsb3 h−x3ð Þ þ nΔpw; i ¼ 1; 2; 3

σ 'ii ¼ 1−nð Þ ρs−ρwð Þb3 h−x3ð Þ þ Δpw; i ¼ 1; 2; 3
(52)

After substituting in 49 the expression for the solid partial stress σ(s) that appears in 52, the depth integrated equation
for the solid phase reads:

ρsh 1−nð Þd
sð Þ
vs

dt
¼ grad

1
2
1−nð Þρsh2b3

� �
þ 1
2
ρwh

2b3 gradnþ τb sð Þ þ 1−nð ÞhRs þ 1−nð Þρsbh− 1−nð ÞρsvseR (53)

Similarly, after substituting the expression for the fluid partial stress σ(w) that appears in 51 the depth integrated
balance of momentum of the fluid phase 47 reads

ρwhn
d wð Þvw
dt

¼ grad
1
2
nρwh

2b3

� �
−

1
2
ρwh

2b3 gradnþ τb wð Þ þ nhRw þ nρwbh−nρwvweR (54)

As per expressions 53 and 54, it is clear that we have not considered the excess pore pressures, following Pitman and
Le.2 By excess pore pressures, we consider those in excess of the hydrostatic pressure, which is equivalent to assume that
permeability is very large. This is a limitation of the proposed model.

Balance of mass and momentum for both phases can be written in a more compact form as:

d
αð Þ

dt
hαð Þ þ hα divvα ¼ nαeR (55)

and

ραhα
d αð Þvα
dt

¼ grad
1
2
ραhhab3

� �
−

1
2
ραh

2b3 gradnα þ τb αð Þ þ hαRα þ ραhαb−nαραvαeR (56)

where α denotes the phase (s or w), nα being the volume fractions of solid and fluid phases (ns=1−n and nw=n), and
hα ¼ hna.

For convenience, from now on, we will drop the over bar, all magnitudes being depth integrated unless otherwise
stated.

Hydrostatic distribution stress components for the solid have been assumed, the more general case of active‐passive
Mohr‐Coulomb stresses proposed by Hutter32 being described in Pitman and Le2 Regarding the fluid, during depth inte-
gration, we have assumed a hydrostatic state as done for solids.

Equations 55 and 56 describe the evolution of height h, porosity n, and velocities of solid and fluid. The pore pressure
can be obtained from the balance of momentum equation for the fluid.
2.6 | Biot‐Zienkiewicz vs−pw depth averaged model

The aim of this section is to relate the general model described above to those used in the past by Swansea group, which
were derived from the general model. These 3D models have been extensively used in geotechnical codes. Here, we use a
depth integrated model derived from the more general 3D model, which is a generalization of previous works done by
the authors with the v−pw model.12,15

The general 2‐fluid depth integrated equations described above can be simplified if we assume, like in the vs−pw

model, that
d wð Þ

dt
≈

d sð Þ

dt
¼ d

dt
and neglect the acceleration of the fluid relative to the solid. Equation 44 results on:

dh
dt

þ h divv ¼ eR (57)
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While the balance of linear momentum equations yield, in a similar manner:

ρh
dv
dt

¼ 1
2
grad ρh2b3

� �þ τb þ ρhb−ρveR (58)

The basal shear stress depends on the rheological law used. In the case of a pure frictional material, it is given by

− ρs−ρwð Þ 1−nð Þhb3 þ Δpwbf g vs
vsk k tanϕb where ϕb is the friction angle and Δpwb the increment of pore water pressure

at the basal surface.
It is important to note that the effect of centripetal accelerations needs to be included. This can be done in a simple

manner by integrating along the vertical the balance of momentum equation assuming a constant vertical acceleration

given by v2=R, where v is the modulus of the averaged velocity and R the main radius of curvature in the direction of the
flow.
3 | A SPH MODEL FOR THE TWO ‐PHASE DEPTH AVERAGED MODEL OF
PITMAN AND LE

3.1 | Introduction

Problems in solid and fluid mechanics involve large deformations in many occasions. In the case of fluids, classical finite
element and FD techniques have been widely used in the past, using eulerian formulations. On the other hand, solids
have been studied using lagrangian finite element formulations. In both cases, special techniques have been necessary
to obtain the free surface or largely distorted meshes.

The situation has improved with the development of a new class of numerical methods that are not based on
meshes mdash;even if they can be used as an auxiliary tool—but on points or nodes, where functions and derivatives
are approximated. Among these methods, we can mention the diffuse element method,42 the element free Galerkin,43

the hp‐cloud method,44 the partition of unity method,45 the finite point method,46,47 MPM,48-52 and, finally, the SPH
method, which is the technique which will be described here.

SPH was introduced independently by Lucy53 and Gingold and Monaghan54 in 1977 for astronomical modeling.
Since then, it has been applied to model problems in hydrodynamics55, flow trough porous media,56 shallow water
flows,57-61 and avalanche propagation,12,22,23 just to mention a few representative cases. Good reviews can be found in
the textbooks like.62,63

SPH presents here the advantage of a much simpler determination of free surfaces and interfaces, avoiding special
techniques such as the Level Set.

In the case of solids, the main advantage is its lagrangian nature. Nodes carry information regarding all constitutive
information required by advanced models, while eulerian methods have to convect this information, loosing consistency.
For instance, the condition of the stress belonging to a yield surface depends both on the stress tensor and the history
parameters, which are convected separately. It is worth mentioning the contributions of Libersky and co‐workers,64,65

Randles and Libersky,66,67 Bonet and Kulasegaram,68 and Gray and co‐workers.69

Soils are a special case of solids where the solid skeleton is filled with pore fluids, which interact with it. SPH has
been applied to model coupling and failure problems of soils recently.17,70-72

Landslides, avalanches, and other similar phenomena can propagate long distances. In order to assess the risk and
propose measures, it is necessary to predict their velocity, height, and run out. 3D modeling of fast propagating landslides
requires in most cases a large computational effort. An interesting alternative combining a good accuracy with a more
affordable cost is using depth integrated models.

SPH based depth averaged models for landslide propagation have been used in Pastor et al,12 McDougall and
Hungr,22 and Rodriguez‐Paz and Bonet.23 An improved method for pore pressure dissipation, based on combining the
SPH nodes with FD 1D meshes associated to them, has been recently proposed by Pastor and co‐workers.15

The mathematical model proposed is basically the one proposed in 2005 by Pitman and Le,2 the originality being its
formulation using a SPH model. However, it is also truth that our equations include terms describing erosion, and these
terms were not considered in Pitman and Le 2005 formulation.

Here, we propose a new approach based on a double set of nodes to model debris flows. One set for the solid particles
and the other for the pore fluid.
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3.2 | SPH: Fundamentals and special problems

The SPH method is based on approximating functions and differential operators such as gradient or divergence by inte-
gral approximations defined in terms of a kernel. In a second step, these integral representations are approximated
numerically by a class of numerical integration based on a set of discrete point or nodes, without having to define any
“element”.

The approximation of a given function ϕ(x) is written as

ϕ xð Þh i ¼ ʃ
Ω
ϕ x'ð ÞW x'−x; hð Þdx' (59)

where W(x′− x,h) is referred to as the kernel of the linear functional, h being a parameter describing its decay. A special
class of kernels is that of functions having radial symmetry, ie, depending only on r:

r ¼ x'−xj j (60)

It is convenient to introduce the notation:

ξ ¼ x'−xj j
h

¼ r
h

(61)

The functions W(x,h) used as kernels in SPH approximations are required to fulfill the following conditions:

(i)

lim
h→0

W x'−x; hð Þ ¼ δ xð Þ (62)

(ii)

ʃ
Ω
W x'−x; hð Þdx' ¼ 1 (63)

Condition 63, which also follows from 62, can be interpreted as well as the ability of the approximation to reproduce
a constant or polynomial of degree zero (zero order consistency).

(iii) The kernel W(x'− x,h) is positive and has compact support

W x'−x; hð Þ ¼ 0 if x'−xj j ≥ kh (64)

where k is a positive integer which is usually taken as 2.
(iv) The kernel W(x'− x,h) is a monotonically decreasing function of ξ.
(v) The kernel is an even function with respect to ξ.

It is possible to show that, under the conditions specified above, the approximation is second order accurate, ie,

ϕ xð Þh i ¼ ϕ xð Þ þ O h2
� �

(65)

It is interesting to note that the integral approximation 59 is nothing but a linear functional, which is usually
denoted as

Th ϕ½ � ¼ ʃ
Ω
W x'; hð Þϕ x'ð Þdx' (66)

Moreover, it can be seen that the limit of Th[ϕ] as h tends towards zero

lim
h→0

Th ϕ½ � ¼ δ ϕ½ � (67)
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is the Dirac delta, which is a singular transformation. It is possible to write:

ϕ xð Þ ¼ ∫Ωϕ x'ð Þδ x'−xð Þdx' (68)

In the framework of SPH formulations, several kernels have been proposed in the past. Among them, it is worth
mentioning: (1) the Gaussian kernel54 and (2) the cubic spline.73,74 Concerning the integral representation of the deriv-
atives in SPH, we have:

ϕ' xð Þh i ¼ ʃ
Ω
ϕ' x'ð ÞW x'−x; hð Þdx' (69)

After integration by parts—in a 1‐dimensional problem—and taking into account that the kernel has compact sup-
port, 69 reads:

ϕ' xð Þ	 
 ¼ −ʃ
Ω
ϕ x'ð ÞW ' x'−x; hð Þdx' (70)

Classical differential operators of continuum mechanics can be approximated in the same way. We list below the gra-
dient of a scalar function, the divergence of a vector function, and the divergence of a tensor function:

gradϕ xð Þh i ¼ −ʃΩϕ x'ð Þ 1
h
W '

x'−x
r

dΩ with r ¼ x'−xj j (71)

div u xð Þh i ¼ −ʃΩu x'ð Þ grad WdΩ ¼ −ʃΩ
1
h
W '

u x'ð Þ: x'−xð Þ
r

dΩ (72)

div σ xð Þh i ¼ −ʃΩσ: grad WdΩ ¼ −ʃΩ
1
h
W '

σ: x'−xð Þ
r

dΩ (73)

These approximations of functions and derivatives are valid at continuum level. If the information is stored in a dis-
crete manner, for instance, in a series of points or nodes, it is necessary to construct discrete approximations. The SPH
method introduces the concept of “particles”, to which information concerning field variables and their derivatives is
linked. But indeed, they are nodes, much in the same way than found in finite elements or FDs. All operations are to
be referred to nodes. We will therefore introduce the set of particles or nodes with K = 1...N. Of course, the level of
approximation will depend on how the nodes are spaced and on their location. The classical finite element strategy of
having more nodes in those zones where larger gradients are expected is of application here.

As per the last paragraph, evaluation of an integral approximation like 59 can be performed using a numerical inte-
gration technique of the type:

ϕ xIð Þh ih ¼ ∑
N

J¼1
ϕ xJð ÞW xJ−xI ; hð ÞωJ (74)

where the information of the given function ϕ(x) is only available at a set of N nodes within the domain Ω. In 74, the sub
index “h” has been used to denote the discrete approximation, with ωJ denoting the weights of the integration formula—
which can be shown to be ωJ=ΩJ=mJ/ρJ, withΩJ ,mJ and ρJ being the volume, mass, and densities associated to node J.
In order to simplify the representation, the following notation is introduced:

ϕI ¼ ϕ xIð Þh ih ¼ ∑
N

J¼1
ϕ xJð ÞW xJ−xI ; hð ÞΩJ (75)
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Taking into account 64, that is to say, the kernel function has local support, then expression 75 reads

ϕI ¼ ϕ xIð Þh ih ¼ ∑
Nh

J¼1
ϕ xJð ÞW xJ−xI ; hð ÞΩJ (76)

Where xJ with J=1…Nh is the set of nodes fulfilling the relation |xJ− xI| < kh. In the case the function ϕ represents
the density, 76 becomes

ρI ¼ ∑
Nh

J¼1
ρJWIJ

mJ

ρJ

ρI ¼ ∑
n

J¼1
WIJ mJ

(77)

with WIJ=W(xJ− xI,h).
One interesting aspect of SPH is the existence of several alternative discretized forms for the differential operators.

For instance, the gradient of a scalar function can be approximated as (basic form):

gradϕI ¼ ∑
Nh

J¼1

mJ

ρJ
ϕJ gradWIJ (78)

and also by the following symmetrized forms

gradϕI ¼
1
ρI
∑
J
mJ ϕJ−ϕIð Þ gradWIJ (79)

gradϕI ¼ ρI∑
J
mJ

ϕJ

ρ2J
þ ϕI

ρ2I

� �
gradWIJ (80)

Sometimes, it is preferred to use a variant of this form, which is

gradϕI ¼ ∑
Nh

J¼1

mJ

ρJ
ϕI þ ϕJð Þ gradWIJ (81)

3.3 | Special problems

As any numerical method, SPH presents some problems which have to be taken into account as they can result on
unphysical oscillations and loss of accuracy.

(i) Boundary deficiency

Close to boundaries, the integration is carried out only over points belonging to the domain, and not over the whole
support of the kernel. If we have a body with constant density and we try to compute it at the boundaries, we obtain
smaller values. The problem was detected by Morris in 1985,75 and since then, several remedial techniques have been
proposed.62,67,76 We have applied normalization to nodes close to boundaries of wall type.

(ii) Stability

SPH presents, in materials with strength, the tensile instability problem, which consists of unphysical clumping
of particles from where the instability may grow.68 Swegle and co‐workers77 in 1995 described the problem in
2‐dimensional arrangements of particles and studied the stability, which was found to depend on the properties of the
kernel. To remediate the problem, several alternative methods have been proposed:

(i) Use of special kernel functions.75
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(ii) Introducing artificial stabilizing forces.69,78 Generally, this force is called artificial stress and consists on repulsion
when neighboring particles get closer

(iii) Adding a new set of stress points between the SPH nodes. The stress is calculated on the stress points using the
information of the SPH nodes, and the linear momentum is calculated on the SPH nodes from the stress points.
This method has been first proposed by Dyka for 1‐dimensional problems with the following SPH nodes arrange-
ment: 2 stress points for 1 SPH node.79,80 This method has been extended to 2‐dimensional problems by Randles
and Libersky.66,67

(iv) Blanc and Pastor have proposed recently17,18 a novel SPH algorithm which is an extension of the Taylor Galerkin
method proposed in Peraire et al81 and Donea et al82 and subsequently extended83 to solid dynamics problems. It
uses a double set of SPH nodes.

(v) Boundary conditions

Boundary conditions require special treatment in SPH. In addition to the boundary deficiency problem and the solu-
tions already mentioned, SPH practitioners use special virtual particles located at the boundaries. Monaghan intro-
duced84 in 1982 a first type of virtual particles, often referred to as “type 1 virtual particles”, which apply a repulsive
force on particles approaching the boundary, which prevents boundary penetration by them.

Libersky and co‐workers65 in 1993, and Randles and Libersky66 in 1996 introduced a second type of virtual particles,
which are located symmetrically respect to the real particle approaching the boundary.

These methods have been improved by Bonet and co‐workers85 in 2004 for cases where rigid boundaries are present.
In the case of shallow water waves, boundary conditions of absorbing and prescribed incoming waves are important

and have been studied by several researches.86,87

When dealing with solid walls, such as those impounding fluidized soils in dam break examples shown below, we
have applied a simple boundary condition which detects those nodes close to the wall, and filtering the velocity compo-
nent along the normal to the wall.
3.4 | Proposed SPH model

Following the procedure outlined in previous sections, we will introduce:

(i) 2 sets of nodes {xα K} with K=1 . .Nα where Ns and Nw are the number of SPH nodes in the solid and fluid phases,
(ii) The nodal variables

hαI
 heights of phases at node I

vα I
 depth averaged, 2D velocities

τbI αð Þ
 shear stress at the bottom
We will recall here for convenience the balance of mass and momentum equations 55 and 56:

d
αð Þ

dt
hαð Þ þ hα divvα ¼ nαeR

and

ραhα
d αð Þvα
dt

¼ grad
1
2
ραhhab3

� �
−

1
2
ραh

2b3 gradnα þ τb αð Þ þ hαRα þ ραhαb−nαραvαeR

If the 2D area associated to a general fluid or solid node I isΩI, we will introduce for convenience, a fictitious volume
mI with dimensions L3 moving with this node:

mI ¼ ΩIhI (82)

It is important to note thatmI has no physical meaning, as when node I moves, the material contained in a column of
base ΩI has entered it or will leave it as the column moves with an averaged velocity which is not the same for all
particles in it.
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The SPH approximation of the balance of mass equation for both phases is built from

dhα
dt

þ hα divvα

� �
¼ nαeRh i (83)

from which:

d
dt

hαh i þ hαh i divvαh i ¼ nαeRh i (84)

From now on, when possible, we will drop the sub‐indexes for the sake of simplicity. The equation is written at
node I as:

d
dt
hI þ hI divvh iI ¼ neRh iI (85)

where the divergence term is approximated as:

divvI ¼ −∑
J
ΩJvJ gradWIJ (86)

or

div vI ¼ −∑
J

mJ

hJ
vJ gradWIJ (87)

Of course, we could have used any alternative symmetrized form.
The discretized balance of mass equation is written as

dhI
dt

¼ −hI∑
J

mJ

hJ
vJ gradWIJ þ neRh iI Basic formð Þ

dhI
dt

¼ ∑
J
mJvIJ gradWIJ þ neRh iI 1st formð Þ

dhI
dt

¼ hI∑
J

mJ

hJ
vIJ gradWIJ þ neRh iI 3rd formð Þ

(88)

where we have introduced vIJ

vIJ ¼ vI−vJ

Alternatively, the height can be obtained once the position of the nodes is known as:

hI ¼ h xIð Þh i
¼ ∑

J
hJΩJWIJ

¼ ∑
J
mJWIJ

(89)

The height can be normalized, which allows improving the approximation close to the boundary nodes:

hI ¼
∑
J
mJWIJ

∑
J

mJ

hJ


 �
WIJ

(90)
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Next, we will discretize the balance of linear momentum equation

ραhα
d αð Þvα
dt

¼ −ρα grad Pαf g− 1
2
ραh

2b3 gradnα þ τb αð Þ þ hαRα þ ραhαb−nαραvαeR (91)
FIGURE 2 Two‐phase dam break

problem [Colour figure can be viewed at

wileyonlinelibrary.com]

FIGURE 3 Profiles of hs and hs+ hw at

times 0.5, 1.0, 1.5, 2.0, 3.5, and 6 seconds

[Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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where we have introduced the averaged pressure Pα ¼ −
1
2
hhab3. The left‐hand side of 91 results on:

ρIhI
d
dt
vI (92)

Depending on the symmetrized form chosen84,88,89 to discretize the gradients of the pressure and the volume
fractions, we obtain the following discretized forms of the balance of momentum equation:

d
αð Þ

dt
vαI ¼ ∑

J
mJ

PαI þ PαJ

hαIhαJ
gradWIJ þ∑

J
mJh

2
Jb3

nαI þ nαJ
hαIhαJ

gradWIJ þ 1
ραhαI

τb I αð Þ þ 1
ρα

Rα þ b−
1
hαI

nα vαeR (93)

d
αð Þ

dt
vαI ¼ ∑

J
mJ

PαI

h2I
þ PαJ

h2J

 !
gradWIJ þ∑

J
mJh

2
Jb3

nαI
h2I

þ nαJ

h2J

 !
gradWIJ þ 1

ραhαI
τb I αð Þ þ 1

ρα
Rα þ b−

1
hαI

nα vαeR (94)
FIGURE 4 Profiles of porosity at times 0 and 2 seconds (values at right and left ends are 0.39 and 0.69, respectively) [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 5 Two‐phase dam break problem over a horizontal plane (hs=4m hw=6m h=10m) [Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 6 Profiles of hs and hs+ hw at

times 0, 1.25, 2.5, and 5 seconds [Colour

figure can be viewed at wileyonlinelibrary.

com]

FIGURE 7 Profiles of hs, hs+ hw and

porosity at times 0, 1.25, 2.5, and 5 seconds

(no interaction) [Colour figure can be

viewed at wileyonlinelibrary.com]

PASTOR ET AL. 19

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


20 PASTOR ET AL.
The scheme is explicit, and we use a time step limit given by the CFL condition:

ΔtSPH ≤
hmin

max
ffiffiffiffiffiffiffi
ghI

p þ vIj j� �� � (95)

In above equations, there is a term describing basal excess pore pressure at node I ΔpwbI which has to be obtained at
each node and time step. One alternative is to use simple shape functions fulfilling boundary conditions at the surface
and the basal surface. This has been used by Iverson and Denlinger10 in 2001, Pastor and co‐workers,11,12,15,90 and
Quecedo and coworkers.20,21 This approach presents the limitation of not being able to model changes of boundary con-
ditions at the bottom. For instance, when a landslide runs over a very permeable basal layer—or a rack—pore pressure
becomes zero there, while in the body of the landslide is not zero. If a single shape function is used, once the basal value
is set to zero, the pressure becomes zero in the whole depth.
FIGURE 8 Profiles of hs, hs+ hw, and

porosity n at times 0, 0.25, 1, 2, and

3 seconds (no interaction, friction angle

87°) [Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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Here, we will not consider excess pore pressures, which will be assumed to be zero. A variable smoothing length
formula proposed in Benz91 is considered in the present work.

hIh
NDIM
SML I ¼ const (96)

where hSML I denotes the smoothing length at node I.
FIGURE 9 Front propagation for (1) dry material (2) mixture of soil and water with drag, (3) mixture without drag forces [Colour figure can

be viewed at wileyonlinelibrary.com]

Landslides B to D 

Landslide A

10 m high 
waterfall 

Sham Tseng 
San Tsuen 

Location of 
House No. 38

FIGURE 10 General view of the location (from Fugro Maunsell Scott Wilson Joint Venture92 with permission) [Colour figure can be

viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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The algorithm is explicit and less accurate than the approach proposed by Bonet and co‐workers85 in 2004, where
both the mass conservation equation and 96 were solved using a Newton Raphson algorithm.

So far, we have discretized the balance of mass 88 and the balance of momentum 93. The resulting equations are
ODEs which can be integrated in time using a scheme such as Leap Frog or Runge Kutta (second or fourth order).

In the cases we will show in the section devoted to examples and applications, we have used a classical Runge Kutta
fourth‐order algorithm.

One important issue is the representation of the terrain over which the avalanche moves, as it greatly influences the
results. If we denote by ZI the height of the terrain at node I, we have to obtain (1) its gradient gradZI and (2) the radius
of curvature along the tangent to the node path, which can be obtained from the second‐order derivatives of Z.

In the case of fast landslides, the terrain information is given on a digital terrain model (DTM), which consists on a
series of values (xk, yk,Zk) at the nodes of a structured grid. From here, we can obtain both gradients and second deriv-
atives at the grid nodes using a classical nodal recovery technique on a finite element mesh which nodes are those of the
DTM grid.

Concerning the neighbor search, we have used an auxiliary structured grid covering the part of the terrain where
the SPH particles are. Spacing is taken as the minimum smoothing length. For a given SPH node, search is restricted
to the cell it belongs and its neighbors. This temporary grid is valid only for a given time step. In cases where the
flow is elongated, the grid can be oriented automatically following the main inertia axes of the set of SPH nodes on
the plane.

Finally, regarding boundary conditions of wall type, we have used a wall boundary condition in the first 2 examples
which will be presented—the dams—but not in the practical application, as there were no walls nor obstacles. The
method we have used consists of (1) defining the wall by a set of wall particles, (2) make zero the normal velocity to
the wall if directed against it, and (3) normalize height of interacting nodes (see Equation 90).
4 | EXAMPLES AND APPLICATIONS

The purpose of this section is to illustrate the performance and limitations of the proposed 2‐phase debris flow SPH
model. Few are the papers published so far in this interesting topic. Following the work of Pitman and Le,2 Pelanti
and co‐workers90 and Pudasaini3 continued the research, presenting interesting tests.

It is important to know that no analytical solution has been proposed so far for this problem, the tests presented by
the authors mentioned above aiming to:

(i) Illustrate the mathematical features of the model
(ii) Simple tests showing the main features of the 2‐phase model, comparing them to those of dry materials—or even

with pure water.
FIGURE 11 Elevation of debris flow path (from Fugro Maunsell Scott Wilson Joint Venture92 with permission) [Colour figure can be

viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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We will go 1 step further, applying the model to a case of a real debris flow for which we have available information.
The section is structured as follows:

(i) First of all, we will consider a thought experiment where a complex set of shocks and rarefaction waves appear.
(ii) Then, we will analyze the case of breaking of a dam impounding a mixture of granular material and water.
(iii) Finally, we will consider the case of Tseng San Tsuen debris flow,91 which happened in Hong Kong.
FIGURE 12 Terrain topography showing the debris flow track (from Fugro Maunsell Scott Wilson Joint Venture92 with permission)

[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


24 PASTOR ET AL.
4.1 | Shocks and expansion waves

The first example we will study is illustrated in Figure 2. It consists of a domain enclosed by 2 walls located at x = −10 m
and x = 10 m filled with 2 masses having different heights and porosities:

hL ¼ 1:04 hsL ¼ 0:32 hwL ¼ 0:72 nL ¼ 0:69

hR ¼ 1:38 hsR ¼ 0:84 hwR ¼ 0:54 nR ¼ 0:39

We have depicted in the profile the total height h=hs+hw and the height of the solid fraction hs. The solid is assumed
to have no strength, with particles of density ρs=2000 Kg/m3 the water being inviscid. The interaction forces are given by
Anderson formula,

R ¼ −nRw ¼ 1−nð ÞRs

R ¼ Cd vw−vsð Þ
Cd ¼ n 1−nð Þ

VTnm
ρs−ρwð Þg

where we have chosen VT=1 . e− 3 m/s m=1.
FIGURE 13 Terrain topography and profiles of debris flow height at times 5, 10, 60, and 120 seconds [Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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This test has been used in Pelanti et al90 to show the complex pattern of rarefaction and shock waves in both solid and
fluid phases. Debris flows having 2 phases with important relative mobility present a rich structure of shocks and rare-
faction waves, which has to be properly modeled. Otherwise, the model will have numerical damping or dispersion.

At time zero, the wall separating both masses is removed. As soil and water have different heights, a complex pattern
of shocks and rarefaction waves is produced. This is depicted in Figure 3, where we show the profiles of total height and
soil fraction at times 0.5 , 1.0 , 1.5 , 2.0 , 3.5 , and 6 seconds.

Finally, we depict in Figure 4 the profiles of porosity at times 0 and 2 seconds.
4.2 | Breaking of a dam over a dry, horizontal basal surface

The second example we have selected is much more relevant, as it can be provide some insight on the propagation of
2‐phase debris flows. The initial conditions are depicted in Figure 5.

Please note that we have assumed that the granular soil has a friction angle of 45°, the basal angle of friction being
the same. The drag coefficients are the same used in the previous example.

The solution is depicted in Figure 6, where we provide the profiles of total height and soil fraction at times
0 , 1.25 , 2.5 , and 6 seconds.
FIGURE 14 Terrain topography and profiles of hw at times 5, 10, 60, and 120 seconds [Colour figure can be viewed at wileyonlinelibrary.

com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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It is interesting to solve the same problem assuming that no interaction exists between solid and fluids. Results of
total and solid phase heights together with the evolution of the porosity are shown in Figure 7. It is interesting to note
how water abandons the solid.

We will present next in Figure 8 a limit case where we have modeled the solid choosing a tangent of the friction angle
equal to 19, which is unrealistic, and we have not considered interaction between phases. This limit case represents a
debris flow having a very high—unrealistic—friction angle, such that the solid grains stop while water leaves the skel-
eton, the interaction force not being able to mobilize the solid. In Figure 8, the total height together with that of the solid
phase at times 0, 0.25, 1.0, 2.0, and 3.0 seconds can be observed. The evolution of the porosity is also shown in this figure.

Finally, we provide for all the dam break problems the propagation of the front along time. We have considered both
of the cases described in this subsection, together with the case of a dry granular material in Figure 9.

Dambreak exercises provide interesting information in simple and controlled situations. We can see how both phases
move relative to each other. From the simulations presented previously, we can see 3 cases of interest:

(i) That of a dry material, which presents the smallest runout (12 m)
(ii) The case of a mixture of soil grains—friction angle being 45°—and water, presenting a larger runout (35 m)
(iii) The case where interaction between phases is neglected. It can be observed how the solid phase stops (30 m) while

the water continues flowing.
FIGURE 15 Terrain topography and profiles of porosity at times 5, 10, 60, and 120 seconds [Colour figure can be viewed at

wileyonlinelibrary.com]

http://wileyonlinelibrary.com


FIGURE 16 Terrain topography and

path of debris flow showing profiles of

h= hs+ hw at times 10 and 120 seconds

[Colour figure can be viewed at

wileyonlinelibrary.com]
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4.3 | The Sham Tseng San Tsuen debris flow, Hong Kong

The debris flow we will consider here happened in Hong Kong on the 23rd of August 1999. This case is included in the
set provided by Hong Kong Geotechnical Office, which in 2007 organized a benchmarking exercise aiming to assess the
accuracy of numerical and constitutive models. The participants were provided a detailed digital terrain elevation map,
including the original position of the mobilized mass and the final position of the deposit. The information can be found
in Fugro Maunsell Scott Wilson.92

The event took place after an intense rainfall. Along the 24 hours before the event, rainfall was 479 mm. The debris
flow consisted on 600 m3 of channelized material, according to the report. It originated on 3 shallow landslides of which
one was much larger than the others. Indeed, the data provided included only this main source. At the end of the
channel, it destroyed a number of single storey buildings.

The picture from the data set is provided in Figure 10 displays the trail and the damaged buildings. Figure 11 provides
a profile along the debris flow track, and Figure 12 depicts a terrain map where both the initial leading landslide and the
track are shown.

From triaxial tests on the soils involved (loose to medium dense colluvium containing boulders and cobbles) and the
CDG soils, it was concluded that cohesion was zero and the friction angle ranged from 37° to 38°, for which we find
tanϕ'=0.75− 0.78.

It is interesting to notice that, according to the report,91 “... the distal end of the debris deposition had a
travel angle of about 24°... ”, much smaller than the friction angle found in laboratory tests. Moreover, in many
models, it was proposed to use effective friction angles with tanϕ'=0.35, much smaller than that measured in
laboratory.

In our analysis, we have assumed that friction angle is 31°. This value has been chosen as the one providing results
close to those observed in the field. It is important to notice that propagation is a dynamic process, for which the triaxial
results—valid for much lower strain rates—are not well known. Densities of soil particles, pore fluid, and mixture were
taken as 2400 kg/m3, 1000 kg/m3, and 2000 kg/m3. The drag law selected is the same described in the previous examples,
with VT=3.0e− 2ms−1 m=1.

We have used the data provided by Hong Kong Geotechnical Office, which included a digital terrain model including
a layer with the initial mass. We concentrated on the propagation phase, the proposed model being not able to reproduce
triggering. The initial heights ranged from 10 cm to 5 m approximately.

We present in Figure 13 the profile of h=hs+hw, in Figure 14, the profile of hw, and in Figure 15, the profile of
porosity at times 5, 10, 60, and 120 seconds.

Finally, the path of the debris flow is depicted in Figure 16 at times 10 and 120 seconds.
The discontinuities observed in the figures correspond to deposition of parts of the debris flows. The flow splits in

several sections during the propagation, and we observe 2 deposition regions, on top and on the bottom.
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5 | CONCLUSIONS

This paper has presented mathematical and numerical models which can be applied to reproduce the propagation of
debris flows, taking into account coupling between solid and fluid phases. The mathematical model is based on those
of Zienkiewicz and Shiomi,1 Le and Pitman,2 and Pudasaini.3 The main assumption is that the height of the flowing
material is fully occupied by both phases. Therefore, a material where only its lower part is saturated will not be consid-
ered here. The changes in porosities are a consequence of the relative movement of both phases, without any extra pore
pressure being generated.

The numerical models are of lagrangian type (SPH). We propose to use a double set of nodes (solid and fluid) which
can move relatively to each other. The drag depends on the relative velocity between phases. It is possible to find situa-
tions where the fluid abandons the body of the mixture using 2 set of nodes.

The rheological model used is of frictional type, without additional turbulent viscosity terms of Voellmy type, for
instance. The fluid has been assumed inviscid, which is a crude approximation of cases where it contains fine particles.
It is interesting to notice that the friction angles used are realistic, being close of those measured in triaxial tests.

The set of tests presented includes examples where we illustrate:

(i) The complex set of shock and rarefaction waves which can be produced in some cases.
(ii) The difference of behavior between dry materials and debris flows.
(iii) The possibility of a water abandoning the main mass.
(iv) A real case that happened in Hong Kong.
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