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A B S T R A C T

Background: Muscle activation level is currently being captured using impractical and expensive devices which
make their use in telemedicine settings extremely difficult. To address this issue, a prototype is presented of a non-
invasive, easy-to-install system for the estimation of a discrete level of muscle activation of the biceps muscle from
3D point clouds captured with RGB-D cameras.
Methods: A methodology is proposed that uses the ensemble of shape functions point cloud descriptor for the
geometric characterization of 3D point clouds, together with support vector machines to learn a classifier that,
based on this geometric characterization for some points of view of the biceps, provides a model for the estimation
of muscle activation for all neighboring points of view. This results in a classifier that is robust to small pertur-
bations in the point of view of the capturing device, greatly simplifying the installation process for end-users.
Results: In the discrimination of five levels of effort with values up to the maximum voluntary contraction (MVC)
of the biceps muscle (3800 g), the best variant of the proposed methodology achieved mean absolute errors of
about 9.21% MVC — an acceptable performance for telemedicine settings where the electric measurement of
muscle activation is impractical.
Conclusions: The results prove that the correlations between the external geometry of the arm and biceps muscle
activation are strong enough to consider computer vision and supervised learning an alternative with great po-
tential for practical applications in tele-physiotherapy.
1. Introduction

This paper tackles the problem of remotely estimating the level of
activation exerted by the biceps muscle when subjected to external forces
into a posture of isometric contraction. Our approach aims to solve the
problem for typical tele-physiotherapy conditions: indoors, controlled
lighting for the span of the study, easy-to-install hardware, and fast
calibration of the software. To achieve this, the proposed system auton-
omously estimates the discrete activation level based on computer vision
plus machine learning techniques when given 3D point clouds of the arm
captured by a commercial off-the-shelf RGB-D capturing device such as
the Microsoft Kinect™. The approach has been designed with easy
installation in mind, so emphasis has been given to producing estima-
tions that are robust to imprecise hardware mountings, so robust that the
system can be installed even by the patient (whenever the person's
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medical condition allows) with only a handful of training examples to
calibrate to different patients. The approach works under the principle
that the activation of a muscle is physically expressed by changes in the
geometry of the external (visible) muscle surface. It proposes a super-
vised learning approach, namely a support vector machine (SVM) [1,2], to
learn the mapping between the geometric features of the muscle surface
— characterized by the ensemble of shape functions point cloud descriptor
[3] computed for the point clouds of the muscle — and the activation
level for each patient's biceps muscle. A supervised learner provides the
benefit of generalizing to unseen situations — in this case a generaliza-
tion to new measurement viewpoints — caused by potential mis-
placements of the apparatus during setup at the beginning of each
exercise session, or by involuntary movements of the arm during the
measurement process.

The present work has been inspired by the recent growth in tele-
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medicine and tele-physiotherapy [4–7] and constitutes an attempt to
fulfill the need for remote muscle activation sensing [6–8]. Currently,
muscle activation is measured by electromyography (EMG) [9], a solu-
tion that although highly accurate, requires specialized, expensive, and
intrusive equipment dependent on complex installation procedures by
specialized personnel to attach electrodes to the body, thus strongly
limiting its practicality in many tele-physiotherapy exercises. Instead, the
proposed approach uses unobtrusive off-the-shelf equipment, no more
difficult to install and train than some console video-games, at the
expense of lower precision in the estimation of activation level, but
precise enough for many existing physiotherapy exercises. The literature
corroborates the existence of some physiotherapeutic exercises requiring
the monitoring of muscle activation at discrete values that allow some
rough level of imprecision, making them suitable for this approach.

One such exercise is that known as hold-relax, contract-relax and hold-
relax with agonist contraction, a set of important exercises in rehabilitation
programs [10]. In all these exercises, monitoring is required to control
the maximum intensity of muscle contraction as well as the duration of
muscle activation, avoiding efforts longer than the physician-prescribed
percentage of maximum voluntary contraction — MVC (the maximum
possible contraction that a subject can produce in the muscle by himself
with no external forces). At present, in tele-rehabilitation sessions with
this type of exercises, monitoring is circumscribed to human measure-
ment of muscle activation (e.g. the physiotherapist or even the patient),
as in most cases it is impossible to operate, or even in some cases
transport, an EMG for such simple monitoring scenario. As expected,
however, this human measurement is not only highly imprecise, but
when there is no assistant, it requires the patient to be worried about
monitoring the exercise, distracting him from the rehabilitation task. The
proposed approach is suitable to address such scenarios, where the sys-
tem could be calibrated to detect the maximum activation indicated for
the patient's treatment (and, possibly, some other intermediate activa-
tions for early warning purposes). This calibration could be done in the
presence of a trained assistant during the setup session and left to the
autonomous system to detect over-activation in future sessions.

A second case under consideration is a common clinical task in
rehabilitation consisting in the assessment of muscle health by using the
simple, well-known manual muscle test. This test consists in the therapist
measuring the contraction level of a muscle when subjected to pre-
defined, specific postures and movements. It is based on a subjective
grading system in which the level of contraction is measured grossly by
touching and feeling the muscle [11,12]. In a tele-health scenario, direct
touch is impossible, an EMG is not feasible in most cases, and verbal
transfer of subjective measurement based on an assistant's touch would
be highly inaccurate. The proposed method could provide a way to make
the remote execution of this test possible by calibrating the system with
the therapist's subjective perception of contraction during a first
face-to-face session between therapist and patient. Once calibrated, the
system could perform the measurements remotely from the patient's
home.

These two cases are just examples of the widespread use of muscle
activation in physiotherapy, stemming from the key role it plays in
modeling the biomechanics of the musculoskeletal human system, for
which it is required, together with joint kinematics and the kinetics
(external forces) exerted on the body [13–18]. Its importance for medical
care should not be understated, as these biomechanical models provide
the mechanical structures, laws, and phenomena essential for human
balance and movement, allowing the identification of harmful move-
ments, over-exertions, awkward postures, musculoskeletal disorders, and
optimal movements, among other states of the human body with a high
impact on health. This results in the application of this approach beyond
tele-physiotherapy in disciplines like occupational medicine [19], ergo-
nomics [20], and sports [21], among others.

An autonomous system for visual sensing of the activation level of
human muscles is an open problem with only a few published contri-
butions (described in some detail in Section 4) mostly focused on
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characterizing the visual aspects of muscle contraction. To the best of the
author's knowledge, however, no work has been done to use this infor-
mation in measuring muscle activation level. Some work has been per-
formed on autonomous visual sensing of other aspects of human
biomechanics, such as joint kinematics [22], presenting solutions so
advanced that there are even existing commercial applications [23,24],
and kinetics, which is currently an active line of research with several
ongoing efforts to achieve a final solution [25–31].

The rest of this paper is structured as follows. The methodology for
solving the problem is included in Section 2. Section 3 presents the ex-
periments performed for empirically proving the effectiveness of the
method. A discussion of results and a comparison of this work with other
related work is included in Section 4. Finally, conclusions and future
work are outlined in Section 5.

2. Materials and methods

The main component of the proposed method is a computational
procedure for the estimation of muscular activity based on a supervised
learning algorithm for mapping the geometric features of the muscle's
external surface to muscle activity. The following section introduces some
basic concepts and procedures of these technologies, followed by a
detailed explanation of the proposal for using them to solve the problem
of remote measurement of biceps activity.

2.1. Background knowledge

This sub-section presents the basics of the computer science tech-
nologies applied in this research necessary to understand how the
method works. Section 2.1.1 explains the functioning of supervised
machine learning techniques used to estimate activation levels. Finally,
Section 2.1.2 presents the operation of computer vision techniques used
to characterize the method's input point clouds.

2.1.1. Supervised learning
Supervised learning is a technology from the artificial intelligence

area that consists in learning multivariate, non-linear functions induc-
tively. This work uses classification methods whose functions map the
multivariate input to a discrete-valued variable usually referred to as
class. For instance, this work tackles the measurement of activation in
five discrete levels for which the corresponding classes are named with
the labels O0, O500, O1k, O2k and O4k, respectively.

Supervised learning algorithms construct this function through an
inductive process that takes as input a training set of possible inputs to the
function, that is, some assignment of all the variables in the function
domain paired with the value of the function for that input configuration
of the variables. Common names given to the value of the function are
label or ground-truth for that input vector. Most commonly, they propose a
family of parametrized models and work by searching the space of
possible parameter values, and therefore, the space of all models in the
family. This results in a model whose output better matches the expected
output signaled by the labels. Due to insufficient data or noisy labels, the
model learned may differ from the true underlying classifier. Since in
practice the underlying classifier is unknown, the learned model can be
evaluated by testing it empirically against some labeled examples left out
of the training set. Such set is called test set for obvious reasons. The
testing proceeds by running the classifier over each (labeled) example in
the test set and comparing the output produced by the learned model
(hereon called predicted label) for the nth example denoted by ~wn, with the
label representing the ground-truth value of the classifier (hereon called
true label) for the nth example denoted by wn. All these comparisons, one
per test example, are aggregated into different kinds of possible perfor-
mance measures that highlight different qualities of the learned model.
The present work considers the Mean Absolute Error (MAE) defined by:
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MAEðtestsetÞ ¼
Pjtestsetj

n¼1 jwn � ~wnj (1)
jtestsetj
That is, the absolute value mean of the differences between the true

and predicted weights. An advantage of using MAE as a performance
measure is that its value can be measured with the same physical
magnitude as the labels. As explained below, the proposed approach uses
weights for labels, so in this case, MAE would be measured in grams.
From this definition, better performances are reflected by smaller MAE
values.

Interestingly, the supervised learning models work regardless of the
strength of non-linearity and dimensionality of the function as well as
noise in the training set; for instance, input examples labeled incorrectly,
that is, paired with values that do not match the value of the function for
that input. Most of the learning algorithms require user given parameters
called hyperparameters to distinguish them from the internal parameter
that defines the configuration of the technique. Users selecting these
hyperparameters may result in underperformance. An alternative
approach used in this work, known as cross-validation tuning, is to infer
them by first splitting the training set into a smaller training set and a
validation set and iteratively navigating through a representative range of
hyperparameter values and to train a model for each value with the
training set, to then compute performance measures with the validation
set. The hyperparameters selected are those that produce the model with
the best average performance of the validation set, over all possible splits.

The proposed work suggests using one of the most effective shallow
classifiers: Support Vector Machines (SVM). SVM belongs to the family of
lazy classifiers that require the memorization of training examples, but in
the case of SVM, it requires only the memorization of a sparse set of
examples, called support vectors [1,2]. The algorithm proceeds by con-
structing a hyperplane that optimally separates the decision boundaries
for feature vectors of different classes. These feature vectors may have
been projected to spaces of higher dimensionality through a kernel
function, if they are not linearly separable in their own space. For this
work, the linear kernel was selected against two alternatives: radial basis
and polynomial kernels [2], discarded through preliminary experiments
(results not shown). Intuitively, a good separation that maximizes hy-
perplane generalization power is achieved by maximizing its margin,
defined as the perpendicular distance between decision boundaries. This
approach uses the SVM implementation provided in the caret package of
the R programming language. For the final version of the proposed
approach, a value of 0.002 was chosen for hyperparameter C — the
strength of the penalty for misclassified examples — obtained from
preliminary tuning.

2.1.2. Geometric descriptors
The proposed approach for supervised learning uses visual informa-

tion of the muscle surface as input. To produce a meaningful model,
however, one must transform the raw visual information, that is, the 3D
point cloud capture of the muscle surface, into a format with high
discriminative power. This is usually referred to as features — functions
of the raw input whose outputs are better and more compactly grouped
over classes. The best way to prove that the features produce a compact
grouping is to run a good supervised learning algorithm. Experimental
results later on show the empirical procedure for selecting the best out of
three pre-selected 3D geometric feature candidates: viewpoint feature
histogram (VFH) [32], clustered viewpoint feature histogram (CVFH) [33],
and ensemble of shape functions (ESF) [3]. These are well-known, widely
used geometric features that are also conveniently implemented in the
point cloud library [34] and are briefly described as follows.

2.1.2.1. Viewpoint feature histogram. (VFH) [32]: This descriptor repre-
sents the relative orientations of normals and distance between each
point and the point cloud centroid. These pairs are encoded with angles
between the normals at the considered points and the normal at the
centroid. Each of these angles and distances are binned into a histogram.
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2.1.2.2. Clustered viewpoint feature histogram. (CVFH) [33]: This
descriptor works by dividing the object in N disjoint smooth regions,
each of which is used to compute a VFH histogram. The approach behind
CVFH is to use object parts to build the coordinate system while still
using the whole view of the object to compute the descriptor. This
descriptor adds a shape distribution component that encodes information
about the relation of each point with the centroid of its corresponding
object region summarized for the entire object.

2.1.2.3. Ensemble of shape functions. (ESF) [3]: This descriptor is an
ensemble of ten histograms which summarize functions describing
characteristic shape and angle properties of the point cloud, resulting in a
vector of 640 variables. One group of variables is estimated by sampling
point-pairs from the point cloud and building a histogram of the distances
between them. Another group of variables is estimated by tracing the
lines between random samples of point pairs and summing them in a
histogram counting the number of lines on the surface of the point cloud,
off the surface of the point cloud, and partially on the surface of the point
cloud. The values of another group of variables are computed by
encoding into a histogram the angles between the two lines constructed
from three random points of the cloud. In like manner, the final group of
vector variables was built by encoding the surface area constructed with
triplets of points and counting their number on the surface, off the sur-
face, and partially on the surface of the point cloud.
2.2. The proposed approach

This section presents the proposed methodology for the non-invasive
estimation of biceps muscle activation level based solely on visual in-
formation about the external geometric features of arm deformation
when subjected to a discrete set of efforts.

A naïve approach would attempt a manual mapping between the
output of one geometric feature and the different activation levels
exerted by the muscle. However, not only it is almost impossible to
produce a manual mapping because of the large dimensionality of the
problem (the ESF feature vector has 640 dimensions), but this mapping is
also problematic due to the inherent noise of the signal (e.g., movements
of the arm, of the capturing device, illumination, among others). This
results in a non-trivial separation surface in feature space between the
subspaces corresponding to different activation values. This issue was
addressed through an autonomous learning algorithm, support vector
machines, specialized in automatically producing such a mapping, even
for complex separating surfaces. To produce good enough mappings, this
algorithm, as any other supervised learning algorithm, requires a mini-
mally sufficient number of labeled mapping examples. To achieve this, a
careful capturing setup must be designed to produce accurate and
simultaneous measurements of both parts of each example. In our sce-
nario this corresponds to capturing the geometrical features of the muscle
surface while the activation level is being measured.

To capture geometrical features, the proposed approach uses RGB-D
devices such as the Microsoft Kinect™ that produce the muscle surface
3D point cloud necessary to compute ESF geometric features. To produce
the activation measurement, one would immediately consider an EMG
measuring device attached to the biceps. This, however, presents several
shortcomings. On the one hand, the electrodes would clutter the image,
producing extra noise that hinders the mapping process. But most
importantly, in a practical tele-health application, the proposed approach
requires that the measurements for training the mapping algorithm be
produced for each new patient — even in remote scenarios — where the
transport and setup of an EMG would greatly increase the expertise level
of the required tele-health assistant. This approach, therefore, proposes
an alternative indirect activation measurement based on the fact that
some muscle rehabilitation exercises require isometric contractions of
the muscle [10], mainly after surgery, as a means of exercising the
muscles without forcing them into making a great deal of movement.
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These are static contractions of the muscle with no movements that
stretch or shrink it, with the person staying relaxed so that muscle
contraction is the minimum required to hold the desired effort. In such
cases, an external force, such as the weight of an object held by the hand,
would be transferred almost completely to the muscle, resulting in a
direct, monotonous increasing correlation betweenweight and activation
level of the muscle, as proven for instance in Refs. [35,36]. Thus, to
produce the mapping example, the 3D point cloud of the biceps muscle
was captured while the corresponding hand was holding weights of
known value. Those weight values were taken as a measure of the biceps
activation level. More details of the capture procedure specific to the case
of the biceps muscle are provided in the experimental section.

The procedure just described, although a great improvement over
manual or simplistic mappings, still presents an important shortcoming.
In practice, the training and later use of the trained system spans days or
even weeks, making it almost impossible to guarantee a precise align-
ment between the 3D point of view of the Kinect while producing the
training examples (required for the SVM to produce themapping) and the
3D point of view of the Kinect when it captures biceps 3D point clouds to
obtain the activation level later on in the rehabilitation process. This
results in a brittle system, since the values produced by all three geo-
metric features are sensitive to changes in point of view, which modifies
which parts of the surface are visible and which are occluded. This results
in rather large changes in the 3D point clouds. To address this serious
shortcoming, the approach proposes expanding the training base of the
supervised learning algorithm to a whole new set of points of view. Under
this new training scenario, the set of examples mapping to some given
weight is now expanded to include 3D captures of the muscle not from
one, but from a set of spatially neighboring points of view located within
a sphere, with the expectation that the learned model will now be robust
to measurements from all points of view within that sphere.

In practice, however, this proposal is quite demanding if not
completely unfeasible, as it would not only require that the patient
perform an enormous amount of weight lifting, most probably
completely counter-indicated by the physician, but also a cumbersome
re-positioning of the Kinect to all possible training points of view.
Therefore, the approach was extended to consider a simulated generation
of training examples which, based only on captures from a single point of
view, produces data points for all neighboring points in the sphere
through a simulation rather than actual captures. To do this, based on a
small set of 3D point clouds obtained by actual captures, 3D point clouds
were produced that would be observed from the new point of view by
detecting which parts of the arm should not be visible from that new
point of view and removing the corresponding 3D points from the orig-
inal capture. For this operation, the Hidden Point Removal (HPR) operator
presented in Ref. [37] was used. By computing point cloud geometric
features for these neighboring points of view and by attaching the cor-
responding weight of the original captures, a simulated training example
is obtained. In principle, new visible areas that now appear in the new
point of view should also be added. In this setup the problem was solved
by simply ignoring those extra areas. As this only discards useful infor-
mation, adding it back could only improve the quality of the model, so
the errors resulting from the model trained this way should be taken as an
upper bound.

The following section presents the experimental setup, where
different scenarios and user given choices for properties of the approach
were considered, proving the feasibility of the proposed approach for
practical applications.

3. Empirical evaluation

This section describes the experiments conducted to prove the
effectiveness of the proposed approach measured in terms of its practi-
cality for solving the problem of tele-physiotherapy, taking as a guiding
principle the two practical applications described in the introduction: (i)
the hold-relax, contract-relax and hold-relax with agonist contraction
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exercises that require the monitoring of over-contraction above a
therapist-specifiedmaximum value, typically indicated as a percentage of
MVC; and (ii) the manual muscle test that requires the subjective, touch-
based assessment of how much the muscle is contracted, measured at
discrete levels calibrated at the physician's interest values. In both cases
the measurement is on discrete activation values that range between no
contraction and MVC values. It is, therefore, a rough activation estimate
sufficient to improve a situation in which EMGs are an unfeasible alter-
native. To achieve this, five discrete activation values were considered,
produced by weights that roughly cover the range from no weight lifted
at the hand, only the weight of the forearm itself, to a weight at the biceps
muscle equivalent to the typical MVC. According to several studies [38,
39], the MVC of an adult biceps muscle ranges approximately from 200N
to 350 N. For the biceps to produce such a force through a weight at the
hand under isometric contraction (static scenario), one must equate the
torques produced by each (see Ref. [40] for details). With the hand at
roughly 30 cm and the biceps muscle at 4 cm from the elbow joint, there
is a factor of 7.5 between these forces for a static scenario corresponding
to isometric contraction. To this, one must add the weight of the forearm
itself (approximately 15 N) assumed to be applied 15 cm from the elbow
joint. This adds an extra torque in the same direction as the hand weight,
equivalent to 225Ncm. Such combination results in a force (weight) of
approximately ð350� 4� 225Þ=30 ¼ 39:16N or 3.9 kg at the hand to
produce 350 N of MVC at the biceps. Thus, five discrete levels were
considered within this weight range, roughly duplicating at each step:
0 g, 505 g, 1340 g, 1940g, and 3885 g each, hereon namedwith the labels
O0, O500, O1k, O2k and O4k, respectively. From the above discussion, it
can be inferred that a good performance of the method predicting these
values can be extrapolated to expect good results in practical cases.
However, further testing would be required before implementing this
approach in actual treatments.

The performance of the proposed approach, as any other supervised
learning algorithm, strongly depends on how well its training set repre-
sents the underlying mapping — in this case, the mapping between the
geometric features of the muscle surface and its level of activity. To assess
this performance, MAE (Eq (1)) is reported in grams for a representative
range of possible training scenarios that depend on several alternative
user choices. On the one hand, the choice of the point cloud descriptor
used to generate feature vectors of the training and testing sets— that is,
VFH, CVFH, or ESF —. On the other hand, choices relative to the simu-
lation based augmentation of the dataset: the point of view of the cap-
tures; the number n of original captures; the trainRadius of the sphere;
and the numberN of simulated neighboring points of view. Each scenario
relies on actual captures of the biceps subjected to efforts of some weight
held by the hand. Therefore, the next section explains how the captures
were produced, followed by two subsections that prove empirically for
which of these alternatives the learned mapping confirms its validity as a
practical muscle-activity measuring-process for tele-rehabilitation. One
shows results over the alternative geometric features, and the other over
the parameter for producing the augmented datasets.

3.1. Capturing setup

Using a Microsoft Kinect™ RGB-D camera, 3D point clouds were
captured from a frontal view of the biceps muscle (see Fig. 1) by posi-
tioning the Kinect at coordinate (0,0,-0.2), corresponding to 20 cm over
the negative Z axis and pointing towards the origin. All captures were
performed maintaining uniform illumination and scale conditions in a
posture restricted to ensure an isometric contraction of the biceps. The
subject was told to maintain the segment of the arm from the shoulder to
the elbow in an angle of approximately 45� with respect to the torso, and
as the segment of the arm from the elbow to the hand is in horizontal
position parallel to the floor plane (X axis), the shoulder-elbow segment
is also approximately 45� with respect to the X axis. The whole arm was
supported only at the shoulder by the back of a chair on which the subject
was seated.



Fig. 1. Capture setup.
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For each of the five weights, four bursts were captured using a tool of
the Point Cloud library [34] that captures 3D point clouds with the Kinect
at 30 fps. Ten seconds were captured for a total of 300 frames, from
which 25 were sampled at random, resulting in four groups of 25 3D
point clouds per weight. Three bursts per weight — i.e. 75� 5 ¼ 375
point clouds — were used to construct the captured training set. One
burst per weight — 25� 5 ¼ 125 point clouds — was separated for
constructing the captured testing set following the typical 75%� 25%
split.

Next, these 500 point clouds were post-processed manually seg-
menting out the points not corresponding to the biceps and moving the
resulting point cloud, so that the point in the biceps corresponding to the
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mid-distance between its extremes (elbow and shoulder) was located at
the origin of the coordinate system. To accelerate a laborious manual
segmentation, the same segmenting planes were chosen for all images of
the same burst. In the future, the segmentation process could be
automatized by applying algorithms of 3D object detection trained
through examples to locate the target detection object (in this case the
biceps) in the full point cloud of the scene [41,42].

In the next section, there follows an experiment for selecting the best
feature descriptor among the three considered.
3.2. Selection of geometric descriptor

As already mentioned, the best feature descriptor would be that with
the highest discriminative power, only measurable by comparing its
performance with some supervised learning algorithm. The natural
choice in this work is of course using the linear-SVM. To do this, MAEwas
evaluated obtained by the linear-SVM over the simulated training and
testing sets obtained from the 375 training captures and the 125 testing
captures, respectively, over 75 different points of view. Seventy-five
points were considered evenly distributed over a 40 cm by 40 cm by
20 cm grid within the prism enclosed by vertices (X¼ 20 cm, Y¼ 20 cm,
Z¼ � 20cm) down to the 3D point (X¼ � 20cm, Y¼ � 20cm,
Z¼ 0 cm), evenly distributed every 10 cm over the three directions.
Three pairs of training and testing examples per point of view were
produced, one for each of the three geometric features: VFH, CVFH, and
ESF. The experiments were also run with a four-fold cross-validation
tuning over hyperparameter C, considering the following as possible
values: C ¼ f2� 10�9;2� 10�7;2� 10�5;2� 10�3;2� 10�1;2; 2� 101;
2� 103;2� 105;2� 107;2� 109g.

Fig. 2 shows the difference in the MAE of VFH and CVFH descriptors
with ESF for each of the 75 points of view where bars over 0 g mean that
ESF performed better for the corresponding point of view. Fig. 2 (a)
shows that ESF performed better thant CVFH in most of the tested points
of view. Also Fig. 2 (b) shows that ESF obtained a better MAE than VFH in
almost all the tested points of view. Based on these results ESF was used
Fig. 2. (a) shows the difference of CVFH MAE minus
ESF MAE for each of the tested points of view; (b)
shows the difference of VFH MAE minus ESF MAE for
each of the tested points of view.



L. Abraham et al. Computers in Biology and Medicine 95 (2018) 129–139
as the geometric descriptor of choice for the remaining experiments.

3.3. Selecting optimal data-augmentation parameters

In the following experiments, learning scenarios over four possible
measurement points of view were considered as depicted in Fig. 1, with all
of them pointing to the origin of the coordinate system:

� (0,0,-0.2) corresponding to 20 cm in front of the biceps,
� (0,-0.2,-0.2) corresponding to 20 cm in front and 20 cm over the
biceps,

� (-0.2,0,-0.2) corresponding to 20 cm in front and 20 cm to the left of
the biceps,

� (0.2,0.2,-0.2) corresponding to 20 cm in front, 20 cm to the right, and
20 cm below the biceps.

To produce the training sets for these learning scenarios, the authors
started by n ¼ f1;2;3g of a total of three captured training bursts and
simulated n 3D point clouds for each of these measurement points of
view. Next, for each of these possible scenarios, the training set was built
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by augmenting the captured set through the simulation of new 3D point
clouds for points of view in the spatial surroundings of the original
captures. To do this, N points of view were sampled uniformly within a
sphere of radius trainRadius centered at the measurement point of view.
Then, for each of the N sampled points of view and each n training burst,
two point clouds were sampled from which two simulated point clouds
for that point of view were generated, resulting in 2� n� N simulated
point clouds per measurement point of view. Given all these simulated
point clouds, the training set was generated by computing the vector of
geometric features for each and appending them the weight lifted for
each case as ground-truth label. The following experiments report results
for different values of n, N, and trainRadius.

The test sets were also generated through a simulation stage, this time
using randomly two clouds of the fourth burst reserved for testing pur-
poses. However, in this case 100 points of view were sampled, not from a
sphere, but rather a circumference of radius testRadius centered at the
measurement point of view whose plane is perpendicular to the line of
vision, that is, the line that connects the location of the measurement
point of view with the origin of the coordinate system. This choice of
testing scenario is one that represents the expected errors in the place-
Fig. 3. Figures (a), (b), (c), and (d) show the MAE
mean for increasing values of n training bursts for
trainRadius ¼ 2cm and N ¼ 1000 over the four mea-
surement points of view.
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ment of the Kinect, for which distance is regarded as much easier to
guarantee than the angle. As for the training set, from all these simulated
point clouds, the test set was generated by computing the vector of
geometric features for each and appending them the weight lifted for
each case as ground-truth label.

3.3.1. Convergence over n and N
For the number of n bursts and N simulated points of view, both

influencing the size of the training set, convergence must be proven, from
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which one could conclude that enough training data points have been
produced. For n, a low convergence value is expected, as those bursts
must be captured manually for each of the patients, who often have some
sort of ailment. In contrast, the N simulated captures are obtained
computationally, so there is no major impact on the practicality of the
method for high N values. As shown below in detail, for all four mea-
surement points of view, convergence was reached for n ¼ 3 bursts and
over N ¼ 1000 in most cases, with both values within ranges that make
the approach practical.
Fig. 4. Figures (a), (b), (c) and (d) show the mean
and standard deviation of the MAE for a trainRadius ¼
2cm, increasing values of N over the four measure-
ment points of view, with five curves each corre-
sponding to the five testing scenarios.
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Fig. 3 proves empirically that three bursts of 25 captures each are
sufficient for convergence when the training set is augmented with N ¼
1000 simulated points of view in a sphere of trainRadius ¼ 2cm. The
figure shows 4 bar charts, one per measuring point of view, with each
showing the MAE for the three possible values n ¼ 1;2; 3 (represented in
bars of increasing shades of grey) over five testing scenarios for
increasing values of testRadius: 3 mm, 2 cm, 4 cm, 7 cm, and 12 cm. As
observed in Fig. 3, in all cases there is a marked decrease in MAE (quality
improvement) between one and two bursts, whereas no major
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improvement or even decrease in quality (mainly for large values of
testRadius) occurs between two and three bursts. This convergence is a
clear sign that more bursts would show no significant improvement.

Todecide howmanyN simulatedpoints of vieware enough, trainRadius
was also fixed to 2 cm and MAE was reported for an increasing number of
simulated training points of viewwithin the corresponding sphere, namely,
N ¼ f20; 50; 100;200; 300;400; 500;600; 700;800; 900;1000g for all
four measurement points of view. To further improve representativeness,
ten training sets perNwere generated. For each training set, amappingwas
Fig. 5. Figures (a), (b), (c), and (d) show the MAE
mean for increasing values of trainRadius over the
four measurement points of view, with five curves
each corresponding to the five testing scenarios.



Table 1
MAE and R2 of the approach for n ¼ 3 train bursts and trainRadius ¼ 2cm for the
best performing N for each testRadius (column TeR, reported in cms). Tables (a),
(b), (c) and (d) for each of the measurement points of view.

TeR N⋆ MAE R2

(a) Measurement POV¼ 0,0,-0.2

0.3 900 369:98ð7:31Þ 0:63ð0:01Þ
2 1000 406:20ð0Þ 0:6ð0Þ
4 900 406:62ð4:57Þ 0:6ð0Þ
7 400 468:55ð14:51Þ 0:52ð0:02Þ
12 600 585:53ð12:10Þ 0:39ð0:01Þ

(b) Measurement POV¼ 0,-0.2,-0.2

0.3 700 345:73ð15:42Þ 0:67ð0:01Þ
2 700 328:55ð11:73Þ 0:7ð0:01Þ
4 1000 344:60ð0Þ 0:68ð0Þ
7 1000 403:50ð0Þ 0:64ð0Þ
12 800 441:43ð9:34Þ 0:58ð0:01Þ

(c) Measurement POV¼�0.2,0,-0.2

0.3 1000 553:20ð0Þ 0:43ð0Þ
2 900 562:80ð3:5Þ 0:42ð0Þ
4 300 565:78ð17:5Þ 0:45ð0:02Þ
7 1000 574:95ð0:6Þ 0:43ð0Þ
12 900 701:76ð8:21Þ 0:25ð0:01Þ

(d) Measurement POV¼ 0.2,0.2,-0.2

0.3 800 344:98ð7:71Þ 0:6ð0:01Þ
2 800 381:12ð12:34Þ 0:56ð0:01Þ
4 300 441:20ð12:99Þ 0:5ð0:02Þ
7 900 527:02ð8:32Þ 0:41ð0:01Þ
12 400 701:68ð11Þ 0:13ð0:03Þ
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learned and tested for five scenarios of different testRadius: 3mm, 2 cm,
4 cm, 7 cm, and 12 cm. Fig. 4 shows the results of each of the four capture
points of view showing each of the five curves, one per testRadius. Each
figure plots MAE mean and standard deviation for each of the five testing
scenarios.

The immediate conclusion is that more data points indeed decrease
MAE, at least for small N, together with a convergence over approxi-
mately N ¼ 500 for which despite some minor oscillations, the MAE
mean remains constant. This corresponds to the fact that at approxi-
mately N ¼ 500, no further improvement in mapping quality can be
expected.

3.3.2. Impact of trainRadius on method performance
The experiments conducted so far fixed the trainRadius to a value of

2 cm. This section shows trends for increasing values of this radius, by
evaluating how spatially-expanded models learned from training sets
have an impact on measurement with potentially misaligned measuring
devices. Thus, a training set was produced for trainRadius ¼ f0;0:5;1:0;
1:5;2:0gcm. Amodel for each was learned and tested for five scenarios of
different testRadius: 3 mm, 2 cm, 4 cm, 7 cm, and 12 cm. For consistency
the same density of points per training sphere was maintained rather
than the same total number of points (resulting in a cubic increase in the
actual N, as volume grows with trainRadius3). N ¼ 1000 data points
were simulated for the largest value of trainRadius¼ 2 cm, and then they
were simply sub-sampled for the smaller spheres. There follows the MAE
for all four measurements points of view in Fig. 5, with each figure
containing one curve per testRadius ranging over all values of
trainRadius.

As it can be observed, for all four measurement points of view and all
testRadius in each figure, the curves show a clear tendency to reduce MAE
with increasing trainRadius, proving empirically that the spatial expan-
sion of the training set indeed produces a better mapping, as shown by
lower values of MAE. Moreover, only the figure corresponding to (�0.2,
0,-0.2) shows convergence, proving through all the other cases that there
may be further improvements for even larger spatial expansions of the
training set.

4. Discussion

The experimental results presented in Section 3 prove the existence of
correlations between the muscular effort and 3D images of the biceps
amenable for extraction by autonomous systems that are both non-
intrusive (no electrode or cumbersome apparatus required) and simple
enough to be easily installed by non-medical technicians to be operated
later on by the user. Moreover, the results of our experiments show that
this visual measurement approach is capable of finding discriminative
patterns between discrete levels of effort, ranging from zero to roughly
MVC, with errors low enough to compete with an EMG.

To further this argument, Table 1 shows the values of the above re-
sults for trainRadius¼ 2 cm and n ¼ 3 training bursts, the values for these
parameters that showed the best results in all cases, all measuring points
of view, and all testing scenarios. For each testRadius (column TeR in
Table 1), the table shows the performance measurement values at N⋆

—

the value of N with the best MAE. Although the problem tackled in this
work is one of classification, in order to be able to somehow compare the
results with previous similar works the coefficient of determination R2

was also calculated by transforming the classes to their values in grams as
for the MAE and reported it in this table. The table shows the best results
for the point of view of (0,-0.2,-0.2) (Table 1 (b)) corresponding to an
upper-front view of the biceps. We can see for this case that measure-
ments of up to 4 cm away from the measurement point of view would
incur in a MAE smaller than 350 g. On the contrary, measurements up to
12 cm away from the measurement point of view would incur in a MAE
smaller than 450 g.

Although no equal works that estimate activation level exclusively
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from 3D point clouds were found, the errors obtained by the proposed
method are equivalent to those reported for EMG force measurements
[43,44]. Considering that in the problem under study, the MVC corre-
sponds to the highest level of activation measured (class O4k) – a weight
of 3885 g — the errors obtained by this method are between 9% (350 g)
and 11% (450 g) of the MVC. Interestingly, these errors are equivalent to
those reported for EMG force measurements [43,44] that range between
9% and 10% of MVC values.

Similar to this work, there is a group of works that tackle the problem
of predicting muscle activity, but from kinematic and kinetic informa-
tion. Some of the most recent works of this group are [45–48]. The work
in Ref. [45] compares a linear logistic regression model with artificial
neural networks and other prediction models in the task of predicting the
activity of six muscles in the right lower extremity. As input to the
models, they provide joint angles and external forces. The best results
show a determination coefficient of 0.42 between the predicted and real
activity. In Ref. [46] artificial neural networks are tested to predict the
EMG activity of 12 arm muscles. Inputs to the models include hand po-
sition, hand orientation, and thumb grip force. The best results present a
determination coefficient of 0.6, and this measurement specifically for
the biceps is 0.5. In Ref. [47] regression equations are built to predict the
10th percentile, the median, and the 90th percentile of muscle activity
around the shoulder joint, given an arm posture and net shoulder mo-
ments. The determination coefficient of all regression equations ranges
between 0.228 and 0.818. Finally in Ref. [48] a multi-dimensional
wavelet neural network is proposed to predict human lower extremity
muscle activity based on ground reaction forces and joint angles. The best
results show a determination coefficient above 0.9.

For the reviewed works, kinematic information is highly informative
mainly because they analyze movement. However, it could be the case
that for the same posture or movement, the level of contraction may be
different, and using only kinematics to infer activation may fail. For this
reason, the mentioned works add external force information (kinetics) as
input to their models. Although direct force measurement is helpful, in a
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tele-physiotherapy setting like the one considered in this work, adding
force sensors could be an extra and impractical requirement to fulfill. To
avoid the need for these sensors, the proposed approach measures the
effect of external forces on activation in an indirect and non-invasive way
by considering the arm's surface deformation. Additionally, since static
postures are being analyzed including kinematic information, in this
approach the latter is not necessary as it is a constant value. However, if
movement were to be analyzed, kinetic information must definitely be
included.

Although these works estimate the continuous level of muscle acti-
vation, since the problem posed is one of classification, in order to be able
to somehow compare the results of this work with similar previous
works, the coefficient of determination R2 was calculated by trans-
forming classes to their values in grams as for MAE. For the best mea-
surement point of view (0,-0.2,-0.2) (Table 1 (b)), R2 values for each
testRadius are: R2 ¼ 0:67 for testRadius ¼ 0:3cms; R2 ¼ 0:7 for
testRadius ¼ 2cms; R2 ¼ 0:68 for testRadius ¼ 4cms; R2 ¼ 0:64 for
testRadius ¼ 7cms and R2 ¼ 0:58 for testRadius ¼ 12cms. The presented
works report determination coefficients between 0.228 and 0.9. Here it is
worth mentioning that exclusively for the biceps, the value obtained by
Ref. [46] was 0.5. On the contrary, the reported determination coeffi-
cient for the proposed work is between 0.58 and 0.7. With the exception
of some cases where these works report correlations above 0.7, the re-
sults of this method are comparable with those reported by the reviewed
works. These results are encouraging considering that, although discrete
levels for static postures are estimated, the task faced is more chal-
lenging. This consideration is based on the fact that kinematic together
with kinetic information define almost completely the value of muscle
activation, and is therefore, much more informative than geometric in-
formation only.

With regard to point cloud description, another group of works have
been dedicated to solving the problem of characterizing skin deformation
caused by underlying muscle contraction both from 2D [49,50] and 3D
images [51]. The problem solved by these methods differs from that
solved by the proposed method in that they do not attempt to estimate
muscle activation level, but rather seek to build a representation of
deformation due to muscle contraction, without prediction. From these
works, Ref, [51] is the closest to this approach since they also prove the
correlation of geometrical deformation of the arm's surface with under-
lying muscle activity, although they do not pretend to validate the
effectiveness of their proposed method to quantify and predict muscle
activation. The method proposed in this work to characterize arm
deformation could be used in the future as another way to characterize
the approach input point clouds.

From this analysis, it can be concluded that the work proposed in the
present study constitutes a positive result toward a practical measure-
ment of biceps muscle activation apparatus in the context of tele-
rehabilitation.

5. Conclusions and future work

This work presents the first steps towards the estimation of the arm
muscle activation level from biceps 3D point clouds using Computer
Vision and Machine Learning. Its main objective is the early exploration
of these technologies for the measurement of muscle activation level
remotely from external arm images in order to satisfy the requirements of
telemedicine settings. The solution to the specific problem tackled in this
work for measuring discrete levels of biceps activation in isometric
contraction could be put into practice with small improvements in the
monitoring of intensity and time of muscle contraction in biceps iso-
metric contraction tele-rehabilitation exercises and as a way to automate
the execution of the well-known manual muscle test for measuring biceps
strength. The proposed approach consists in a framework that considers
the generation of a feature vector for the point clouds of the muscle area
using the ensemble of shape functions 3D geometric descriptors for a
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given 3D image captured at some recommended point of view and its
spatial neighborhood. It also uses the training of a model for autono-
mously estimating the level of effort of new examples using the support
vector machine supervised machine-learning technique. These early re-
sults are the first steps in this line of research that aims to develop a new
technology for remote muscle activity sensing as a tool to improve
musculoskeletal system biomechanical sensing. One important finding of
this work is that spatially augmenting the amount and variability of
training data helps to increase estimation accuracy, or in other words,
helps to reduce the number of actual captures required for training a
model with enough accuracy. Although this is a solid first step toward
achieving a practical application in the future, the efficiency obtained is
limited to settings of isometric contraction and to the biceps muscle.

Future work will entail evaluating the methodology by applying deep
learned features instead of the hand crafted ones used in this work, or
even replacing the whole pipeline with a deep learning approach that
integrates the whole cloud characterization and model learning process
into one deep neural network. Alternatively, the proposed framework
could be tested using Ref. [51] as a feature to characterize the point
clouds.
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