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1  | INTRODUC TION

Insights about the suitability of a thermal landscape for a given 
species should consider not only average thermal values but also 
variability in thermal values (Bozinovic, Medina, Alruiz, Cavieres, & 
Sabat, 2016; Bozinovic, Sabat, Rezende, & Canals, 2016; Estay, Lima, 
& Bozinovic, 2014). Theoretical (Katz, Brush, & Parlange, 2005) and 
empirical studies (Easterling et al., 2000) have demonstrated that 
daily and seasonal variation in temperature affects organisms’ ecol-
ogy and fitness (Clavijo-Baquet et al., 2014; Gilbert & Miles, 2017; 
Kielland, Bech, & Einum, 2017; Messenger & Flitters, 1958; Roitberg 
& Mangel, 2016; Saarinen, Laakso, Lindström, & Ketola, 2018). In 
addition, thermal extremes, defined as events that alter the distri-
bution of ambient temperature without influencing the mean and 

the variance (Ummenhofer & Meehl, 2017), have also been shown to 
have outstanding effects on physiological performance and survival 
(Bozinovic, Medina, et al., 2016; Kingsolver & Woods, 2016).

Experimental studies have evaluated the effect of thermal vari-
ability on physiological and life-history traits and have shown that or-
ganisms can respond to thermal variability through plasticity, and such 
responses could affect current and future fitness (Bozinovic, Catalan, 
Estay, & Sabat, 2013; Chevin & Hoffmann, 2017; Colinet, Sinclair, 
Vernon, & Renault, 2015; Fischer, Klockmann, & Reim, 2014; Manenti, 
Loeschcke, Moghadam, & Sørensen, 2015; Meats, 2011; Terblanche, 
Nyamukondiwa, & Kleynhans, 2010). Further to this, multiple studies 
suggest that the ability to cope with thermal fluctuations rather than just 
tolerate different mean temperatures is probably of much greater impor-
tance to species survival and thermal adaptation (Boher, Trefault, Estay, 
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Abstract
Organismal performance in a changing environment is dependent on temporal pat-
terns and duration of exposure to thermal variability. We experimentally assessed 
the time-dependent effects of thermal variability (i.e., patterns of thermal exposure) 
on the hatching performance of Drosophila melanogaster. Flies were collected in cen-
tral Chile and maintained for four generations in laboratory conditions. Fourth gen-
eration eggs were acclimated to different thermal fluctuation cycles until hatching 
occurred. Our results show that the frequency of extreme thermal events has a sig-
nificant effect on hatching success. Eggs exposed to 24 hr cycles of thermal fluctua-
tion had a higher proportion of eggs that hatched than those acclimated to shorter (6 
and 12 hr) and longer cycles (48 hr). Furthermore, eggs subjected to frequent thermal 
fluctuations hatched earlier than those acclimated to less frequent thermal fluctua-
tions. Overall, we show that, egg-to-adult viability is dependent on the pattern of 
thermal fluctuations experienced during ontogeny; thus, the pattern of thermal fluc-
tuation experienced by flies has a significant and until now unappreciated impact on 
fitness.
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& Bozinovic, 2016; Dey, Proulx, & Teotónio, 2015; Kubrak, Nylin, Flatt, 
Nässel, & Leimar, 2017; Marshall & Sinclair, 2010). Environmental ther-
mal variability in space and time imposes selective pressures on organ-
isms (Bozinovic, Medina, et al., 2016; Clavijo-Baquet et al., 2014; Gould, 
1985; Levins, 1968), and performance can be affected by increased vari-
ability in temperature even if the mean temperature does not change 
(Bozinovic, Medina, et al., 2016; Cavieres, Bogdanovich, & Bozinovic, 
2016; Vázquez, Gianoli, Morris, & Bozinovic, 2017). Nevertheless, lit-
tle attention has been given to quantifying the effects of the duration 
and patterns of thermal exposure on ectotherm performance and fit-
ness (time-dependent effects sensu Kingsolver & Woods, 2016), but 
see Roitberg and Mangel (2016). According to Kingsolver and Woods 
(2016), theoretical and empirical studies of time-dependent effects are 
the necessary first steps for generating explanations and building strong 
predictions about the consequences of climatic change (Bozinovic & 
Pörtner, 2015; Koussoroplis, Pincebourde, & Wacker, 2017).

Overall, tolerance to extreme temperatures has been shown to 
differ depending on temporal scale of exposure (Nguyen, Bahar, 
Baker, & Andrew, 2014). For instance, Chidawanyika and Terblanche 
(2011) report increases of 70% in the survival of moths exposed 
to high temperatures for short periods of time (37°C/1 hr) (see 
also Khani & Moharramipour, 2009; Overgaard & Sørensen, 2008; 
Rozsypal, Koštál, Zahradníčková, & Šimek, 2013; Sinclair, Jaco Klok, 
Scott, Terblanche, & Chown, 2003). In addition, the response of or-
ganisms to thermal fluctuation can differ depending on the nature 
of thermal fluctuation. For example, Ketola, Kellermann, Loeschcke, 
López-Sepulcre, and Kristensen (2014) do not report significant 
effects of exposure to thermal fluctuations (with the mean tem-
perature remaining constant) on egg-to-adult viability in Drosophila 
melanogaster. Nevertheless, Bozinovic, Medina, et al. (2016) tested 
the effect of thermal change on fly survival and found 85% reduc-
tions in the survival of adult flies acclimated to thermal fluctuation 
involving changes in temperature variance. Also, in that study, no 
significant differences were found in the survival of fruit flies accli-
mated to thermal variability but with constant mean temperatures.

Given that thermal conditions impact individual performance, plas-
ticity, and survival, here we experimentally assess how thermal fluctu-
ation (i.e., thermal cycle duration) affects life-history and ultimately 
fitness to better understand how organisms cope with rapid environ-
mental changes. We used the fruit fly D. melanogaster from central 
Chile as an ectothermic model (see Methods). Earlier, this species has 
been used to test hypotheses about the impacts of thermal variabil-
ity on performance and fitness (Bozinovic et al., 2013). Furthermore, 
the phenotypic responses of this species to environmental tempera-
ture and other climatic factors are well known (Castañeda, Balanyà, 
Rezende, & Santos, 2013; Castañeda, Rezende, & Santos, 2015; 
Hoffmann, 2010; Ohtsu, Katagiri, Kimura, & Hori, 1993; Parkash, 
Aggarwal, Singh, Lambhod, & Ranga, 2013; Ragland & Kingsolver, 
2008). Thus, here, we determine the time-dependent effects of ther-
mal variation on fruit fly hatching performance. We hypothesized that 
the effect of thermal variability would depend on the frequency of 
exposure to extreme temperatures. In addition, we postulated that 
hatching success would decline with increasing frequency of exposure 

to extreme temperatures. Overall, it was thought that repeated sub-
optimal temperature shocks would induce stress in our animal model, 
and thus, fitness would decrease with increased exposure.

2  | METHODS

Adult D. melanogaster flies were collected in central Chile (33°26′S; 
70°39′W at 500 m above sea level) during summer 2016. After cap-
ture, flies were identified based on morphological characters (Markow 
& O’Grady, 2005) and from these, ten breeding groups were generated. 
Each group consisted of proximately 10 males and 10 females. Flies were 
reared in controlled conditions (24°C and LD = 12:12) in 250 ml glass 
vials with Burdick culture medium (Burdick, 1955). The groups were 
maintained for three generations. Third generation virgin flies were col-
lected within 8 hr of hatching and were transferred to vials containing 
11 g of culture medium. Two individuals (sex ratio 1:1) were maintained 
in each vial. After 24 hr, 20 eggs were collected from each vial using a 
microscope. These eggs were transferred in batch to fresh vials. Vials, 
each containing twenty eggs, were assigned to either the control group 
(28 ± 0°C) or to one of four thermal treatments that differed in the fre-
quency pattern of thermal fluctuation (28 ± 4°C). The frequency pattern 
of thermal fluctuation for each treatment was composed of cycles of (a) 
6 hr (n = 13 replicates); (b) 12 hr (n = 10 replicates); (c) 24 hr (n = 10 rep-
licates); and (d) 48 hr (n = 12 replicates). In all treatments, temperature 
increased linearly, reached the maximum temperature (32°C), remained 
constant, and then began to decrease until a minimum temperature 
(24°C) was reached. All cycles were repeated until egg-hatching was 
completed. The photoperiod for each treatment was LD = 12:12. The 
heating/cooling rate between the minimum and maximum tempera-
tures was 0.26°C/ min, allowing them to spend most of the treatment 
time in the maximum and minimum temperatures. The thermal fluc-
tuation range (28 ± 4°C) was set based on the well-known limits of fruit 
fly egg viability (Hoffmann, 2010). The proportions of hatching eggs in 
the upper (32 ± 0°C, n = 14 replicates) and lower (24 ± 0°C, n = 14 rep-
licates) thermal fluctuation treatments were 0% and 34%, respectively. 
Eggs were maintained in their respective treatments until hatching oc-
curred. Later, hatching performance was evaluated as the proportion of 
flies found in the replicate vials every 24 hr (i.e., accumulative hatching 
success within 24 hr) during a total period of 12 days; we quantified the 
amount of adults that successfully developed, yet we did not check for 
stages of development (e.g., larvae and pupae). In particular, we quanti-
fied (a) proportion of hatched eggs (total) and (b) hatching success over 
time. Normality and homoscedasticity assumptions were fulfilled using 
square root and exponential function transformations.

The proportion of hatched eggs was analyzed using a general lin-
ear model with a negative Binomial distribution. To analyze hatching 
success over time, we tested the effect of treatment and time until 
hatching (days) on the proportion of hatched eggs; the data were fit-
ted to a second-order fractional polynomial function. Then, a linear 
mixed model was generated for the longitudinal data; number of repli-
cates (random intercept) was nested in time until hatching (slope) and 
was included as a random effect. Differences among treatments were 
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tested using post hoc comparisons (Tukey tests). The statistical analy-
ses were carried out in R (R Core Team, 2017). The datasets analyzed 
during the current study are available in the Dryad Digital Repository.

3  | RESULTS

Egg viability differed significantly among treatments (Figure 1). In 
particular, the proportion of eggs that hatched was lower for flies 
acclimated to long (48 hr) and short (6 and 12 hr) thermal fluctuation 
timescales compared to flies subjected to control (0 hr) and moder-
ate (24 hr) timescales of thermal variability.

Compared to the control group, where 77% of eggs hatched, 
the proportions of eggs hatching in the 6, 12, and 48 hr treatments 
were 54%, 50%, and 48% (Figure 1, Table 1). In addition, hatching 
success over time differed significantly among treatments (Table 1, 
Figure 2); eggs in the 24 and 48 hr treatments hatched later than 
eggs in the control, 6, and 12 hr groups (Figure 2).

4  | DISCUSSION

Adaptation to varying thermal environments depends on the tem-
poral pattern of environmental changes and the tolerance of each 
phenotype (Levins, 1968). Thus, environmental variability in time 
and space imposes challenges on organisms (Gould, 1985) where 
animals that inhabit variable environments are expected to be plastic 
in order to survive a broad range of temperatures.

Some studies have evaluated the effect of thermal variabil-
ity on life-history traits, including developmental time (Ragland 
& Kingsolver, 2008), hatching success (Ji, Gao, & Han, 2007), and 
phenotypic characteristics of progeny (Estay, Clavijo-Baquet, Lima, 
& Bozinovic, 2011; Folguera, Bastías, & Bozinovic, 2009; Krams, 
Daukšte, Kivleniece, Krama, & Rantala, 2011; Orcutt & Porter, 1983; 

Paaijmans et al., 2010; Pétavy, David, Debat, Gibert, & Moreteau, 
2004; Williams et al., 2012). In nature, ectotherms must contin-
uously cope with short- and long-term environmental variation 
(Buckley & Huey, 2016; Grant et al., 2017; Kingsolver & Buckley, 
2017; Wingfield et al., 2017), and some organisms perform well 
and are highly tolerant to variable conditions (Angilletta, Wilson, 
Navas, & James, 2003; Condon, Cooper, Yeaman, & Angilletta, 2014; 
Seebacher, Ducret, Little, & Adriaenssens, 2015). On the contrary, 
other species deal with variability through thermal acclimation and/
or acclimatization (Terblanche et al., 2010). Knowing how fluctu-
ating thermal conditions affect individual performance and plastic 
responses is central for predicting organismal responses to climatic 
change (Kingsolver & Buckley, 2017; Koussoroplis et al., 2017).

Our key finding here was that frequency of thermal stress ex-
perienced by fly eggs affects hatching performance. Some studies 
that have assessed the impact of thermal fluctuations on egg-to-
adult viability have shown contrasting results (Manenti et al., 2015; 
Masel & Siegal, 2009), and most other studies have only considered 
intermediate scales of thermal fluctuation (e.g., 24 hr). Here, we ob-
served that hatching performance was higher in flies maintained in 
thermal treatments for 24 hr compared to the hatching performance 
of flies maintained in treatments for 6, 12, and 48 hr (Figure 2). In 
addition, eggs maintained in shorter cycles of thermal fluctuation 
(6 hr) hatched earlier than those that experienced longer cycles. 
As expected, repeated heat shocking negatively affected the per-
formance and fitness of our experimental flies. According to Ketola 

F IGURE  1 Proportion of hatched Drosophila melanogaster eggs 
acclimated to different timescales of thermal fluctuation (6, 12, 
24, 48 hr, and control [0 hr]). Different letters indicate significant 
differences between values. Data are reported as mean ±SE

TABLE  1 Coefficients of the linear and fractional polynomial 
models fitted to hatching performance of Drosophila melanogaster. 
Eggs were maintained in one of four treatments that differed in 
timescales of thermal variability (6, 12, 24, 48 hr, and control)

Effect Estimate SE T p

Proportion of hatched eggs

Intercept 0.77 0.04 16.82 <0.001

6 hr −0.23 0.06 −3.73 <0.001

12 hr −0.27 0.06 −4.06 <0.001

24 hr 0.06 0.06 1.01 0.77

48 hr −0.33 0.06 −5.14 <0.001

Hatching success over time

Intercept −5.32 0.59 −9.01 <0.001

Intercept 
(Control)

−9.55 1.03 −9.2 <0.001

6 hr −1.61 0.51 −3.12 0.002

12 hr −1.21 0.55 −2.21 0.035

24 hr −3.77 0.55 −6.86 <0.001

Time 6.21 0.60 10.31 <0.001

Time2 −0.04 0.003 −12.67 <0.001

6 hr × Time 0.71 0.23 3.08 0.002

12 hr × Time 0.52 0.24 2.12 0.035

24 hr × Time 1.72 0.24 6.98 <0.001

48 hr × Time 1.57 0.23 6.67 <0.001
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et al. (2014), the high performance of D. melanogaster in variable 
environments is explained by high average viability across environ-
ments and not by having high environmental robustness in terms of 
viability (i.e., low variation in viability across environments) (Ketola 

et al., 2014; Liefting, Hoffmann, & Ellers, 2009; Masel & Siegal, 
2009). In theory, when eggs are exposed to a high frequency of 
stressful temperatures (32°C; 6 and 12 hr treatments), reductions in 
hatching performance are probably a consequence of the increased 

F IGURE  2 Time that passed until Drosophila melanogaster eggs hatched. Eggs were acclimated to different frequency of thermal 
fluctuation (6, 12, 24, 48 hr, and control [0 hr]). Different letters indicate significant differences between values. Data are reported as 
mean ±SE
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energetic costs of maintenance and synthesis of heat-shock pro-
teins (HSPs; Chevin & Hoffmann, 2017; Cooper Brandon, Hammad 
Loubna, Montooth Kristi, & Robbie, 2014; Kafri, Metzl-Raz, Jona, 
& Barkai, 2016; Podrabsky & Somero, 2004); however, these costs 
were not assessed in this study. For instance, Krebs and Feder (1997) 
report that HSPs are biosynthesized and degraded nearly every 1.5 
and 4–6 hr, respectively (see also Sørensen, Nielsen, Kruhøffer, 
Justesen, & Loeschcke, 2005; Tomanek & Somero, 2000). Thus, fre-
quent events of high temperatures that cause physiological stress 
may cause organisms to have to reduce energy allocations to long-
term processes such as those involved in reproduction and hatching; 
hence, fitness could be negatively impacted. Also, increased ambi-
ent temperature could affect the circadian rhythms of hatching and 
locomotion in fruit flies (Rosbash et al., 1996). A similar hypothesis 
could be stated for longer times of exposure to high and stressful 
temperatures such as that experienced by flies in the 48 hr treat-
ment. Indeed, according to Roberts and Feder (2000) prolonged du-
ration of thermal exposure has negative effects on performance and 
fitness; specifically, chronic exposure to high temperatures reduces 
insect survival and rate of development (Kingsolver & Woods, 2016; 
Krebs & Feder, 1997).

Here, we have shown that thermal fluctuation significantly im-
pacts hatching success. Despite this, consequences to fitness may 
not only depend on the direct effects of extreme temperatures 
(Foray, Desouhant, & Gibert, 2014; Kostál, Renault, Mehrabianová, 
& Bastl, 2007), but environmental conditions experienced by par-
ents could affect performance and fitness in their offspring (Salinas 
et al., 2013). Thus, transgenerational effects can mediate the neg-
ative impacts of extreme events (Donelson, Salinas, L. Munday, & 
Shama, 2017; Donelson, Wong, Booth, & Munday, 2016; Mousseau 
& Dingle, 1991; Rodríguez-Romero, Jarrold, Massamba-N’Siala, 
Spicer, & Calosi, 2016). As a consequence, future studies that incor-
porate the thermal history of organisms are important to predict the 
probable evolution and/or acclimation capacities of thermal sensi-
tivity in nature.

Summarizing, variable and extreme environments are char-
acterized by the increased frequency and harshness of thermal 
events. Nevertheless, the definition of extreme environments in 
a biological context needs to consider the biological response of 
organisms to such extreme events. As suggested by Chevin and 
Hoffmann (2017), the definition of fluctuating and extreme en-
vironments is organism-specific, because a stressful environment 
to one organism or species may not be stressful or could even 
be benign to another species. At last, our results support the hy-
pothesis that hatching performance is dependent on patterns of 
thermal fluctuation experienced throughout ontogeny. This fact 
highlights the importance of incorporating thermal fluctuation in 
studies of phenotypic variation. Indeed, as demonstrated here, 
an understanding of the effect of the patterns of thermal expo-
sure on fly fitness is necessary for building predictions about the 
consequences of climatic variability (Bozinovic, Sabat, et al., 2016; 
Kingsolver & Woods, 2016). Although controlled experiments 
cannot capture the widespread range of thermal environments in 

nature, simple tests such as those presented here can shed light 
on the mechanisms involved in responses to thermal variability. 
Moreover, these types of experiments can shed light on the causes 
of phenotypic variation at different temporal and spatial scales as 
environmental temperature varies over time as well as across geo-
graphic gradients.
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