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Fernando Levstein and Linda Saal (Córdoba)

Abstract. Let Hn be the 2n + 1-dimensional Heisenberg group. We consider the
generalized Gelfand pairs (R∗nH1,R∗) and ((R>0×SO(n))nHn,R>0×SO(n)) for n ≥ 2.
We describe the spherical distributions corresponding to these pairs and we obtain inversion
formulæ in terms of them for the spaces of Schwartz functions on R2n and Hn. We use the
Tengstrand transform to compute the spherical distributions for n = 1 explicitly.

1. Introduction. Let G be a unimodular Lie group. Given a unitary
representation (π,H) of G on a Hilbert space H, a vector v ∈ H is called
a C∞-vector if πv : g 7→ π(g)v is a C∞ map from G into H. We denote by
H∞ the space of C∞-vectors endowed with a natural Sobolev topology that
makes it into a Fréchet space. For X in the Lie algebra of G, and v ∈ H∞,
we set

π(X)v =
d

dt

∣∣∣∣
t=0

π(exp tX)v.

The seminorms are defined by

pm(v) =
∑
|α|≤m

‖π(X1)α1 . . . π(Xk)
αk(v)‖H

where X1, . . . , Xk is a basis of the Lie algebra of G, and |α| = α1 + · · ·+αk.

H−∞ will denote the antidual space consisting of continuous conjugate
linear functionals on H∞. Thus H∞ ⊂ H ⊂ H−∞. The elements of H−∞
are called distribution vectors. The action of G on H∞ gives a corresponding
action on H−∞,

〈π−∞(g)φ, v〉 = 〈φ, π∞(g)v〉, g ∈ G, φ ∈ H−∞, v ∈ H∞.
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Let K ⊂ G be a closed unimodular subgroup and let

H−∞1 = {φ ∈ H−∞ : π−∞(k)φ = φ for all k ∈ K},

the space of distribution vectors fixed by K. Then a pair (G,K) is called a
generalized Gelfand pair if for each irreducible unitary representation (π,H)
of G the space H−∞1 is at most one-dimensional (see for instance [vD]).

We recall that when K is compact and (G,K) is a Gelfand pair, a spher-
ical function ζ of positive type is written as

ζ(g) = 〈π(g)v, v〉,

where π is an irreducible unitary representation of G and v is a vector fixed
by K.

WhenK is no longer compact and π admits a distribution vector φ ∈ H−∞1

fixed by K, then, for f smooth on G, we have π−∞(f)φ ∈ H∞, and so we
can associate to φ the distribution

(1) Φπ(f) = 〈φ, π−∞(f)φ〉.

This is a positive type K-biinvariant distribution on G, and since π is ir-
reducible, it is an extremal point of the cone of positive type K-biinvariant
distributions onG (see [F]). Following Molchanov [Mo], we call Φπ a spherical
distribution.

In this work we will consider pairs (KnHn,K) (also denoted by (K,Hn)),
where Hn denotes the 2n + 1-dimensional Heisenberg group. For n ≥ 2,
K = R>0 × SO(n) and the action considered is

(r,A).(x, y, t) = (rAx, r−1Ay, t) for r ∈ R>0, A ∈ SO(n).

For n = 1,K = R>0 ×O(1) ' R∗ and the action is

r.(x, y, t) = (rx, r−1y, t) for r ∈ R∗.

With these actions the corresponding K nHn are unimodular.

In [LS2] it was shown that for n ≥ 2, (KnHn,K) is a generalized Gelfand
pair. There it was mistakenly stated that (R>0 nH1,R>0) is a generalized
Gelfand pair.

In Section 2 we will see that if we consider instead K = R>0 × O(1),
then (K nH1,K) is a generalized Gelfand pair.

In Section 3 we consider the pairs (K nHn,K) for n ≥ 2, and describe
the spherical distributions attached to vector distributions fixed by K. These
spherical distributions depend on a fundamental parameter λ, representing
a character of Hn in the central variable t. We obtain inversion formulæ in
terms of them for the spaces of Schwartz functions on Hn and R2n.

Finally in Section 4 we develop the spherical analysis related to (R∗, H1)
by using the Tengstrand transform.
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2. Preliminaries. Let us consider the Heisenberg groupHn = {(x, y, t) :
x, y ∈ Rn, t ∈ R} with multiplication given by

(x1, y1, t)(x2, y2, s) =
(
x1 + x2, y1 + y2, t+ s+ 1

2(〈x1, y2〉 − 〈y1, x2〉)
)

where 〈x, y〉 denotes the standard inner product on Rn.
The irreducible unitary representations of Hn which are non-trivial on

the center are determined up to equivalence by their central characters,
and thus parametrized by λ ∈ R∗. A realization of them is given by the
Schrödinger model defined on Hλ = L2(Rn) and denoted by (πλ,Hλ). For
those acting trivially on the center, there is a correspondence with the char-
acters χξ,η of R2n, ξ, η ∈ Rn.

The natural action of Sp(n,R) on R2n extends to an action on Hn by
automorphisms fixing every element of the center. For k ∈ Sp(n,R), let
πkλ(x, y, t) = πλ(k(x, y), t) for (x, y, t) ∈ Hn. Then πkλ is equivalent to πλ and
there exists a unitary operator ω(k) that intertwines πkλ and πλ. This defines
a projective representation of Sp(n,R) on L2(Rn), called the metaplectic
representation.

For n = 1 the group K is R∗ and acts by the automorphisms r.(x, y, t) =
(rx, r−1y, t) for r ∈ R∗, and ω(r)f(x) = |r|−1/2f(r−1x).

For n ≥ 2, the group K = R>0 × SO(n) acts on Hn by (r,A).(x, y, t) =
(rAx, r−1Ay, t) for r ∈ R>0, A ∈ SO(n), and

ω(r,A)f(x) = r−n/2f(r−1g−1x)

gives a well defined unitary representation of K.
Let K̂ be the set of irreducible unitary representations of K up to equiv-

alence. According to Mackey’s theory (see [Ma]), the elements of K̂ nHn

are of two types:

• πλ,τ (k, h) = τ(k)⊗ ω(k)πλ(h) where k ∈ K, h ∈ Hn and τ ∈ K̂,

• ρξ,η = IndKnHn
Kξ,ηnHn(σ⊗χξ,η) where Kξ,η is the stabilizer of (ξ, η) in K and

σ ∈ K̂ξ,η.

This second type corresponds precisely to K̂ nR2n.
Since K is reductive, any unitary representation π decomposes in a

unique way into a direct integral of irreducible unitary representations,

π =
�

K̂

mπ(τ)τ dµ(τ),

where µ is a Borel measure on K̂ and mπ : K̂ → N∪{∞} is the multiplicity.
Recall that a unitary representation of a group K on a separable Hilbert

spaceH is multiplicity free if the ring of continuous endomorphisms commut-
ing with K, EndK(H), is commutative [K, pp. 503–504]. Also, the following
are equivalent:
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(i) EndK(H) is commutative.

(ii) mπ(τ) ≤ 1 for µ-almost all τ ∈ K̂.

Notice that πλ,σ has a distribution vector fixed by K if and only if σ
appears in the decomposition of ω|K [MT, Th. 2.1]. Moreover, by using
Frobenius reciprocity, it is not difficult to see that (K,R2n) is always a
generalized Gelfand pair. Thus (K,Hn) is a generalized Gelfand pair if and
only if ω|K is multiplicity free [MT, Prop. 3.1 and Th. 3.2].

For n ≥ 2, (K,Hn) is a generalized Gelfand pair since, for ω the meta-

plectic representation, ω↓Sp(n,R)
SO(n)×R>0

=
⊕

k

	∞
−∞ τk⊗s

iα−n/2 dα, where (τk, Yk)

denotes the irreducible representation of SO(n) on the space of spherical
harmonics of degree k.

We can show now that (R∗, H1) is a generalized Gelfand pair.

Proposition 1. The metaplectic action on L2(R) is multiplicity free
with the decomposition

(2) L2(R) =

∞�

−∞
|x|iα−1/2 dα⊕

∞�

−∞
sg(x)|x|iα−1/2 dα.

Proof. According to Mackey, the representations of G = R∗ n H1 are
either induced by characters of H1 or given by

πλ,α(s, (x, y, t)) = |s|iαπλ(x, y, t)ω(s)

where πλ is the Schrödinger representation of H1 and (ω(s)f)(x) =
|s|−1/2f(s−1x). Hence, for fα(x) = |x|iα−1/2 we have ω(s)fα = |s|−iαfα.

The Mellin transform is the Fourier transform adapted to R>0, and it is
defined by Mf(λ) =

	∞
0 f(s)siλ ds

s . The action of R>0 on L2
(
R>0,

ds
s

)
given

by δtf(s) = f(t−1s) decomposes, via the Mellin transform, as

L2

(
R>0,

ds

s

)
=

∞�

−∞
Fλ dλ

where Fλ is the C-vector space generated by siλ [Ta, p. 168].

Let Ψ be an even function. For u ≥ 0 let g(u) = u1/2Ψ(u). Then

g(u) =

∞�

−∞

(∞�
0

g(v)viα
dv

v

)
u−iα dα.

Thus

Ψ(u) =

∞�

−∞

(∞�
0

Ψ(v)viα−1/2 dv

v

)
u−iα−1/2 dα ∀u ≥ 0.
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Analogously, for u < 0,

Ψ(u) = Ψ(−u) =

∞�

−∞

(∞�
0

Ψ(v)viα−1/2 dv

v

)
(−u)−iα−1/2 dα

=

∞�

−∞

( 0�

−∞
Ψ(−w)(−w)iα−1/2 dw

−w

)
(−u)−iα−1/2 dα.

Since Ψ is even and Ψ = Ψχ(0,∞) + Ψχ(−∞,0), we obtain

Ψ(u) =

∞�

−∞

( ∞�
−∞

Ψ(v)|v|iα−1/2 dv

|v|

)
|u|−iα−1/2 dα.

For Ψ odd, we apply the formula obtained above to the function Φ(u) =
sg(u)Ψ(u) and obtain

Ψ(u) =

∞�

−∞

( ∞�
−∞

Ψ(v)sg(v)|v|iα−1/2 dv

|v|

)
sg(u)|u|−iα−1/2 dα.

Since any function can be written as the sum of an even function and an
odd function, the proposition follows.

Remark 2. Let fα(x) be as above and let gα(x) = sg(x)|x|iα−1/2. Then
fα and gα are distribution vectors fixed by σλ,α|R>0 but only fα is fixed
by σλ,α|R∗ .

Remark 3. ω(s)fα = |s|−iαfα and ω(s)gα = sg(s)|s|−iαgα.

Remark 4. The set of characters of R∗ is {|s|−iα, sg(s)|s|−iα}.
Remark 5. If K is compact and (G,K) is a Gelfand pair, then (G,K0)

is also a Gelfand pair, where K0 denotes the connected component of K. In
the non-compact case, the pair (R∗, H1) gives an example of a generalized
Gelfand pair such that the connected component of R∗ does not give a
generalized Gelfand pair. Indeed, according to the decomposition (2) and
Remark 2, the metaplectic representation is not multiplicity free.

3. Spherical analysis on (R>0 × SO(n), Hn) for n ≥ 2

3.1. K-invariant distribution vectors attached to πλ,τ . Let K =
R>0 × SO(n) and G = K n Hn. Recall that G is the set of pairs (k, h) ∈
K × Hn with product given by (k1, h1)(k2, h2) = (k1k2, h1(k1 · h2)), where
the dot denotes the action of K on Hn.

We observe that a K-invariant distribution φ on Hn gives rise to a K-
biinvariant distribution Φ on G by the rule

(3) 〈Φ, f〉G = 〈φ, f0〉Hn , where f0(h) =
�

K

f(k.(eK , h)) dk.
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Conversely, let Φ be a K-biinvariant distribution on G. Since the map
(k, h) 7→ (eK , h)(k, eHn) is a diffeomorphism, the composition gives a distri-
bution Ψ on K ×Hn, which is right K-invariant. Thus Ψ = 1⊗ φ with φ a
K-invariant distribution on Hn. Moreover Φ is of positive type if and only
if φ is.

Thus the spherical distributions are the extremal points of the cone of
K-invariant distributions of positive type on Hn (see [F]).

For λ 6= 0, we denote by (πλ, Hλ) the Schrödinger representation of Hn.
We recall that H∞λ is the Schwartz space S(Rn), and thus H−∞λ is S′(Rn).

Let K be a compact subgroup of Sp(n,R) such that (K,Hn) is a Gelfand
pair. When λ 6= 0, the set of spherical functions can be given by {ϕλ,τ (h) =
trπλ(h)|Vτ }, where (τ, Vτ ) is an irreducible representation of K that appears
in the multiplicity free action of K on Hλ.

In our case, K is not compact but we will obtain a similar formula.
In [LS1] it was proved that the algebra of polynomials invariant under the
action of K on R2n is generated by

s(x, y) = 〈x, y〉 and q(x, y) = x1y2 − x2y1 for x = (x1, x2), y = (y1, y2)

when n = 2, and by

s(x, y) = 〈x, y〉 and q(x, y) = |x|2|y|2 for x = (x1, . . . , xn), y = (y1, . . . , yn)

when n ≥ 3.
Let {X1, . . . , Xn,Y1, . . . , Yn, T} be the standard basis of the Lie algebra

of Hn, that is, [Xj , Yj ] = T and all other brackets are zero.

Lemma 6. Let E =
∑n

j=1 YjXj, ∆X =
∑n

j=1X
2
j and ∆Y =

∑n
j=1 Y

2
j .

Then the algebra of left K-invariant differential operators on Hn is generated
by T , E and X1Y2−X2Y1 when n = 2, and by T , E and ∆X∆Y when n ≥ 3.

Proof. Let σ be the symmetrization map. By a well known result [V,
p. 180], the algebra of left K-invariant differential operators on Hn is gen-
erated by T , σ(E) and σ(∆X∆Y ) when n ≥ 3, and by T , E and σ(X1Y2 −
X2Y1) = X1Y2 −X2Y1 when n = 2. Thus we can assume n ≥ 3.

Since XjYj − YjXj = T, we have

σ
( n∑
j=1

XjYj

)
=

n∑
j=1

YjXj +
n

2
T.

So

(4) σ(E) =
n

2
T + E.

Now, since Xj commutes with Yi when i 6= j,

(5) σ(∆X∆Y ) =
∑
i 6=j

X2
j Y

2
i + σ

( n∑
i=1

X2
i Y

2
i

)
.
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We will use the following identities:

(i) XiYiXiYi = X2
i Y

2
i −XiYiT.

(ii) YiXiXiYi = XiYiXiYi−XiYiT = X2
i Y

2
i − 2XiYiT, where in the second

equality we use (i).
(iii) YiXiYiXi = YiXiXiYi − YiXiT = X2

i Y
2
i − 2XiYiT − (XiYiT − T 2) =

X2
i Y

2
i − 3XiYiT + T 2, where in the second equality we use (ii).

(iv) YiYiXiXi = YiXiYiXi−YiXiT = X2
i Y

2
i −3XiYiT+T 2−(XiYiT−T 2) =

X2
i Y

2
i − 4XiYiT + 2T 2, where in the second equality we used (iii).

(v) XiYiYiXi = XiYiXiYi−XiYiT = X2
i Y

2
i − 2XiYiT , where in the second

equality we use (i).

Thus

σ(X2
i Y

2
i ) = 1

6(X2
i Y

2
i +XiYiXiYi + YiXiXiYi

+YiXiYiXi + YiYiXiXi +XiYiYiXi)

= X2
i Y

2
i − 2XiYiT + 1

2T
2.

Consequently, σ(
∑n

i=1X
2
i Y

2
i ) =

∑n
i=1X

2
i Y

2
i −2T

∑n
i=1XiYi+

n
2T

2. Finally,

(6) σ(∆X∆Y ) = ∆X∆Y − 2ET − 3n

2
T 2,

and the proof is complete.

Lemma 7. Let φ ∈ S′(Rn) be a joint eigendistribution of the operators
dπλ(E) and dπλ(∆X∆Y ). Then there exist γ ∈ C and a harmonic polynomial
pk of degree k ∈ N0 such that

〈φ, f〉 =
�

Rn
f(u)pk(u/|u|)|u|γ du.

Proof. We have dπλ(E) = iλ
∑

j uj∂uj and dπλ(∆y∆x) = λ2|u|2∆u. It
is well known that a function is an eigenfunction of the Euler operator with
eigenvalue γ if and only if it is homogeneous of degree γ. Analogously, using
polar coordinates one can show that a distribution is an eigendistribution of
dπλ(E) with eigenvalue γ if and only if it is homogeneous of degree γ, and
it is given by

〈φ, f〉Rn =

∞�

0

〈ψ, f(r·)〉Sn−1rγ+n−1 dr, where ψ ∈ D′(Sn−1).

Moreover, if Re γ + n ≤ 0, then ψ must satisfy 〈ψ, Ym〉 = 0 for m ≤
−(Re γ + n), where Ym is the space of spherical harmonics of degree m.

In polar coordinates,
∑

j uj∂uj = r∂r and

|u|2∆u = r2∂2
r + (n− 1)r∂r +∆$(7)

= (r∂r)
2 + (n− 2)r∂r +∆$,(8)
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where ∆$ denotes the Laplacian on Sn−1. Thus ψ is an eigendistribution
of ∆$, that is, a spherical harmonic of degree k for some k ∈ N0.

We now assume n ≥ 3. Let {pi : 1 ≤ i ≤ dimYk} be an orthonormal basis
of the spherical harmonics of degree k, and define qi(u) = |u|γpi(u/|u|). Then
qi is a distribution vector of Hλ, so for F smooth on Hn, π−∞λ (F )qi ∈ H∞λ
and 〈Φ,F 〉 :=

∑dimYk
i=1 〈qi, π−∞λ (F )qi〉 defines a tempered distribution on Hn.

Since πλ(XF ) = −πλ(F )dπλ(X) for every X in the Lie algebra of Hn,
we see that Φ is a joint eigendistribution of E and ∆X∆Y . Moreover,
πλ(F ∗ F ∗) = πλ(F )πλ(F ∗) and πλ(F ∗) = πλ(F )∗, thus Φ is of positive
type.

Let us see that Φ is K-invariant if and only if γ = −n/2 + iα.

Indeed, for (s, h) ∈ K, we have 〈Φ(s,h), F 〉 = 〈Φ,F (s,h)〉, where
F (s,h)(x, y, t) = F (shx, s−1hy, t).

Since π−∞λ (F (s,h)) = ω((s, h))π−∞λ (F )ω((s, h)−1) and the sum defining
Φ is invariant under any orthonormal basis, we require that the action of
ω((s, h)) be unitary on qi. The action of SO(n) always is. But ω(s, 1)f(x) =
s−n/2f(s−1x), which forces γ = −n/2 + iα for some α ∈ R.

Finally, for k ∈ N0, α ∈ R, F ∈ S(Hn), let

〈Φλ,α,k, F 〉 :=

dimYk∑
i=1

〈qki,α, π−∞λ (F )qki,α〉

where qki,α(u) = |u|iα−n/2pi(u/|u|) and {pi : 1 ≤ i ≤ dimYk} is an orthonor-
mal basis of the spherical harmonics of degree k. Then Φλ,α,k are spherical
distributions. Since an eigenfunction of E and X1Y2−X2Y1 is also an eigen-
function of E and ∆X∆Y , the same argument as above holds for n = 2.
Observe that dimYk = 1 for every k ∈ N0, and

〈Φλ,α,k, F 〉 := 〈qkα, π−∞λ (F )qkα〉

where qα,k(u) = |u|iα−n/2−k(u1 + iu2)k.

Finally, Mackey theory ensures that this set exhausts the set of spherical
distributions attached to πλ,τ .

3.2. K-invariant distribution vectors attached to ρξ,η. We now
consider the irreducible unitary representations of G attached to characters
of R2n. Notice that they are in correspondence with the irreducible unitary
representations of K nR2n, with the obvious action of K on R2n, since the
center of Hn plays no role. In fact, we are dealing with the spherical analysis
on the generalized Gelfand pair (R>0 × SO(n),R2n). Thus, given a unitary
character χξ,η(x, y) = ei〈(ξ,η),(x,y)〉 of R2n, let Kξ,η ⊂ SO(n) be the stabilizer

of (ξ, η) in K. We extend χξ,η trivially to Kξ,η, and for (τ, Vτ ) ∈ K̂ξ,η we

find that the representations IndGKξ,η×R2n(τ ⊗χξ,η), together with the repre-
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sentations described above, exhaust the irreducible unitary representations
of G. We will need the following result.

Lemma 8.

(i) If the representation IndGKξ,η×R2n(τ⊗χξ,η) has a distribution vector fixed

by K then τ is trivial.
(ii) IndGKξ,η×R2n(1⊗ χξ,η) has a distribution vector fixed by K if and only if

either ξ = 0 and η = 0, or ξ 6= 0 and η 6= 0.

Proof. We recall that IndGKξ,η×R2n(τ ⊗ χξ,η) is represented on the com-

pletion of the set of functions f ∈ C(K nR2n, Vτ ) satisfying

f((1, h, u, v)g) = τ(h)χξ,η(u, v)f(g), ∀h ∈ Kξ,η, u, v ∈ R2n, g ∈ K nR2n,

where K nR2n acts by right multiplication.
Since (s, k, x, y) = (1, 1, x, y)(s, h, 0, 0), any f in this space can be written

as f(s, k, x, y) = χξ,η(x, y)f̃(s, h) where f̃((1, h)(s, k)) = τ(h)f̃(s, k). Thus

as a K-module, IndGKξ,η×R2n(τ ⊗ χξ,η) is isomorphic to IndKKξ,η(τ). Since

K = R>0 × SO(n), we have IndKKξ,η(τ) = L2(R>0)⊗ Ind
SO(n)
Kξ,η

(τ). Thus if φ

is a distribution vector fixed by K, then φ = φ0 ⊗ 1 with φ0 a distribution
vector fixed by the right representation of R>0 on L2(R>0, ds/s). But by

Frobenius reciprocity, the trivial representation appears in Ind
SO(n)
Kξ,η

(τ) only

if τ is trivial. This proves the first assertion.
If (ξ, η)=(0, 0) and Kξ,η=K, the induced representation IndGK×R2n(τ⊗1)

is just τ ⊗ 1, and it has a vector fixed by K only if τ is trivial. Thus the
corresponding spherical distribution is Φ0 ≡ 1.

Assume that ξ 6= 0 or η 6= 0. We observe that IndGKξ,η×R2n(1⊗ χξ,η) can

be realized on

H = L2(R>0 ×Kξ,η\SO(n))

with the action given by

ρ(s, h, (x, y))F (r, k̄) = ei〈(r,k)·(x,y),(ξ,η)〉F (rs, k̄h),

where F ∈ H, (r, k) · (x, y) = (rkx, r−1ky) and k̄ = Kξ,ηk. Since Kξ,η fixes
(ξ, η), the representation ρ is well defined.

We now describe the space of C∞-vectors: since ∂
∂xj

ρ(1, 1, x, 0)F (r, 1) =

irξjF (r, 1) and ∂
∂yj

ρ(1, 1, 0, y)F (r, 1) = ir−1ηjF (r, 1), we see that for F ∈
H∞ we have rm|F (r)| ≤ cm for all m ∈ Z. Thus 〈φ0, F 〉 =

	∞
0 F (r) drr defines

a distribution vector fixed by R>0, and so φ = φ0⊗1 is a distribution vector
fixed by K.

When ξ = 0 (resp. η = 0), the condition rm|F (r)| ≤ cm for all m ∈ N
(resp. r−m|F (r)| ≤ c−m for all m ∈ N) is no longer valid, so φ0 is not well
defined. Assume there exists a distribution vector ψ fixed by K. By the proof
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of the first part of the lemma we can write ψ = ψ0 ⊗ 1. Thus the existence
of an invariant distribution vector fixed by K would imply the existence of
a translation invariant distribution χ ∈ D′(R). Thus χ′ = 0 and so χ = c1,
which is absurd.

Thus, we will consider only the case ξ 6= 0 and η 6= 0. In this case Kξ,η is
isomorphic to either SO(n−2) or SO(n−1). We observe that in the first case
the Stiefel manifold SO(n − 2)\SO(n) can be described as {(ζ1, ζ2) : ζ1, ζ2

are ortonormal vectors in Rn}.
Now we introduce on R2n a new system of coordinates

(x, y) =

(
|x| x
|x|
,
〈x, y〉
|x|

x

|x|
+ y′

)
= (tζ1, uζ1 + vζ2)

where

t = |x|, v = |y′|, u =
〈x, y〉
|x|

, ζ1 =
x

|x|
, ζ2 =

y′

|y′|
, 〈ζ1, ζ2〉 = 0.

We can also write

(x, y) = (tke1, uke1 + vke2), k ∈ SO(n)/SO(n− 2), t, v ∈ R>0, u ∈ R.
In fact, we can take

k = e
∑n
j=2 θjA1je

∑n
l=3 φlA2l ,

where Aij = Eij − Eji for i < j and Eij = (δiαδjβ). Now we will compute
the Jacobian of the map

F (t, θ2, . . . , θn, u, v, φ3, . . . , φn) = (tke1, uke1 + vke2).

We obtain(
∂x
∂t

∂x
∂θ2

. . . ∂x
∂θn

∂x
∂u

∂x
∂v

∂x
∂φ3

. . . ∂x
∂φn

∂y
∂t

∂y
∂θ2

. . . ∂y
∂θn

∂y
∂u

∂y
∂v

∂y
∂φ3

. . . ∂y
∂φn

)

=

(
ke1 t∂ke1∂θ2

. . . t∂ke1∂θn
0 0 0 . . . 0

0 ∗ . . . ∗ ke1 ke2 v ∂y
∂φ3

. . . v ∂y
∂φn

)
.

So the Jacobian is tn−1vn−2µ(θ2, . . . , θn, φ3, . . . , φn), where

µ(θ2, . . . , θn, φ3, . . . , φn) =

∣∣∣∣ke1
∂ke1

∂θ2
. . .

∂ke1

∂θn

∣∣∣∣ ∣∣∣∣ke1ke2
∂y

∂φ3
. . .

∂y

∂φn

∣∣∣∣,
and the integral becomes�

f(x, y) dx dy =
�
f ◦ F (t, θ, u, v, φ)tn−1vn−2µ(θ, φ) dt dθ du dv dφ.

By a change of variables, it is easy to see that the measure µ(θ, φ) dθ dφ on
SO(n− 2)\SO(n) is SO(n)-invariant.

We now look for the distribution vector corresponding to the represen-
tation induced by the character χξ,η with ξ, η ∈ Rn \ {0}.
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We set M = SO(n− 2)\SO(n) or M = SO(n− 2)\SO(n− 1), according
to whether ξ, η are linearly independent or not. For h ∈ SO(n), h will denote
the equivalence class and dh̄ the SO(n)-invariant measure of M.

By Lemma 8, the distribution vector fixed by K is given by

〈φ, F 〉 =
�

R>0×M
F (s, SO(n− 2)h)

ds

s
dh̄,

and, for f ∈ C∞c (K nR2n), the spherical distribution of the pair (K,R2n) is

Ψξ,η(f) = 〈φ, ρ(f)φ〉.

Thus,

〈ρ(f)φ, F 〉 = 〈φ, ρ(f)F 〉 =
�

R>0×M

�

KnR2n

f(g)ρ(g)F (s, h̄) dg
ds

s
dh̄.

Taking coordinates g = (t, h′, x′, y′) in K nR2n we have

�

KnR2n

f(g)ρ(g)F (s, h̄) dg

=
�

KnR2n

f(t, h′, x′, y′)ei〈(s,h̄)·(x′,y′),(ξ,η)〉F (st, h̄h′)
dt

t
dh′ dx′ dy′

=
�

R>0×SO(n)

Ff(t, h′, (s, h̄−1) · (ξ, η))F (st, h̄h′)
dt

t
dh′

where we have performed the Fourier transform in the last 2n variables
(x′, y′) at the point ((s, h−1) · (ξ, η)). Therefore,

〈ρ(f)φ, F 〉

=
�

R>0×M

�

R>0×SO(n)

Ff
(
t, h′, (s, h̄−1) · (ξ, η)

)
F (st, h̄h′)

dt

t
dh′

ds

s
dh̄

=
�

R>0×M
F (r′, k̄)

�

R>0×SO(n)

Ff
(
t, h′, (rt−1, h′k̄−1) · (ξ, η)

) dt
t
dh′

dr

r
dk̄;

in the last equality we made the change of variables r = st, k̄ = h̄h′. So,

ρ(f)φ(r, k) =
�

R>0×SO(n)

Ff
(
t, h′, (rt−1, (k̄h′−1)−1) · (ξ, η)

) dt
t
dh′.
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Finally,

〈φ, ρ(f)φ〉

=
�

R>0×M

�

R>0×SO(n)

Ff
(
t, h′, (rt−1, (k̄h′−1)−1) · (ξ, η)

) dt
t
dh′

dr

r
dk̄

=
�

R>0×SO(n)

�

R>0×M
Ff
(
t, h′, (r, k̄−1) · (ξ, η)

) dt
t
dh′

dr

r
dk̄

=
�

R>0×M
F f̄
(
(r, k̄−1) · (ξ, η)

) dr
r
dk̄

where f̄ =
	
R>0×SO(n) f(s, h, x, y) dss dh.

Further, for f ∈ S(R2n), let

(9) (Ψξ,η, f) =
�

R>0×M
F f̄((r, k̄−1) · (ξ, η))

dr

r
dk̄.

Thus, the spherical distribution of the pair (R2n,K) is the integral of the
Fourier transform of f̄ along the orbit of (ξ, η) under the action of K.

For f ∈ S(Hn), let ft(x, y) = f(x, y, t), and

(Φξ,η, f) =
�

R

〈Ψξ,η, ft〉 dt = 〈Ψξ,η ⊗ 1, f〉.

It is easy to see that for points (ξ, η) in the same K-orbit the correspond-
ing induced representations are equivalent. Also from

ρ|R2n =
�

K/Kξ,η

χkξ,kη dk̄,

it follows that points in different K-orbits correspond to non-equivalent re-
presentations. Let ũ = |ξ|u and ṽ = |ξ|v. Then we can write, for ξ, η linearly
independent,

(ξ, η) = (|ξ|, k) · (e1, ũe1 + ṽe2), k ∈ SO(n− 2)\SO(n), ũ ∈ R, ṽ ∈ R>0.

Thus, in this case, the orbits under R>0×SO(n) are parametrized by (u, v) ∈
R× R>0.

Similarly, when there is a linear dependence between ξ and η, the orbits
are parametrized by (u, 0) ∈ R × {0}. This is the only possible case when
n = 2. Thus we have the following result.

Theorem 9. A complete set of spherical distributions for ((R>0×SO(n)),
Hn) is given by Φ0 = 1 corresponding to the trivial representation, and
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Φλ,α,kf =

dimYk∑
i=1

〈qki,α, π−∞λ (f)qki,α)〉 for λ, α ∈ R, λ 6= 0, k ∈ N0,

Φu,v(f) = 〈Ψu,v ⊗ 1, f〉
for u, v ∈ R, (u, v) 6= (0, 0), v ≥ 0, and Ψu,v is as in (9).

3.3. Eigenvalues. For n = 2 let D1 = σ(E) and D2 = X1Y2 − X2Y1.
In [LS1] it was shown that

D1Φλ,α,k = −λαΦλ,α,k and D2Φλ,α,k = λkΦλ,α,k.

For n ≥ 3 we consider the symmetrized operators D1 = σ(E) = (n/2)T +E
and D2 = σ(∆X∆Y ) = ∆X∆Y − 2ET − (3n/2)T 2.

Since Xj = ∂
∂xj
− xj

2
∂
∂t and Yj = ∂

dyj
+

yj
2

∂
dt , we obtain

D1Φu,v =
n∑
j=1

∂2

dyj∂xj
Φu,v = −(u‖ζ1‖2 + v〈ζ1, ζ2〉)Φu,v = −uΦu,v.

Also, ∆X∆Y (Φu,v) = (u2 + v2)Φu,v, and thus using TΦu,v = 0, by (6),

D2Φu,v = (u2 + v2)Φu,v.

To compute the eingenvalues of Φλ,α,k, it is enough to know the eigen-
values of dπλ(E)qki,α and dπλ(∆y∆x)qki,α.

A computation gives dπλ(E)qki,α = iλ(iα− n/2)qki,α, and by (7),

dπλ(∆y∆x)qki,α = −λ2[(iα− n/2)2 + (n− 2)(iα− n/2)− k(k + n− 2)]qki,α,

where we have used ∆$Yk = −k(k + n− 2)Yk.

Thus,

D1Φλ,α,k = −λαΦλ,α,k, D2Φλ,α,k = λ2(α2 + n2/4 + k(k + n− 2)− 3n/2).

3.4. Inversion formulæ. The aim of this section is to obtain an in-
version formula for a Schwartz function on R2n in terms of the {Φu,v}. Let
h ∈ S(R2n). Then

(h ∗ Φu,v)(x, y) = 〈Φu,v, L(x,y)ȟ〉

=
�

R>0×M
(L(x,y)ȟ)̂ ((r, k̄−1) · (e1, ue1 + ve2))

dr

r
dk̄

=
�

R>0×M
ei〈(x,y),rk̄−1·(e1,ue1+ve2)〉ĥ(−(r, k̄−1) · (e1, ue1 + ve2))

dr

r
dk̄.

Recall that we can take the following coordinates in R2n:

(x, y) = (sζ1, s
−1ζ2(ue1 + ve2)) = (sk̄−1e1, s

−1k̄−1(ue1 + ve2))

with s ∈ R>0, (u, v) ∈ R2, and k̄ = (ζ1, ζ2) ∈ SO(n− 2)k.
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Also, up to a set of measure zero, SO(n−2)\SO(n) can be parametrized
by global coordinates, with dk̄ the SO(n)-invariant measure.

Let V (s, k, u, v) := −(sk̄−1e1, s
−1k̄−1(ue1 + ve2)). By a similar compu-

tation, we find that the Jacobian of V is vn−2/s.

Consider the measure on R2 given by dµ(u, v) = vn−2 du dv. Then by a
change of variables,

h(x, y) =
�

R2n

ĥ(a, b)ei〈(x,y),(a,b)〉 da db

=
�

R2

�

R>0×M
ĥ ◦ V (s, k̄, u, v)ei〈(x,y),rk̄−1·(e1,ue1+ve2)〉vn−2 ds

s
dk̄ du dv

=
�

R2

(h ∗ Φu,v)(x, y) dµ(u, v).

Now we obtain an inversion formula for a Schwartz function f on
the Heisenberg group in terms of the spherical distributions {Φλ,α,k}. We
recall that πλ(f) =

	
Hn

f(w)πλ(w−1) dw, πλ(Lwf̌) = πλ(f)πλ(w−1) and

π−∞λ (f)qki,α ∈ H∞λ .

Lemma 10. Let {pi}dimYk
i=1 be a basis of Yk, and let qki,α(u) =

|u|iα−n/2pi(u/|u|). Then for ϕ ∈ S(Rn),

ϕ(u) =
∑
k,i

∞�

−∞
〈ϕ, qki,α〉qki,α(u) dα.

Proof. Taking polar coordinates, we see that for each ξ in Sn−1 the
function r 7→ rn/2ϕ(rξ) is in L2

(
R>0,

dr
r

)
.

Thus by the inversion formula

ϕ(rξ) =

∞�

−∞

(∞�
0

sn/2ϕ(sξ)siα
ds

s

)
r−iα−n/2 dα

=

∞�

−∞

(∞�
0

ϕ(sξ)siα−n/2sn−1 ds
)
r−iα−n/2 dα

=

∞�

−∞

∞�

0

[∑
k,i

〈ϕ(sξ), pi〉L2(Sn−1)pi(ξ)
]
siαsn/2−1 ds r−iα−n/2 dα

=
∑
k,i

∞�

−∞

( �

Rn
ϕ(x)q̄ki,−α(x) dx

)
r−iα−n/2pi(ξ) dα

=
∑
k,i

∞�

−∞
〈ϕ, qki,−α〉qki,−α(u) dα.
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Let {ϕm} be an orthonormal basis of L2(Rn) and f ∈ S(Hn). Then

tr(πλ(f)) =
∑
m

〈πλ(f)ϕm, ϕm〉L2(Rn) =
∑
m

�

Rn
πλ(f)ϕm(u)ϕm(u) du

=
∑
m

�

Rn

∑
k,i

∞�

−∞
〈πλ(f)ϕm, q

k
i,α〉qki,α(u)ϕm(u) du dα

=
∑
m

�

Rn

∑
k,i

∞�

−∞
〈ϕm, π−∞λ (f)qki,α〉qki,α(u)ϕm(u) du dα

=
�

Rn

∑
k,i

∞�

−∞

[∑
m

〈π−∞λ (f)qki,α, ϕm〉ϕm(u)
]
qki,α(u) du dα

=
�

Rn

∑
k,i

∞�

−∞
π−∞λ (f)qki,α(u)qki,α(u) du dα

=
∑
k,i

∞�

−∞
〈qki,α, π−∞λ (f)qki,α〉 dα =

∑
k,i

∞�

−∞
〈πλ(f)qki,α, q

k
i,α〉 dα,

that is,

tr(πλ(f)) =
∑
k,i

∞�

−∞
〈Φλ,α,k, f〉 dα.

Since the space of C∞-vectors is invariant under πλ, a computation analogous
to the above shows that for w ∈ Hn,

tr(πλ(w)πλ(f)) =
∑
k,i

∞�

−∞
〈πλ(w)πλ(f)qki,α, q

k
i,α〉 dα

=
∑
k,i

∞�

−∞
〈πλ(Lwf)qki,α, q

k
i,α〉 dα

=
∑
k,i

∞�

−∞
〈Φλ,α,k, Lwf〉 dα =

∑
k,i

∞�

−∞
(f̌ ∗ Φλ,α,k)(w) dα,

where we have used the fact that πλ(Lwf) = πλ(w)πλ(f). Thus, by the
inversion formula for Schwartz functions on Hn,

f(w−1) =

∞�

−∞
tr(πλ(f)πλ(w))|λ|n dλ

=
∑
k

∞�

−∞

∞�

−∞
(f̌ ∗ Φλ,α,k)(w)|λ|n dλ dα ∀f ∈ S(Hn).
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4. Spherical analysis for (R∗, H1). We begin by describing the spher-
ical distributions associated to the characters χξ,η of R2. Since points (ξ, η)
in the same K-orbit correspond to the same spherical distribution, they are
parametrized by the orbits Oβ = {(ξ, η) : ξη = β} for β ∈ R∗ and {(0, 0)}.

Let X = ∂
∂x − x

∂
∂t , Y = ∂

dy + y ∂dt , and T = ∂
dt be the standard basis of

the Lie algebra of H1. The algebra of left K-invariant differential operators
on H1 is generated by T and L = XY + Y X, which is the symmetrization
of the K-invariant polynomial p(x, y) = 2xy.

A similar computation to one in Section 3.2 shows that for β = 0, Φ0 ≡ 1.
Also, for β 6= 0 and f ∈ S(H1),

(Φβ, f) =
�

R

( �

R∗
Fft

(
r,
β

r

)
dr

|r|

)
dt,

where ft(x, y) = f(x, y, t).

A spherical distribution for (R∗, H1) corresponding to (ξ, η) is an R∗-
invariant eigendistribution Φ of L such that TΦ = 0. Thus we look for
R∗-invariant eigendistributions of ∂2

∂x∂y .

We will obtain an explicit expression for Φβ by using the Tengstrand
transform.

4.1. Tengstrand transform for R∗. In the 50’s, Methée and de Rham
characterized the distributions on Rm invariant under transformations of
SO(p, q), p + q = m. Their description was improved by G̊arding–Ross for
the Lorentz group, and in general by Tengstrand in 1960. For m = 2, the
action of R∗ on R2 is equivalent to the action of SO(1, 1). We will adapt the
notation accordingly.

We know that if

N f(τ) =
�

Oτ

f(u) dσ(u)

with dσ(u) the R∗-invariant measure on the orbit, then the image under N
of the Schwartz space S(R2) is given by

T = {φ(τ) : ∀k ∈ N, ∃ a polynomial pk(τ) such that

φ(τ)− pk(τ) log(|τ |) ∈ Ck(R)},
where pk(τ) denotes a polynomial of degree ≤ k.

Moreover by using a well known Borel lemma, it follows that

T = {φ(τ) = φ1(τ) + φ2(τ) log |τ |) : φ1, φ2 ∈ S(R)}.
Thus any function φ ∈ T has a unique expansion of the form

φ(τ) =
n∑
j≥0

Bj(φ)τ j + log(|τ |)
n∑
j≥0

Aj(φ)τ j + o(τn)
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where Aj and Bj come from the Taylor expansions of φ1 and φ2. Moreover,
the maps φ 7→ Aj(φ) and φ 7→ Bj(φ) are in T ′, and in [Te, p. 208] the
following result is proved.

Corollary 11. Any θ ∈ T ′ with support at τ = 0 has the form∑
(αjAj + βjBj) where the sum is finite.

We give a sketch of the proof of the fact that the image of N is T :
For f ∈ S(Rm) we write f = g+h with g of compact support and h ≡ 0

on a neighborhood of 0. Since Nh is clearly in S(R), it is enough to prove
the result only for f of compact support.

Assume that supp(f) ⊂ {(x, y) : x2 + y2 ≤ R2} = BR(0). Then BR(0)
∩ Oτ equals {(x, τ/x) : x2 + τ2/x2 ≤ R2}, or equivalently it is given by
x4−x2R2 + τ2 ≤ 0. This forces

√
y− ≤ |x| ≤

√
y+, where

√
y± are the roots

of the equation z2 − zR2 + τ2 = 0. We also have y− ≥ τ2/R2 and y+ ≤ R2.
Thus,

N f(τ) =

R�

|τ |/R

f

(
x,
τ

x

)
dx

|x|
+

−|τ |/R�

−R
f

(
x,
τ

x

)
dx

|x|
.

Letting σ = Rx we have

N f(τ) =

R2�

|τ |

f

(
σ

R
,
Rτ

σ

)
dσ

|σ|
+

−|τ |�

−R2

f

(
σ

R
,
Rτ

σ

)
dσ

|σ|
.

The key point to see that N f ∈ T is to consider the Taylor series devel-
opment of order 2n,

f(x, y) =
∑

α+β≤2n

aα,βx
αyβ +R2n(x, y),

where

(10) R2n(x, y) =

2n+2∑
j=0

φj(θx, θy)xjy2n+2−j , 0 ≤ θ ≤ 1.

Integrating we have

N f(τ) = ψn(τ) +

n∑
α=0

aα,ατ
α log(|τ |) +NR2n(τ)

where ψn ∈ C∞(R).

To see that NR2n(τ) ∈ Cn(R), we will study
	1
τ R2n

(
x, τx

)
dx
x . For j 6=

2n+2−j the integral of R2n gives a C∞ function in τ , therefore it is enough
to consider j = n+ 1 in (10). We will show that if φ ∈ C∞(R2), then

h(τ) = τn+1
1�

τ

φ

(
x,
τ

x

)
dx

x

belongs to Cn(R), defining h(0) = 0.
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Lemma 12.

F (τ) = τn+k
1�

τ

φ

(
x,
τ

x

)
dx

xk

is in Cn(R) for any φ ∈ C∞(R2).

Proof. The expression is clearly infinitely differentiable at every point

except perhaps 0. When n = 0, the integrand φ(x, τx) τ
k

xk
is dominated by

‖φ‖∞ and tends to 0 pointwise when τ → 0. By the dominated convergence
theorem the integral tends to 0, and the expression belongs to C0(R).

Taking derivative with respect to τ we obtain

dF (τ)

dτ
= (n+ k)τn+k−1

1�

τ

φ

(
x,
τ

x

)
dx

xk
+ τn+k

1�

τ

dφ

(
x,
τ

x

)
dx

xk+1
− τnφ(τ, 1).

By induction, the first two terms are in Cn−1(R) and the last one is in
C∞(R).

In [Te, Section 3] a topology is described that makes T a Fréchet space. In
[Te, Th. 5.1] it is proved that the dual map of N is a linear homeomorphism
from T ′ onto the space of R∗-invariant tempered distributions on R2.

Let L0 = 1
2

d2

dx dy , D = τ d2

dτ2
+ d

dτ and Φ ∈ T ′. Then

L0N ′Φ = N ′DΦ.
Notice that D is a symmetric operator:

〈Dψ, φ〉 =

〈(
τ
d2

dτ2
+

d

dτ

)
ψ, φ

〉
=

〈
d2

dτ2
ψ, τφ

〉
+ (−1)

〈
ψ,

d

dτ
φ

〉
=

〈
ψ,

d2

dτ2
(τφ)

〉
−
〈
ψ,

d

dτ
φ

〉
=

〈
ψ, τ

d2

dτ2
φ+

d

dτ
φ

〉
= 〈ψ,Dφ〉.

4.2. Spherical distributions. We now look for the eigendistributions
of D in T . Since D is symmetric, the corresponding eigenvalues are real. For
Φ ∈ T ′, let 〈Φ̌, ψ〉 = 〈Φ, ψ̌〉 where ψ̌(τ) = ψ(−τ). Since DΦ̌ = −(DΦ)∨, if
DΦ = −βΦ then DΦ̌ = βΦ̌. Thus, it is enough to consider β ≥ 0.

Case β > 0. Let J0 and Y0 be the solutions of Bessel’s equation τu′′ +
u′ + τu = 0 for τ > 0, respectively known as Bessel functions of the first
and second kind of order zero. Let Dβφ = Dφ + βφ, Uβ(τ) = J0((βτ)1/2),

and Vβ(τ) = Y0((βτ)1/2). Thus, Uβ and Vβ are two linearly independent
solutions for τ > 0 of Dβφ = 0.

We list the following facts [L, pp. 100, 101, 107, 134, 135]:

• J ′0(τ) = −J1(τ), so U ′β(τ) = −1
2β

1/2J1((βτ)1/2)τ−1/2.

• Y ′0(τ) = −Y1(τ) and Y1(τ) ∼ − 2
π

1
τ for τ ∼ 0.
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• Y0(τ) ∼ 2
π log

(
τ
2

)
for τ ∼ 0.

• Y0(x)→ 0 when x→∞.

Let H be the Heaviside function and φ(τ) = φ1(τ) + φ2(τ) ln |τ |. Then

〈DβUβH,φ1〉 =

∞�

0

Uβ(τ)Dβφ1(τ) dτ

= −(τU ′β)φ1(τ)|∞0 +

∞�

0

Dβ(Uβ)(τ)φ1(τ) dτ = 0.

Now Dβ(log(τ)φ2(τ)) = log(τ)Dβφ2(τ) + 2φ′2 is in T and

〈DβUβH, log(τ)φ2〉 =

∞�

0

Uβ(τ)(2φ′2 + log(τ)Dβφ2(τ) dτ

= (Uβφ2(τ)− U ′β(τ)τ log(τ)φ2)|∞0 +

∞�

0

log(τ)Dβ(Uβ)(τ)φ2(τ) dτ

= −φ2(0).

Moreover

〈DβVβH,φ1〉 =

∞�

0

Vβ(τ)Dβφ1(τ) dτ

= −(τV ′β)φ1(τ)|∞0 +

∞�

0

Dβ(Vβ)(τ)φ1(τ) dτ

= lim
ε→0

εV ′β(ε)φ1(ε) = lim
ε→0

ε
1

πε
φ1(ε) =

1

π
φ1(0)

and

〈DβVβH, log(τ)φ2〉 =

∞�

0

Vβ(τ)(2φ′2 + log(τ)Dβφ2(τ) dτ

= (Vβφ2(τ)− V ′β(τ)τ log(τ)φ2)|∞0 +

∞�

0

log(τ)Dβ(Vβ)(τ)φ2(τ) dτ

= lim
ε→0

(
V ′β(ε)ε log(ε)φ2(ε)− Vβ(ε)φ2(ε)

)
= lim

ε→0

1

π

(
log(ε)φ2(ε)− 2

π
log

(
(βε)1/2

2

)
φ2(ε)

)
= − 1

π
log

(
β

4

)
φ2(0).

A solution of Dβφ = 0 for τ < 0 is the function τ 7→ Uβ(−τ). We look
now for a solution linearly independent from it on R<0.
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Lemma 13. The function

Zβ(τ) = Uβ(τ)

τ�

−∞

ds

(Uβ(s))2s

is a solution for τ < 0 of

τφ′′ + φ′ + βφ = 0,

satisfying the following asymptotics:

lim
τ→0

Zβ(τ)

log(|τ |)
= 1, lim

τ→−∞
Zβ(τ) = 0, lim

τ→0
τZ ′β(τ) = 1, lim

τ→−∞
Z ′β(τ) = 0.

Proof. The integral is well defined since Uβ(τ) ≥ AeB|τ |1/2 for τ < 0. By
L’Hôpital’s rule we have

lim
τ→0

Zβ(τ)

log(|τ |)
= lim

τ→0
τZ ′β(τ) = lim

τ→0

(
τU ′β(τ)

τ�

−∞

ds

(Uβ(s))2s
+

1

Uβ(τ)

)
= 1 since Uβ(0) = 1.

From this computation it also follows that limτ→0 τZ
′
β(τ) = 1.

Since Uβ is a decreasing function and 1
sUβ(s) is integrable on (−∞, 0),

|Zβ(τ)| =
∣∣∣∣Uβ(τ)

τ�

−∞

ds

(Uβ(s))2s

∣∣∣∣ ≤ ∣∣∣∣Uβ(τ)

Uβ(τ)

τ�

−∞

ds

Uβ(s)s

∣∣∣∣.
Therefore, limτ→−∞ Zβ(τ) = 0.

Finally, for τ → −∞, U ′β(τ)/Uβ(τ)→ 0, so Z ′β(τ)→ 0.

Let us compute

〈DβZβ(1−H), φ1〉 = −τZ ′β(τ)φ1(τ)|τ=0
τ=−∞ = −φ1(0)

and

〈DβZβ(1−H), log(|τ |)φ2〉
= −Z ′β(τ)τ log(|τ |)φ2(τ)|τ=0

τ=−∞ + Zβ(τ)φ2(τ)|τ=0
τ=−∞

= lim
ε→0

(
−Z ′β(ε)ε log(|ε|)φ2(ε) + Zβ(ε)φ2(ε)

)
= lim

ε→0
φ2(ε) log(|ε|)

(
−Z ′β(ε)ε+

Zβ
log(|ε|)

)
= 0,

since Z ′β(ε)ε and
Zβ

log(|ε|) are differentiable, and take the value 1 at ε = 0.
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Proposition 14. Since

〈DβZβ(1−H), φ〉 = −φ1(0),

〈DβUβH,φ〉 = φ2(0),

〈DβVβH,φ〉 =
1

π
(φ1(0)− log(β/4)φ2(0)),

the function

Φ = − 1

π
Zβ(1−H) +

1

π
log(β/4)UβH − VβH

satisfies DβΦ = 0.

Case β = 0

Lemma 15. We have

〈DH,φ〉 = −φ2(0), 〈D log(|τ |)H,φ〉 = φ1(0).

Therefore,

D(1) = 0, D
(
H log(|τ |) + (1−H) log(|τ |)

)
= 0.

Proof. Let us compute

〈DH,φ1〉 = −τφ′1(τ)|τ=−∞
τ=0 = 0, 〈DH, log(|τ |)φ2〉 = −φ2(0).

Therefore 〈DH,φ〉 = −φ2(0). We also have

〈D log(|τ |)H,φ1〉 = 〈log(|τ |)H, (τφ′′1 + φ′1〉 = −
∞�

0

ln(|τ |)(τφ′′1 + φ′1) dτ

= −
∞�

0

(ln(|τ |) + 1)φ′1 dτ +

∞�

0

ln(|τ |)φ′1 dτ

= −
∞�

0

φ′1 dτ = φ1(0).

Similarly,

〈D log(|τ |)(1−H), φ1〉 = −
0�

−∞
φ′1 dτ = −φ1(0),

〈D(log(|τ |)H), log(|τ |)φ2〉 = τ(log τ)2φ′2|τ=∞
τ=0 = 0.

Therefore, D(1) = 0 and D(H log(|τ |) + (1−H) log(|τ |)) = 0.

Lemma 16. Let Φ be a distribution supported on {0}. Then

(1) DΦ = aA0 + bB0 implies a = b = 0.
(2) DΦ = 0 implies Φ = 0.



22 F. Levstein and L. Saal

Proof. We know from Corollary 11 that Φ is a finite sum of the form∑
(αjAj + βjBj), that is,

〈Φ, φ〉 =
∑

(αjAj + βjBj),

where φ(τ) =
∑

j≥0Bjτ
j + log(|τ |)

∑
j≥0Ajτ

j . Since

τφ′′ + φ′ =
∑
j≥0

(j2Bj + 2jAj)τ
j−1 + log(|τ |)

∑
j≥0

(j2Aj)τ
j−1,

the terms with A0 and B0 disappear and therefore DΦ cannot include them.
This proves (1).

Now, assuming that DΦ = 0, we have

〈Φ, τφ′′ + φ′〉

=
〈∑

(αkAk + βkBk),
∑
j≥0

(j2Bj + 2jAj)τ
j−1 + log(|τ |)

∑
j≥0

j2Ajτ
j−1
〉

=
∑(

βk((k + 1)2Bk+1 − 2(k + 1)Ak+1)− αk(k + 1)2Ak+1

)
= 0.

This implies

βk(k + 1)2 = 0 ∀k ≥ 0 so βk = 0 ∀k ≥ 0,

and hence in turn

αk(k + 1)2 = 0 ∀k ≥ 0 so αk = 0 ∀k ≥ 0.

Therefore the only solution is the trivial one.

Proposition 17. Every solution of DΦ = 0 is of the form Φ = a +
b log |τ |.

Proof. We have Φ|(0,∞) = a+ b log |τ | and Φ|(−∞,0) = c+ d log |τ |. Then

S = Φ− aH − bH log |τ | − c(1−H)− d(1−H) log |τ |
is supported in {0} and satisfies

DS = (a− c)A0 + (b− d)B0.

According to Lemma 16, a = c and d = b, therefore S = 0.

Remark 18. Analogously, replacing D by Dβ in the above arguments,
one can show that, for β 6= 0, the unique solution of DβΦ = 0 is, up to a
constant, the one found in Proposition 14.

We can now summarize the results of this section.

Theorem 19. Up to a real constant multiple, the solutions in T ′ of
DΨ = −βΨ are

• for β > 0, Ψβ = − 1
πZβ(1−H) + 1

π log(β/4)UβH − VβH (see Prop. 14);
• for β = 0, Ψ0(τ) = a+ b log |τ |;
• for β < 0, Ψβ = Ψ̌−β.
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Recall that to each β ∈ R there corresponds a unique, up to a positive
constant, spherical distribution of the pair (R∗,R2). Thus for β 6= 0, N ′Ψβ
or −N ′Ψβ is of positive type, and N ′ log |τ | is not of positive type. By abuse
of terminology we call N ′Ψβ a distribution of positive type.

Remark 20 (Inversion formula). For f ∈ S(R2),

(f ∗ N ′Ψτ )(x, y) =

∞�

−∞
f̂(−s,−τ/s)e−i(xs+yτ/s) ds

|s|
.

So
∞�

−∞
(f ∗ N ′Ψτ )(x, y) dτ =

∞�

−∞

∞�

−∞
f̂(s, t)ei(xs+yt) ds dt = f(x, y).

Here we have first made the change of variable t = τ/s and then applied
the Fourier inversion formula.

Taking into account that the spherical distribution corresponding to
(πλ,Hλ) was computed in [LS1, Theorem 4.2], we have

Theorem 21. A complete set of spherical distributions attached to the
pair (R∗, H1) is given by:

(1) for λ = 0,

(i) Φβ = N ′Ψβ ⊗ 1, β > 0,
(ii) Φ0 = 1, β = 0,
(iii) Φβ = N ′Ψ̌β ⊗ 1, β < 0;

(2) for λ 6= 0 and α ∈ R,

Φλ,α = eiλ+n/2Γ (1− µ)Γ (µ) 1F1(µ; 1,−iλs)
+ 2eiλtRe

(
eiλs/2Γ (µ)G(µ; 1,−iλs)

)
where µ = 1/2 − iα, s = xy and 1F1, G correspond to the classical
independent solutions of the confluent hypergeometric equation.
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