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Harmonic analysis on some generalized
Gelfand pairs attached to Heisenberg groups

by

FERNANDO LEVSTEIN and LINDA SAAL (Cérdoba)

Abstract. Let H, be the 2n + 1-dimensional Heisenberg group. We consider the
generalized Gelfand pairs (R* x H1, R*) and ((Rso x SO(n)) x Hy, Rso x SO(n)) for n > 2.
We describe the spherical distributions corresponding to these pairs and we obtain inversion
formulze in terms of them for the spaces of Schwartz functions on R?" and H,,. We use the
Tengstrand transform to compute the spherical distributions for n = 1 explicitly.

1. Introduction. Let G be a unimodular Lie group. Given a unitary
representation (m,H) of G on a Hilbert space H, a vector v € H is called
a C*®-vector if m, : g — m(g)v is a C* map from G into H. We denote by
H> the space of C*°-vectors endowed with a natural Sobolev topology that
makes it into a Fréchet space. For X in the Lie algebra of G, and v € H™,
we set

m(exptX)v.
t=0

The seminorms are defined by

Pm(v) = Y m(X1)™ o (Xg) ™ ()|
la|<m
where X1,..., X} is a basis of the Lie algebra of G, and |a| = ag + - - - + .
H~>° will denote the antidual space consisting of continuous conjugate
linear functionals on H*>. Thus H>* C H C H~°°. The elements of H~>
are called distribution vectors. The action of G on H*® gives a corresponding
action on H™>°,

(T_0o(9),0) = (D, Too(g)V), gEG, pEH > veEH™.
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Let K C G be a closed unimodular subgroup and let
Hi > ={peH > m_(k)p=0¢foral ke K},

the space of distribution vectors fixed by K. Then a pair (G, K) is called a
generalized Gelfand pair if for each irreducible unitary representation (7, H)
of G the space H; > is at most one-dimensional (see for instance [vD]).

We recall that when K is compact and (G, K) is a Gelfand pair, a spher-
ical function ¢ of positive type is written as

¢(g) = (m(g)v,v),
where 7 is an irreducible unitary representation of G and v is a vector fixed
by K.
When K is no longer compact and 7 admits a distribution vector ¢ € H; ™
fixed by K, then, for f smooth on G, we have m_(f)¢ € H*°, and so we
can associate to ¢ the distribution

(1) Qsﬂ(f) = <¢,W,w(f)¢>

This is a positive type K-biinvariant distribution on G, and since 7 is ir-
reducible, it is an extremal point of the cone of positive type K-biinvariant
distributions on G (see [E]). Following Molchanov [Mo, we call @ a spherical
distribution.

In this work we will consider pairs (K x H,,, K) (also denoted by (K, Hy,)),
where H, denotes the 2n + 1-dimensional Heisenberg group. For n > 2,
K =R-0 x SO(n) and the action considered is

(r, A).(z,y,t) = (rAz,r LAy, t)  for r € Rsg, A € SO(n).
For n =1, K =Ry x O(1) ~ R* and the action is
r.(z,y,t) = (re,r Yy, t)  for r € R*.

With these actions the corresponding K x H,, are unimodular.

In [LS2] it was shown that for n > 2, (K'x Hy, K) is a generalized Gelfand
pair. There it was mistakenly stated that (Rso x Hi,Rs() is a generalized
Gelfand pair.

In Section 2 we will see that if we consider instead K = R x O(1),
then (K x Hi, K) is a generalized Gelfand pair.

In Section 3 we consider the pairs (K x H,, K) for n > 2, and describe
the spherical distributions attached to vector distributions fixed by K. These
spherical distributions depend on a fundamental parameter A, representing
a character of H, in the central variable t. We obtain inversion formuls in
terms of them for the spaces of Schwartz functions on H,, and R?".

Finally in Section 4 we develop the spherical analysis related to (R*, Hy)
by using the Tengstrand transform.
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2. Preliminaries. Let us consider the Heisenberg group H,, = {(z,y,1t) :
x,y € R", t € R} with multiplication given by

(z1,y1,t) (22, Y2, 8) = (@1 4+ @2, Y1 + Y2, t + s + 31, 92) — (Y1, 72)))
where (z,y) denotes the standard inner product on R".

The irreducible unitary representations of H, which are non-trivial on
the center are determined up to equivalence by their central characters,
and thus parametrized by A € R*. A realization of them is given by the
Schrédinger model defined on Hy = L2(R") and denoted by (7, H,). For
those acting trivially on the center, there is a correspondence with the char-
acters xe¢,, of R?", ¢ n e R™

The natural action of Sp(n,R) on R?" extends to an action on H, by
automorphisms fixing every element of the center. For k£ € Sp(n,R), let
w5 (z,y,t) = ma(k(z,y),t) for (x,y,t) € H,. Then 7} is equivalent to 7, and
there exists a unitary operator w(k) that intertwines 77’7)\‘C and 7. This defines
a projective representation of Sp(n,R) on L?(R"), called the metaplectic
representation.

For n = 1 the group K is R* and acts by the automorphisms r.(x,y,t) =
(rz,r Yy, t) for r € R*, and w(r)f(z) = |r| V2 f(r1a).

For n > 2, the group K = R~y x SO(n) acts on H,, by (r, A).(z,y,t) =
(rAz,r~1Ay,t) for r € Ry, A € SO(n), and

w(r,A)f(z) = rfn/Qf(rflgflx)
gives a well defined unitary representation of K.
Let K be the set of irreducible unitary representations of K up to equiv-
alence. According to Mackey’s theory (see [Mal), the elements of K x H,
are of two types:

o m\,(k,h) =7(k) ®w(k)mr(h) where k € K, h € H, and 7 € K,

® ey = Indllg:nfian (0 ® xen) where K¢ is the stabilizer of (§,7) in K and

~

(S ngn.

This second type corresponds precisely to K x R2%,
Since K is reductive, any unitary representation m decomposes in a
unique way into a direct integral of irreducible unitary representations,
m =\ ma(r)rdu(r),

K

where 1 is a Borel measure on K and my, : K — NU{oo} is the multiplicity.

Recall that a unitary representation of a group K on a separable Hilbert
space H is multiplicity free if the ring of continuous endomorphisms commut-
ing with K, Endg (H), is commutative [K| pp. 503-504]. Also, the following
are equivalent:
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(i) Endg(H) is commutative.
(ii) mx(7) <1 for p-almost all 7 € K.

Notice that ), has a distribution vector fixed by K if and only if o
appears in the decomposition of w|x [MT, Th. 2.1]. Moreover, by using
Frobenius reciprocity, it is not difficult to see that (K,R?") is always a
generalized Gelfand pair. Thus (K, H,) is a generalized Gelfand pair if and
only if w|k is multiplicity free [MT, Prop. 3.1 and Th. 3.2].

For n > 2, (K, Hy,) is a generalized Gelfand pair since, for w the meta-
plectic representation, wigg(&’)RX)Rw =@, SO_OOO T®s "2 dev, where (13, Yy,)
denotes the irreducible representation of SO(n) on the space of spherical
harmonics of degree k.

We can show now that (R*, Hy) is a generalized Gelfand pair.

PROPOSITION 1. The metaplectic action on L*(R) is multiplicity free
with the decomposition

(2) LR)= | |z*da® | sg(x)lz[**da.

Proof. According to Mackey, the representations of G = R* x H; are
either induced by characters of H; or given by

|ia

77/\,04(57 (-’E,y,t)) = |5 WA(.%‘,y,t)LU(S)

where my is the Schrodinger representation of Hy and (w(s)f)(z) =
|s|~1/2f(s~1x). Hence, for fo(z) = |z["* /2 we have w(s)fo = |s| 7" fa.
The Mellin transform is the Fourier transform adapted to Rsq, and it is
defined by M f(\) = {;° f(s)s™ %. The action of R~g on L?(Ro, %) given
by 0:f(s) = f(t~'s) decomposes, via the Mellin transform, as
d o0
L2 <R>0, S) = | Fudx
§ —00
where F) is the C-vector space generated by s** [Tal, p. 168].
Let ¥ be an even function. For u > 0 let g(u) = u/?¥(u). Then

o) = (Ofg@)vw d>u da.

—o0 0
Thus
U(u) = S (S ¥ (v)p /2 Ch})umlﬂ da Yu > 0.

v
—o0 N0
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Analogously, for u < 0,

U(u) =¥ (—u) = S <S Q(U)Uia—l/Q dv> (_u)—ioz—l/Q do

o \p v
00 0
= S (S !p(_w)(_w)ia—l/Q ﬁ)(_u)—ia—l/2da.

—00 T—00

Since ¥ is even and ¥ = ¥x (g o) + ¥X(—o0,0), We Obtain

0 o] . dv o
W) = | <g @ (v)|v[e1/2 |U‘>|u| 172 da.

For ¥ odd, we apply the formula obtained above to the function ®(u) =
sg(u)¥(u) and obtain

v = | ((§ w2 ) sgtlul 2 da.
RN [v]
Since any function can be written as the sum of an even function and an

odd function, the proposition follows.

REMARK 2. Let f,(z) be as above and let g, (z) = sg(z)|z|**~'/2. Then
fa and g, are distribution vectors fixed by o) «|r., but only f, is fixed
by ox.alr*-

REMARK 3. w(s)fa = [8|7f, and w(s)ga = sg(5)|s| ™" “ga.

REMARK 4. The set of characters of R* is {|s|~%*, sg(s)|s|~%*}.

REMARK 5. If K is compact and (G, K) is a Gelfand pair, then (G, Kj)
is also a Gelfand pair, where Ky denotes the connected component of K. In
the non-compact case, the pair (R*, Hy) gives an example of a generalized
Gelfand pair such that the connected component of R* does not give a
generalized Gelfand pair. Indeed, according to the decomposition and
Remark 2], the metaplectic representation is not multiplicity free.

3. Spherical analysis on (Rsg x SO(n), H,,) for n > 2

3.1. K-invariant distribution vectors attached to ) ;. Let K =
R<o x SO(n) and G = K x H,. Recall that G is the set of pairs (k,h) €
K x H, with product given by (k1, h1)(ka,h2) = (k1k2, hi(k1 - h2)), where
the dot denotes the action of K on H,,.

We observe that a K-invariant distribution ¢ on H, gives rise to a K-
biinvariant distribution @ on G by the rule

(3) (@, f)a = (o, fo)m,, where fo(h) =\ f(k.(ex,h))dk.

K
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Conversely, let @ be a K-biinvariant distribution on G. Since the map
(k,h) — (ex,h)(k,em,) is a diffeomorphism, the composition gives a distri-
bution ¥ on K x H,, which is right K-invariant. Thus ¥ = 1 ® ¢ with ¢ a
K-invariant distribution on H,,. Moreover @ is of positive type if and only
if ¢ is.

Thus the spherical distributions are the extremal points of the cone of
K-invariant distributions of positive type on H,, (see [E]).

For A # 0, we denote by (my, H)) the Schrédinger representation of H,,.
We recall that H3® is the Schwartz space S(R™), and thus H, > is S'(R™).

Let K be a compact subgroup of Sp(n, R) such that (K, H,) is a Gelfand
pair. When A # 0, the set of spherical functions can be given by {¢) (k) =
trma(h)|v, }, where (7, V;) is an irreducible representation of K that appears
in the multiplicity free action of K on H).

In our case, K is not compact but we will obtain a similar formula.
In [LS1] it was proved that the algebra of polynomials invariant under the
action of K on R?" is generated by

s(xz,y) = (z,y) and q(x,y) = z1y2 — x2yn  for x = (z1,22), y = (y1,92)
when n = 2, and by
s(m,y) = <x,y> and q(m,y) = |‘,1"|2|y‘2 for x = (xla e 7'1;%)7 Yy = (ylv' . ayn)
when n > 3.

Let {X1,...,X,.Y1,...,Y,, T} be the standard basis of the Lie algebra
of Hy, that is, [X;,Y;] =T and all other brackets are zero.

LEMMA 6. Let B = Y0 V;X;, Ax = Y5 X7 and Ay = 37 Y7
Then the algebra of left K -invariant diﬁerentz’al opemtors on H, s generated
byT, E and X1Yo—XoY1 whenn =2, and by T, E and Ax Ay whenn > 3.

Proof. Let o be the symmetrization map. By a well known result [Vl
p. 180], the algebra of left K-invariant differential operators on H,, is gen-
erated by T, o(F) and 0(AxAy) when n > 3, and by T, E and o(X;Ys —
XoY7) = X1Y2 — XoY; when n = 2. Thus we can assume n > 3.

Since X,;Y; —Y;X; =T, we have

n n
n
) X-Y'>:§ VX + 2T,
U(jl Jtj p J ]+2

(4) o(E) = gT +E.
Now, since X; commutes with ¥; when i # j,

(5) o(AxAy) =Y X3V + U(ZX Y2>
i#]
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We will use the following identities:
(1) X,YV;X;Y; = X2V? - X;YT.

(i) V;X;X;Y; = X;YiX;Y; — X;YiT = X2Y? — 2X,;Y;T, where in the second
equality we use (i).

(i) V;X;V;X; = Vi X, X;Y; — V, X;T = X2V? - 2X,Y,T — (X;Y;T — T?) =
X2Y? — 3X,Y;T + T?, where in the second equality we use (ii).

(iv) YIYiX; X; = ViX,V, X, - Vi X,T = X2V -3X, Y, T+T?— (X;Y;,T-T?) =
X2Y? — 4X,;Y;T + 272, where in the second equality we used (iii).

(v) XpViYi X, = X,V XY, — X, VT = XZ-2YZ~2 —2X,Y,T, where in the second
equality we use (i).

Thus

o(XPYP) = §(XPYV? + XiYiXiYi + YiXi X,Y,
+Yi X, YViX; + ViV X X + XYY, X;)
= X7V? - 2X,Y,T + 1712
Consequently, o(> 7 X2Y?) = >0 | X2Y2-2T %" | X;Y;+ 2T?. Finally,
3
(6) O’(AXAy) = AXAY —2FT — §T2,
and the proof is complete. n

LEMMA 7. Let ¢ € S'(R™) be a joint eigendistribution of the operators
drm\(E) and dmy(Ax Ay). Then there exist v € C and a harmonic polynomial
pi of degree k € Ng such that

(@, 1) = | f(wpr(w/|ul)|ul” du,
]Rn
Proof. We have dmy(E) = i\, u;0y; and dmy(AyA;) = Nul?A,. Tt
is well known that a function is an eigenfunction of the Euler operator with
eigenvalue + if and only if it is homogeneous of degree . Analogously, using
polar coordinates one can show that a distribution is an eigendistribution of
dmy\(FE) with eigenvalue v if and only if it is homogeneous of degree 7, and
it is given by
o0
(@, Nen = [ (@, f(r)) g™ Vdr,  where ¢ € D'(S™1).
0
Moreover, if Rey +n < 0, then ¢ must satisfy (¢,Y,,) = 0 for m <
—(Re~ + n), where Y, is the space of spherical harmonics of degree m.

In polar coordinates, ; WjOu; =10 and

(7) [ul2A, = 1202 + (n — 1)rd, + Ap
(8) = (r0,)® + (n — 2)ro, + A,
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where A denotes the Laplacian on S" . Thus % is an eigendistribution
of Ay, that is, a spherical harmonic of degree k for some k € Nj. =

We now assume n > 3. Let {p; : 1 <i < dimY}} be an orthonormal basis
of the spherical harmonics of degree k, and define ¢;(u) = |u|"p;(u/|u]). Then
¢; is a distribution vector of H}, so for I smooth on H,, 7, *(F)q; € H°
and (P, F) := Z?;Hf Ye (g, 7, °(F')q;) defines a tempered distribution on H,,.
Since m\(XF) = —m\(F)dm\(X) for every X in the Lie algebra of H,,
we see that @ is a joint eigendistribution of E and AxAy. Moreover,
TA(F * F*) = my(F)m\(F*) and m)\(F*) = m\(F)*, thus @ is of positive
type.

Let us see that ¢ is K-invariant if and only if v = —n/2 + ia.

Indeed, for (s,h) € K, we have (@M F) = (& F&M) where
FOM (g, y.t) = F(shx,s 'hy,t).

Since m, °(F(&M) = w((s, h))my (F)w((s,h)") and the sum defining
@ is invariant under any orthonormal basis, we require that the action of
w((s, h)) be unitary on g;. The action of SO(n) always is. But w(s, 1) f(z) =

s~™2f(s~'x), which forces ¥ = —n/2 + ia for some o € R.
Finally, for k € No, « € R, F € S(H,,), let
dim Yy,
<@/\,a,k7F> = Z <ina7ﬂ;00(F)Qka>
i=1

ia—n/2

where ¥ (u) = |ul pi(u/|ul) and {p; : 1 <i < dimYj} is an orthonor-
mal basis of the spherical harmonics of degree k. Then &) , ;. are spherical
distributions. Since an eigenfunction of F and X;Y5 — XY is also an eigen-
function of F and Ax Ay, the same argument as above holds for n = 2.
Observe that dim Y, = 1 for every k € Ng, and

(Dr ok, F) i= (qF, 7 (F) %)

where o x(u) = [u[**™27F (ug + dug)*.
Finally, Mackey theory ensures that this set exhausts the set of spherical
distributions attached to my .

3.2. K-invariant distribution vectors attached to p¢,. We now
consider the irreducible unitary representations of G attached to characters
of R?". Notice that they are in correspondence with the irreducible unitary
representations of K x R?", with the obvious action of K on R?", since the
center of H,, plays no role. In fact, we are dealing with the spherical analysis
on the generalized Gelfand pair (Rsg x SO(n), R?"). Thus, given a unitary
character e ,(7,y) = &M@Y of R2" let K¢, C SO(n) be the stabilizer
of ({,n) in K. We extend x¢,, trivially to K¢, and for (7,V;) € IAQJ] we
find that the representations IndIG(&angn (T ® X¢,n), together with the repre-
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sentations described above, exhaust the irreducible unitary representations
of G. We will need the following result.

LEMMA 8.

(i) If the representation Ind?(5 xR (T®Xen) has a distribution vector fived

by K then T is trivial.
(ii) Ind XRgn(l ® Xen) has a distribution vector fized by K if and only if

ezther§—0 andn =20, or £ #0 andn # 0.

Proof. We recall that IndIGmeRgn (T ® X¢,n) is represented on the com-
pletion of the set of functions f € C(K x R?", V) satisfying

F((1, by u,0)g) = T(h)Xeq(u,0) f(g), Vh € Key, u,v €R™, g € K x R,

where K x R?" acts by right multiplication.

Since (s, k,x,y) = (1,1,2,9)(s,h,0,0), any f in this space can be written
as (5, k,,y) = xe (2 y) f(5,h) where F(1,h)(s,k)) = 7(h)f(s, k). Thus
as a K-module, IndG XR%( T ® Xe¢p) is isomorphic to Ind%5 . (7). Since
K = Rog x SO(n), we have Indff, (1) = L*(Rs) ® Ind3 " (7). Thus if ¢
is a distribution vector fixed by K then ¢ = ¢ ® 1 with <Z>0 a distribution
vector fixed by the right representation of Rsg on L?(Rsg,ds/s). But by
Frobenius reciprocity, the trivial representation appears in Indﬁg(:) (1) only
if 7 is trivial. This proves the first assertion.

If (¢,1)=(0,0) and K¢, =K, the induced representation Ind%., g, (T®1)
is just 7 ® 1, and it has a vector fixed by K only if 7 is trivial. Thus the
corresponding spherical distribution is $¢ = 1.

Assume that £ # 0 or n # 0. We observe that Ind%’anzn(l ® Xe¢,ny) can
be realized on

H = L*(R>g x K¢, \SO(n))
with the action given by

where F € H, (r,k) - (z,y) = (rkz,r'ky) and k = K¢ k. Since K¢, fixes
(&,m), the representation p is well defined.
We now describe the space of C*°-vectors: since %p(l, 1,z,0)F(r,1) =

ir§;F(r,1) and aiyjp(l, 1,0,y)F(r,1) = ir~ln;F(r,1), we see that for F €

H>° we have r™|F(r)| < cp, for all m € Z. Thus (¢, F) = §° F(r) % defines
a distribution vector fixed by R~ ¢, and so ¢ = ¢9®1 is a distribution vector
fixed by K.

When & = 0 (resp. n = 0), the condition r™|F(r)| < ¢, for all m € N
(resp. r~™|F(r)| < c_p, for all m € N) is no longer valid, so ¢ is not well

defined. Assume there exists a distribution vector v fixed by K. By the proof
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of the first part of the lemma we can write ¢ = 19 ® 1. Thus the existence
of an invariant distribution vector fixed by K would imply the existence of
a translation invariant distribution x € D'(R). Thus ' = 0 and so x = 1,
which is absurd. =

Thus, we will consider only the case { # 0 and 1 # 0. In this case K¢, is
isomorphic to either SO(n—2) or SO(n—1). We observe that in the first case
the Stiefel manifold SO(n — 2)\SO(n) can be described as {(¢1,(2) : (1,2
are ortonormal vectors in R™}.

Now we introduce on R?" a new system of coordinates

(,y) = (!:cl‘”, @y +y’> = (t¢1, uGt + v2)

where
z,y x Y
t:’$‘, U:|yl|7 u:u7 C1:77 CQ:M7 <C17C2>:O~

We can also write
(z,y) = (tkey,uke; + vkey), ke SO(n)/SO(n—2),t,v e R”Y ueR.

In fact, we can take
k= exi=2ify Xy didu

where A;; = E;j — Ej; for i < j and Ejj = (6iadj3). Now we will compute
the Jacobian of the map

F(t,0a,...,00,u,v,¢3,...,0n) = (tkey, uke; + vkea).
We obtain

(89& Oz Oz Oz Oz Oz 390)
ot 905 c'° 00, Ou Ov 0b3  Oom
9y Oy dy Oy Oy 9y Oy
9t D05 ' 00, Ou Jv b3 Oom
_(ker t%E ot 0 0 0 L. 0 .
0 * * key kes ”a{% vaii
So the Jacobian is t" 10" 2u(0a,...,0h, ¢3, ..., ¢n), where
Okeq Okeq oy dy
Oy, B s ) = |K keikea—3- . 2V |
(62 ns 3 ®n) 150, a0 | k1 626¢3 e

and the integral becomes
\fla,y)dedy =\ fo F(t,0,u,v,¢)t" "2 u(6, ¢) dt do dudv de.
By a change of variables, it is easy to see that the measure (6, ¢) df d¢ on
SO(n — 2)\SO(n) is SO(n)-invariant.
We now look for the distribution vector corresponding to the represen-
tation induced by the character x¢, with £, n € R™\ {0}.
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We set M = SO(n —2)\SO(n) or M = SO(n — 2)\SO(n — 1), according
to whether £, 7 are linearly independent or not. For h € SO(n), h will denote
the equivalence class and dh the SO(n)-invariant measure of M.

By Lemma [§, the distribution vector fixed by K is given by

[ F(s,50(n —2)n) < ap,
R>0XM s

(9, F) =

and, for f € C2°(K x R?"), the spherical distribution of the pair (K, R?") is

Pen(f) = (0, p(f)P)-
Thus,

(N6, F) = 6.oNFY = | § F@)olo)F(s, ) dg ™ dh.

R>0 x M K[XRQn

Taking coordinates g = (¢,h/,2’,9') in K x R?" we have

| f(9)pl9)F (s, h)dg
KxR2n

o ot
= | f 1,2 ) G EWEm P (st hh!) — db da’ dy
KxR2n t

= § ERH ) ) Est R i
R>0XSO(7L)

where we have performed the Fourier transform in the last 2n variables
(2',y') at the point ((s,h™1) - (&,n)). Therefore,

(p(f)o, F)

/ 7 —1 PN dt ,dS T
= | | Frn (sh )-(f,n))F(st,hh)?dh—dh
RsoxM R>0><SO(11) 5

s / -1 3/7.—1 dt ., dr -
= | F0R) | FFRL N HETY - (6m) 5 dh
RsoxM R=0xSO(n) "

in the last equality we made the change of variables r = st, k = hh'. So,

p(Ho(r k)= | FrE, (ot (kB (&n) %dh’.

Rs0xSO(n)
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Finally,
(@, p(f)®)
= | o FrH T R TY - (E ))—dh’@dk
R>oXxM RsoxSO(n)
= Vo OFrn, kY (6 n))—dh’@dk

R>o XSO(n) RsoxM

- - dr
= | FAeEY - €m) - dk
R>O><M
where f = SR>0><SO(n) f(s,h,z,y) £ dh.
Further, for f € S(R?"), let

(9) Tem )= | FAET (& n))*dk

R>0><M

Thus, the spherical distribution of the pair (R?", K) is the integral of the
Fourier transform of f along the orbit of (£,7) under the action of K.

For f € S(Hy), let fi(z,y) = f(z,y,t), and

(@&naf) = S@pf,naft) dt = <!p£,77 ®1, f>
R

It is easy to see that for points (£, 7n) in the same K-orbit the correspond-
ing induced representations are equivalent. Also from

p’R% = S ka,kn d];?,
K/Kﬁ,n

it follows that points in different K-orbits correspond to non-equivalent re-

presentations. Let 4 = |{|u and © = |£|v. Then we can write, for £, n linearly
independent,

&mn) = (|, k) - (e1,ue; +vez), k€ SO(n—2)\SO(n), u € R, v € Ryy.
Thus, in this case, the orbits under RsgxSO(n) are parametrized by (u,v) €

Similarly, when there is a linear dependence between £ and 7, the orbits
are parametrized by (u,0) € R x {0}. This is the only possible case when
n = 2. Thus we have the following result.

THEOREM 9. A complete set of spherical distributions for ((RsgxSO(n)),
H,) is given by &y = 1 corresponding to the trivial representation, and
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dim Y},

Bropf = D> (@0 X(Fdfa))  for Ma €R,A#£0, k€N,
=1

@u,v(f) = <1pu,v ®1, f)
foru,v € R, (u,v) # (0,0), v >0, and ¥, is as in @
3.3. Eigenvalues. For n = 2 let D; = o(F) and Dy = X;Ys — XoY].
In [LS1] it was shown that
D1¢>\,o¢,k = _)\Q@A,a,k and DQ@)\,Q,J{; = )\/{7@/\7067]6.

For n > 3 we consider the symmetrized operators D; = o(E) = (n/2)T'+ E
and D2 = O'(AxAy> = AxAy —2FET — (3n/2)T2

; 0 %0 . _— 90 4 Y O i
Since X; = 9a; ~ 3 01 and Y; = dy; + % 4, we obtain

D@y = = —(u||lG* + v{C1, () Puw = —uPy 0.

7@11,11
= dyjaxj

Also, Ax Ay (Pyn) = (u? + UQ)(PWJ, and thus using 79, , = 0, by @,
Do®,p = (U + 0%) Dy .
To compute the eingenvalues of @) , 1, it is enough to know the eigen-
values of dWA(E)qufa and dﬂ',\(AyAx)qf’a.
A computation gives dﬂ')\(E')qZ’-fa = i\(ia — n/2)q£a, and by ,
dw,\(AyAx)qﬁa = f)\Z[(ioz — 1’&/2)2 +(n—-2)(ia —=n/2) — k(k+n— 2)]qﬁa,

where we have used ALYy, = —k(k +n — 2)Y;.
Thus,

Dlé)\,a,k = —)\0@)\7&7;6, D2¢>\,a,k = )\2(a2 + n2/4 + ]{Z(k‘ +n— 2) — 3n/2).
3.4. Inversion formulae. The aim of this section is to obtain an in-

version formula for a Schwartz function on R?" in terms of the {®,,}. Let
h € S(R?"). Then

(h * @u’v)(.f, y) = <¢u,va L(J:,y)h>

- o g -
- S (L(w,y)h) ((r Kk 1) - (e1,ue; + vez)) ar dk
RsoxM r

= S el’((w,y),rk—l-(el,ue1+vez)>;L(_(r’ k7YY - (e1, uey + vey)) dr dk.
R>0><M "

Recall that we can take the following coordinates in R?":
(z,y) = (sC1, 5 Co(uer + veg)) = (sk~ter, s 1k~ (ue; + vey))
with s € Rsg, (u,v) € R and k = ((1,¢2) € SO(n — 2)k.
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Also, up to a set of measure zero, SO(n —2)\SO(n) can be parametrized
by global coordinates, with dk the SO(n)-invariant measure.

Let V (s, k,u,v) := —(sk~ter,s k71 (ues + ves)). By a similar compu-
tation, we find that the Jacobian of V is v"72/s.

Consider the measure on R? given by du(u,v) = v" 2 dudv. Then by a
change of variables,

h(z,y) = S ﬁ(a,b)ei«rvy%(avb)) da db

R2n

= | hoV(sku, v) e {(@y) k™ (eruerfvez))yn—2 %S 3% du dv
R2 Rsox M $

= S (h * @U,U)(xv y) d#(u) U).
R2

Now we obtain an inversion formula for a Schwartz function f on
the Heisenberg group in terms of the spherical distributions {®y o 1}. We

recall that mx(f) = {, f(w)m\(w™")dw, (Lo f) = m(f)my(w™") and
T (f)aF o € HS®.

LEMMA 10. Let {pl}?;nllyk be a basis of Yy, and let qf,a(u) =
lu?*="/2p;(u/|u|). Then for ¢ € S(R™),

p(u) = Z S (0, aF o)) o (w) dov.
kg —oo

Proof. Taking polar coordinates, we see that for each ¢ in S™ ! the
. 2 . . 2 d
function r — /2 (r€) is in L (Rso, 4).
Thus by the inversion formula

SO(T‘E) = S <S Sn/Q(,D(Sf)Sia d;)r—ia—n/Q dov

—oo N0
oo 00

- S <S ‘P(Sf)sm_"/zsn_l ds)r_io‘_”/2 do
Z00 0

= S S [Z<90(8§)’pi>L2(Sn71)pi(§)} siagn/2=1 gg—ia—n/2 g
—o0 0 ki,

S 1 (1 @ _ale) de)r " 2pi(¢) da
ki —oo R7™

= Z S <907 qu—a>qzk7_a(u) do. m

kg —oo
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Let {¢m} be an orthonormal basis of L?(R") and f € S(H,,). Then
(1) = S ms o) 2z = 3§ mDpmu)pn0)
m Rn

_Z S Z S )Qomvc_ha)%a( ) m(U)Cluda

m R” ki —oo
=Y 1Y em m (ko) aba(w)om(u) duda
m R" ki —o0

oo

= 13§ =06k ) om ()] o) du da

R» kg —o0 m

| | B ek w) duda
R” kg —oo
= S B o X () o) do = Z OSO (TN ()} s a o) dav,
that is, o o
tr(ma(f)) = kz OSO (Prok, f) da.

)

Since the space of C*°-vectors is invariant under 7y, a computation analogous
to the above shows that for w € H,,

[e.o]

tr(ma(w)ma(f)) = Z S (ma(w)mA(f)aF o, aF ) da

ki —oo

_Z S wfqzoqua>d

kg —oo

[e.9] o0

=> | @ram Luf)da=Y" | (f+Prar)(w)da,

kg —oo kg —oo
where we have used the fact that 7y(Lyf) = mx(w)ma(f). Thus, by the

inversion formula for Schwartz functions on H,,,

Fw™) = | tr(ma(f)ma(w)) A" dA
=3 | § (Frdran)@)A"dAda VS € S(H,).

k —oo—o0



16 F. Levstein and L. Saal

4. Spherical analysis for (R*, H;). We begin by describing the spher-
ical distributions associated to the characters x¢, of R2. Since points (£, 7)
in the same K-orbit correspond to the same spherical distribution, they are
parametrized by the orbits Og = {(&,n) : {én = B} for B € R* and {(0,0)}.

Let X = 8% — x%, Y = d% + y%, and T' = % be the standard basis of
the Lie algebra of H;. The algebra of left K-invariant differential operators
on Hj is generated by T"and L = XY + Y X, which is the symmetrization
of the K-invariant polynomial p(zx,y) = 2zy.

A similar computation to one in Section 3.2 shows that for 5 = 0, &g = 1.
Also, for §# 0 and f € S(H,),

(@5, f) = S(S Ffi (r, 6) dr) dt,
I\ r) Tl
where fi(z,y) = f(z,y,1).

A spherical distribution for (R*, Hy) corresponding to (£,7) is an R*-
invariant eigendistribution @ of L such that T® = 0. Thus we look for
R*-invariant eigendistributions of %.

We will obtain an explicit expression for @3 by using the Tengstrand
transform.

4.1. Tengstrand transform for R*. In the 50’s, Methée and de Rham
characterized the distributions on R™ invariant under transformations of
SO(p,q), p+ g = m. Their description was improved by Garding—Ross for
the Lorentz group, and in general by Tengstrand in 1960. For m = 2, the
action of R* on R? is equivalent to the action of SO(1,1). We will adapt the
notation accordingly.

We know that if

NF(r) = Fu)dou)

O,

with do(u) the R*-invariant measure on the orbit, then the image under A/
of the Schwartz space S(R?) is given by

T ={¢(7) : Vk € N, 3 a polynomial py(7) such that
(1) — pi(7) log(|7) € C*(R)},
where pi(7) denotes a polynomial of degree < k.
Moreover by using a well known Borel lemma, it follows that

T =A{o(7) = ¢1(7) + da(7) log|7]) : d1,¢2 € S(R)}.

Thus any function ¢ € T has a unique expansion of the form

o(r) = > Bi(@)r7 +log(Ir]) Y _ A;()r7 +o(r")

J=0 Jj=0
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where A; and B; come from the Taylor expansions of ¢1 and ¢o. Moreover,
the maps ¢ — A;(¢) and ¢ — Bj(¢) are in 7', and in [Te, p. 208] the
following result is proved.

COROLLARY 11. Any 6 € T’ with support at 7 = 0 has the form
> (ajA; + BjBj) where the sum is finite.

We give a sketch of the proof of the fact that the image of N is T

For f € S(R™) we write f = g+ h with g of compact support and h =0
on a neighborhood of 0. Since NV'h is clearly in S(R), it is enough to prove
the result only for f of compact support.

Assume that supp(f) C {(z,y) : 22 + y* < R%?} = Bg(0). Then Bg(0)
N O; equals {(z,7/z) : 2% + 72/2? < R?}, or equivalently it is given by
a* — 2?R*+ 72 < 0. This forces /y— < |z| < /Yy, where ,/yx are the roots
of the equation 2% — 2R? + 72 = 0. We also have y_ > 72/R? and y, < R%.

Thus, /R

n T\ dx T\ dx
Nim =\ fle~) o+ | e ) o
z) |z| z) |z|
ITI/R -R
Letting 0 = Rz we have
R? il
o Rt\ do o Rt\ do
v =V o5 ) e (5T
I7] —R?
The key point to see that N'f € T is to consider the Taylor series devel-

opment of order 2n,

f(.%', y) = Z aa,,@xay + R2n<$> y)7

a+B<2n
where
2n+2
(10) Ron(x,y) = Y ¢;(0z,0y)27y*" 277, 0<6<1.
=0

Integrating we have

n
NF(T) =1n(T) + > aaarlog(|7]) + N Ron(7)
a=0
where 1, € C*(R).
To see that N'Rg,(7) € C"(R), we will study Xi Rop(2,Z) % For j #
2n 42— j the integral of Ry, gives a C* function in 7, therefore it is enough

to consider j = n + 1 in ((10). We will show that if ¢ € C*°(R?), then
1
d
h(r) = 71| ¢(x, T) acd

X X
e

belongs to C™(R), defining h(0) = 0.
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LEMMA 12.

is in C"(R) for any ¢ € C*°(R?).

Proof. The expression is clearly infinitely differentiable at every point
except perhaps 0. When n = 0, the integrand ¢(z, g);—z is dominated by
ll¢]lo and tends to 0 pointwise when 7 — 0. By the dominated convergence
theorem the integral tends to 0, and the expression belongs to C°(R).

Taking derivative with respect to 7 we obtain

1

1
dF(T) _ 7\ dx T\ dx
7 = (7’L + k)7n+k 1 S ¢<$, Qj‘> ﬁ + Tn+k S d¢($, {E> W — Tnd)(’?', 1)
By induction, the first two terms are in C" !(R) and the last one is in
C*[R). =
In [Tel Section 3] a topology is described that makes 7 a Fréchet space. In
e, . 0.1] 1t 1s proved that the dual map o 18 a linear homeomorphism
Te, Th. 5.1] it i d that the dual f N isali h hi

from 7’ onto the space of R*;invariant tempered distributions on R2.
Let Lo =12, D=7%+ 4 and ® € T'. Then

2 dxdy’
LoN'® = N'D@.

Notice that D is a symmetric operator:

00,6) = { (v + 4 )00} = (trs) + (-1(v. o)

d? d d? d
= (¥, D¢).

4.2. Spherical distributions. We now look for the eigendistributions
of D in 7. Since D is symmetric, the corresponding eigenvalues are real. For
DT let (®,9) = (&,4) where (1) = (7). Since DS = —(DP)", if
D® = —f® then D = . Thus, it is enough to consider S > 0.

Case 3 > 0. Let Jy and Yj be the solutions of Bessel’s equation Tu” +
u' 4+ 7u = 0 for 7 > 0, respectively known as Bessel functions of the first
and second kind of order zero. Let Dgp = Do + o, Ug(T) = Jo((B7)'/?),
and V3(1) = Yo((37)Y/?). Thus, Us and Vj are two linearly independent
solutions for 7 > 0 of Dg¢ = 0.

We list the following facts [Ll pp. 100, 101, 107, 134, 135]:

o Jy(r) = ~Ii(r). 50 Up(r) = ~BY2R((BT)Y2)r 1
e Yj(r) = -Yi(r) and Yi(r) ~ —2 1 for 7 ~ 0.



Harmonic analysis on generalized Gelfand pairs 19

o Yy(7) ~ log()forTNO
o Yo(x )—>0Whena;—>oo

Let H be the Heaviside function and ¢(7) = ¢1(7) + ¢2(7) In|7|. Then
(DsUsH, ¢1) = | Us(r) Dppr (7) dr
0
e}

—(tUf) 1 (T S Dg(U, (1) dr = 0.

Now Dg(log(7)¢2(7)) = log(r)Dapa(T) + 2¢2 is in 7 and

(DsUsH,log(r)da) = | Us(7)(2¢h + log(7) Dpa(r)
0
= (Upa(r) — Up(r)7log(m)$2)[§° + | log(r)D(Up)(7)2(7)
0
= —2(0).

Moreover

(DVsH, 1) = | Va(r)Dppn(7) dr
0

—(rVH e (NI + | Ds(Ve) ()¢ () dr

0

= lim V3 (on(e) = lime=—61() = ~61(0)

e—0 TE
and

oo

(DgVsH log(r)¢a) = | Vs(7)(2¢h + log(r) Dpa(r) dr
0

= (Vaga(r) — Vi) log(r)n) 5 + | log(r) Da(Vi)(r)on(r) dr
0
= liy (VA ()elog()62(6) — Va(pa(c)
0)1/2
—tiny © (1og(e)oate) 2 1089 ) x(0)

=—110g<ﬁ)¢2( ).

A solution of Dg¢ = 0 for 7 < 0 is the function 7 — Ug(—7). We look
now for a solution linearly independent from it on Rg.
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LEMMA 13. The function

T

Zg(r) = Us(7) |

— 00

ds
(Us(s))?s

is a solution for T < 0 of
7¢" + ¢ + B =0,
satisfying the following asymptotics:

Z
(1) =1, lim Zs(r)=0, lim7Z4(r)=1, lim Zj(r)=0.

7—0 10g(|7‘|) T——00 7—0 T——00

Proof. The integral is well defined since Ug(1) > AeBITT? for 7 < 0. By
L’Hoépital’s rule we have

Zs(r) _
=0 log(|T]) =0

=1 since Ug(0) = 1.

From this computation it also follows that lim,_g TZ/% (1) =1.

Since Ug is a decreasing function and m is integrable on (—o0,0),

T

1Z5(r)] = \Uﬁw 5

—0o0

ds Us(t) ¢ ds
Us(s))%s | = ‘Um ) ) T

-
Therefore, lim,,_~ Z3(7) = 0.
Finally, for 7 — —oo, Uj(7)/Up(7) — 0,50 Zj(7) = 0. =
Let us compute
(DaZs(L = H),01) = = 251Dl =0 = ~61(0)
and
(DpZs(1 — H),log(|])¢2)
= —Z5(1)71og(I7]) b2 (T)[7=0 o + Zp(T)b2(T)[7=0
= lim (—Z()elog(|e])ga(€) + Zs(€)¢a(c))

. , 7
—tiny 6n(0) os((e) (- Zy(e)e + 70 ) 0.

Zs

are differentiable, and take the value 1 at € = 0.
log(le])

since Zj3(€)e and
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PROPOSITION 14. Since
(DsZg(1 — H),$) = —¢1(0),
1
(DpVsH, ¢) = —(¢1(0) —log(5/4)$2(0)),

the function
&= 27501~ H) + - log(B/4)UsH — VpH
satisfies Dg® = 0.
Case g =0
LEMMA 15. We have

(DH, ¢) = =¢2(0),  (Dlog(|7)H,¢) = ¢1(0).
Therefore,

D(1) =0, D(Hlog(|r])+ (1 - H)log(|7])) =
Proof. Let us compute

(DH, ¢1) = =71 (T)|7=9>° =0,  (DH,log(|7|)¢2) = —2(0).
Therefore (DH, ¢) = —¢2(0). We also have

o0

V In(I7)(ref + ¢1) dr

0

(Dlog(|7)H, ¢1) = (log(|T|) H, (1¢ + ¢1) = —

— \ (n(|7) + )¢} dr + | In(|7)) ¢ dr
0 0

— | #hdr = 9:1(0).

0

Similarly,

0
(Dlog(|7)(1 — H),¢1) = = | ¢} dr =—¢1(0),

(D(log(|7|)H), log(|7|)¢2) = 7(log 7)*¢|7=5° = 0.
Therefore, D(1) = 0 and D(H log(|7]) + (1 — H)log(|7|)) = 0. m

LEMMA 16. Let @ be a distribution supported on {0}. Then

(1) D@ = aAo+ bBy implies a =b = 0.
(2) D® =0 implies = 0.

21
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Proof. We know from Corollary that @ is a finite sum of the form
Z(ajAj + Bij), that is,
(@,0) = (ajA; + B; By),
where ¢(7) =" BjtI + log(|7]) >.i>0 A;79. Since
¢+ ¢/ =Y (5B +2j A7 +log(|7]) D (5745
J=0 j>0
the terms with Ay and By disappear and therefore D® cannot include them.

This proves (1).
Now, assuming that D® = 0, we have

(@,76" + )
= (D (anAr+ BrBr), > (7°B; + 2j A7) +log(7)) Y 724701 )
>0 >0
= Z(ﬁk((k +1)?Biy1 — 2(k + 1) Agy1) — o (k + 1)%Agpq) = 0.
This implies
Bek+1)2=0Vk>0 so B,=0Vk>0,
and hence in turn
ap(k+1)2=0Vk>0 so a;=0VYk>0.
Therefore the only solution is the trivial one. »
PROPOSITION 17. Ewvery solution of D® = 0 is of the form & = a +
blog|T|.
Proof. We have @| o) = a+ blog|7| and @|(_ ) = ¢+ dlog|7|. Then
S=®—aH —bHlog|r| —c(1—H)—d(1— H)log|T|
is supported in {0} and satisfies
DS = (a—c)Ap + (b —d)By.
According to Lemma a = cand d = b, therefore S =0. n

REMARK 18. Analogously, replacing D by Dg in the above arguments,
one can show that, for 8 # 0, the unique solution of Dg® = 0 is, up to a
constant, the one found in Proposition [14]

We can now summarize the results of this section.

THEOREM 19. Up to a real constant multiple, the solutions in T’ of
DY = —p¥ are

o for 3>0,¥5=—12Z5(1—H)+ Llog(8/4)UsH — VzH (see Prop. ;

o for B=0, ¥(r) =a+blog|r|;
o for 8 <0, ¥z = U_g.
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Recall that to each 8 € R there corresponds a unique, up to a positive
constant, spherical distribution of the pair (R*, R?). Thus for 3 # 0, N Uy
or —N'Wj is of positive type, and N log|7| is not of positive type. By abuse
of terminology we call N"¥3 a distribution of positive type.

REMARK 20 (Inversion formula). For f € S(R?),

o0

(f+ N'T)(w,y) = | f(=s,—7/s)e " Fotu/o) ij
So
S (f*N/LZ/T)(%y) dr = S S f‘(s’t)ei(ocs-i-yt) det:f(:L‘7y),

Here we have first made the change of variable ¢t = 7/s and then applied
the Fourier inversion formula.

Taking into account that the spherical distribution corresponding to
(mx, Hx) was computed in [LSI, Theorem 4.2], we have

THEOREM 21. A complete set of spherical distributions attached to the
pair (R*, Hy) is given by:
(1) for A=0,

(i) D3 :N/W,3®1, 6>0,

(ii) &9 =1, B =0,

(ili) Pg=N"Ps®1, B <0;
(2) for A\ #0 and o € R,

o = NN — ) D () 1y (1131, —iAs)
+ 2eM9Re (e”‘sﬂf(u)G(,u; 1,—i)s))
where = 1/2 —ia, s = zy and 1F1,G correspond to the classical

independent solutions of the confluent hypergeometric equation.

Acknowledgements. Most of this work was done along a series of re-
ciprocal visits between Prof. Fulvio Ricci of SNS Pisa and the authors. We
are indebted to him for the generous contribution of ideas. We would also
like to express our thanks to the referee whose observations helped improve
our work significantly.

This research was partly supported by CONICET and SecytUNC.

References

[vD] G. van Dijk, Group representations on spaces of distributions, Russian J. Math.
Phys. 2 (1994), 57-68.



24

[F]
K]

[L]
[LS1]

[LS2]

[Mal
[MT]
[Mo
[Ta]
[Te]

4

F. Levstein and L. Saal

J. Faraut, Distributions sphériques sur les spaces hyperboliques, J. Math. Pures Appl.
58 (1979), 369-444.

T. Kobayashi, Multiplicity free representations and visible actions on complexr man-
ifolds, Publ. RIMS Kyoto Univ. 41 (2005), 497-549.

N. N. Lebedev, Special Functions and Their Applications, Dover Publ., 1972.

F. Levstein and L. Saal, Generalized Gelfand pairs associated to Heisenberg type
groups, J. Lie Theory 18 (2008), 503-515.

F. Levstein and L. Saal, Spherical distributons of some generalized Gelfand pairs
attached to the Heisenberg group, in: Contemp. Math. 537, Amer. Math. Soc., 2011,
241-253.

G. Mackey, Unitary Group Representation in Physics, Probability, and Number The-
ory, Benjamin/Cummings, 1978.

K. Mokni et E. G. F. Thomas, Paires de Gelfand généralisées associées au groupe
d’Heisenberg, J. Lie Theory 8 (1998), 325-334.

V. F. Molchanov, Spherical functions on hyperboloids, Mat. Sb. 99 (1976), 139-161
(in Russian); English transl.: Math. USSR-Sb. 28 (1976), 119-139.

M. Taylor, Noncommutative Harmonic Analysis, Math. Surveys Monogr. 22, Amer.
Math. Soc., 1986.

A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary sig-
nature, Math. Scand. 8 (1960), 201-218.

V. S. Varadarajan, Lie Groups, Lie Algebras and Their Representations, Grad. Texts
in Math. 102, Springer, 1984.

Fernando Levstein, Linda Saal

Facultad de Matematica Astronomia y Fisica
Universidad Nacional de Cérdoba

Cérdoba, Argentina

E-mail: levstein@gmail.com


http://dx.doi.org/10.2977/prims/1145475221
http://dx.doi.org/10.7146/math.scand.a-10610
http://dx.doi.org/10.1007/978-1-4612-1126-6

	1 Introduction
	2 Preliminaries
	3 Spherical analysis on (R>0SO(n), Hn) for n2
	3.1 K-invariant distribution vectors attached to ,
	3.2 K-invariant distribution vectors attached to ,
	3.3 Eigenvalues
	3.4 Inversion formulæ

	4 Spherical analysis for (R*, H1)
	4.1 Tengstrand transform for R*
	4.2 Spherical distributions

	References

