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Abstract. Interfaces advancing through random media represent a number
of different problems in physics, biology and other disciplines. Here, we study
the pinning/depinning transition of the prototypical non-equilibrium interfacial
model, i.e. the Kardar–Parisi–Zhang equation, advancing in a disordered
medium. We will separately analyze the cases of positive and negative non-
linearity coefficients, which are believed to exhibit qualitatively different
behavior: the positive case shows a continuous transition that can be related to
directed-percolation-depinning, while in the negative case there is a discontinuous
transition and faceted interfaces appear. Some studies have argued from different
perspectives that both cases share the same universal behavior. By using a
number of computational and scaling techniques we will shed light on this
puzzling situation and conclude that the two cases are intrinsically different.
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1. Introduction

The study and characterization of growing interfaces under non-equilibrium conditions
is a topic of interdisciplinary interest [1–4]. Moving interfaces are often found in
physics (crystal and amorphous material growth, polymers and colloids, granular matter,
wetting, thin films), physical–chemistry (catalysis, corrosion, reaction front propagation),
biology (cellular, fungal and bacterial colony growth, cell-sorting, wound healing, tumor
expansion), etc. Understanding the properties of interfaces in relation to phenomena
such as corrosion, adhesion, wetting, friction, micro- or nano-fluidics, etc is essential for
the development of technological applications. Moreover, the study of interfaces is of
fundamental interest as a typical problem in statistical mechanics as they constitute a
canonical example of critical phenomena and generic scale-free behavior in systems away
from thermal equilibrium.

Within this broad context, the Kardar–Parisi–Zhang (KPZ) dynamics [5] represents
the simplest and broadest universality class of non-equilibrium growth [1–4]. Its study has
been recently boosted by remarkable experimental and theoretical breakthroughs [6–14],
which have triggered renewed interest. The KPZ interfacial dynamics is defined by the
Langevin equation:

∂th(x, t) = ν∇2h(x, t) + λ(∇h(x, t))2 + F + η(x, t), (1)

where h(x, t) is the local height of the interfaces, F > 0 is the driving force, η(x, t) is
the zero-mean delta-correlated Gaussian noise, the first term on the right-hand side (with
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proportionality constant ν) describes the relaxation of the interface caused by the surface
tension and finally λ(∇h)2 is the dominant nonlinear term. This last term accounts for
lateral growth and breaks the up–down symmetry in such a way that the interface is not
invariant under the transformation h → −h.

Interfacial roughening properties are customarily analyzed by measuring the global
interface width:

W (L, t) = 〈[h(x, t) − h]2〉1/2, (2)

where the overbar stands for spatial averages (in a system of size L) and brackets
denote the disorder average. Usually, W (L, t) obeys the Family–Vicsek dynamic scaling
ansatz [1, 2, 15], namely

W (L, t) = tα/zf(L/ξ(t)), (3)

where the scaling function f(u) obeys

f(u) ∼
{

uα if u � 1
constant if u � 1 (4)

where α is the roughness exponent characterizing the stationary (or saturated) regime,
ξ(t) ∼ t1/z is the correlation length in the direction parallel to the interface, z the dynamic
exponent and β = α/z is the growth exponent that governs the short-time behavior of the
interface roughening. In particular, for 1D systems in the KPZ universality class α = 1/2,
z = 3/2 and β = 1/3 have been measured in an overwhelming variety of models and also
experimentally [1–4, 6, 13].

Deviations from the previous values have also been reported in some experimental
set-ups, for which it can be argued that the interfacial behavior is crucially affected by
the presence of random pinning forces, i.e. by quenched disorder or heterogeneity in the
physical background [1,2]. These situations can be addressed by replacing the noise term
η(x, t) in equation (1) with the quenched noised η(x, h), accounting for spatial (quenched)
heterogeneity:

∂th(x, t) = ν∇2h(x, t) + λ(∇h(x, t))2 + F + η(x, h), (5)

with 〈η(x, h)η(x′, h′)〉 = δ(x − x′)Δ(h − h′) (where Δ is some fast-decaying function
and F is an external driving force), which is known as the quenched Kardar–Parisi–
Zhang (QKPZ) equation. This equation is usually complemented with the prescription
that the interface is not allowed to move backwards (i.e. ∂th(x, t) < 0 → ∂th(x, t) = 0).
Equation (5) exhibits a pinning/depinning phase transition at a certain critical value of
Fc, of the external driving force F [1, 2], for F > Fc the interfaces move with a finite
velocity, while for F < Fc they ineluctably become pinned by the impurities represented
by the quenched noise.

Remarkably, the case in which the non-linearity moves in the same direction as the
driving force (λ > 0) appears to differ qualitatively from the one in which these two forces
oppose each other, (λ < 0) for the positive values of λ (i.e. the positive QKPZ or P-QKPZ
equation) the depinning transition is smooth (second order), while for the negative ones
λ (i.e. the negative QKPZ or N-QKPZ equation) it is abrupt (first order). The underlying
reason for such a difference can be easily understood; taking equation (5) with quenched
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noise, averaging over noise, integrating in x and imposing a stationary condition, one
obtains

λs2 + F = 0 (6)

where s =
√〈(∇h)2〉 is the average local slope. This equation has a non-trivial solution

with s > 0 if and only if λ < 0, corresponding to the pinned phase. This solution
corresponds to the faceted interfaces of the average slope s and does not have a counterpart
in the positive case λ > 0. Observe that the angle of the between facets θ, (see figure 1)
obeys s = tan((π − θ)/2) ∝ 1/

√
λ and reaches a maximum value at the depinning

transition.
The faceted solution ceases to exist at F = Fc, where the interface becomes depinned.

Once the faceted solution breaks down, the interface velocity 〈∂th〉 experiences a first-
order transition and jumps from 0 to a constant stationary value. Even if the transition
is discontinuous, the interface shows aspects of scale invariance both above and below the
transition point. This type of hybrid situation sharing aspects of first order transition and
scale invariance is known in the literature (see e.g. [16]).

Even if this simple argument suggests that the positive and negative cases should
exhibit intrinsically different features, a renormalization group calculation reveals no
difference between the positive and negative cases [17]. Indeed, the renormalized value of
λ2 diverges, suggesting the existence of a strong coupling fixed point for any value λ �= 0.
The renormalized value of λ2 was measured in simulations of the N-QKPZ, revealing
that it does not diverge, but stays finite even as the system approaches its critical point,
suggesting that the renormalization group calculation might break down in this case. But
the situation at this theoretical level has not been clarified thus far.

From the computational side, the QKPZ dynamics have been studied extensively
for both positive and negative non-linearities in one spatial dimension. Tang et al [18]
proposed that the P-QKPZ equation can be effectively described by the statistics of
disorder pinning paths and, hence, mapped onto the so-called directed percolation
depinning (DPD) model [19]. Thus, the roughness exponent is given by the ratio of the two
correlation length exponents, in the parallel and perpendicular direction of the directed
percolation cluster, namely α = ν⊥/ν|| (� 0.63); similarly it follows that z = 1 and hence
β = α. These results agree with the numerical simulations of systems in this class [20,21].
On the other hand, numerical studies of different models with effective negative non-
linearity confirmed the formation of facets and the existence of a jump at the transition
[22–24].

Self-organized models, in which interfaces self-tune to the transition point [25], have
also been proposed and studied in this context. Sneppen [26] proposed two different self-
organized growth models in random media, one leading to facets and the other not and
concluded that one lies in the N-QKPZ class, while the other behaves as a P-QKPZ. On the
contrary, Choi et al [27] formulated two other similar self-organized models, with positive
and negative non-linearities, respectively and concluded that the sign of the non-linear
term does not affect the universality class.

Aiming at clarifying this very confusing state-of-affairs, here we revisit the P-QKPZ
and N-QKPZ equations. Among other methods, we analyze the results by employing
spectral techniques to establish whether the formation of facets and ultimately the sign
of the non-linearity in the QKPZ equation, plays a relevant role or whether it does not.
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2. Anomalous scaling

In some interfacial problems it is important to distinguish between global and local
roughening properties. The local interface width w(l, t) is defined as

w(l, t) = 〈[h(x, t) − h]2〉1/2, (7)

where 〈· · ·〉 denote disorder average and the overbar an average over x in windows of l in
size, obeying

w(l, t) = tβfA(l/ξ(t)), (8)

where β is the growth exponent. Now the scaling function may be anomalous, i.e.

fA(u) ∼
{

uαloc if u � 1
const if u � 1, (9)

where αloc is a new independent exponent called the local roughness exponent, which in
general does not need to coincide with its global counterpart, α.

Ramasco et al introduced a general dynamic scaling ansatz for roughening interfaces,
which includes all the previously-known forms of dynamic scaling as particular cases [24]
(see also [28–30]). Implicit to this general scaling, ansatz is the hypothesis that the
interface may exhibit two different types of behavior on short and long scales, respectively.
The analysis relies on the structure factor or power spectrum S(k, t)):

S(k, t) =

〈∣∣∣∣ 1√
L

∫ L

0
dxh(x, t)e−ikx

∣∣∣∣
2
〉

, (10)

where k = 2πn/L, with n = 1, 2, ...., L−1. The generic scaling ansatz for S(k, t) proposed
in [24] is

S(k, t) = k−(2α+1)s(kt1/z), (11)

with

s(u) ∼
{

u2α+1 if u � 1
u2(α−αs) if u � 1, (12)

where αs is the spectral roughness exponent. If αs �= α there is anomalous scaling, while
if αs = α the standard Family–Vicsek scaling is recovered. Remarkably, a new type of
anomalous scaling behavior (with α = αloc = 1 and αs > αloc) was theoretically predicted
in [24] and one of the previously mentioned models by Sneppen (the one with facets) was
argued to belong to this family.

Let us remark that—as emphasized by Ramasco et al [24]—αs does not explicitly
appear in the scaling behavior of either W (L, t), w(l, t) or the height–height correlation
function G(l, t) and, thus, cannot be deduced from the measurements of these quantities,
suggesting that a sound study of the roughening properties should include spectral
analyses.

doi:10.1088/1742-5468/2014/10/P10024 5
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3. Results

We solved equation (5) numerically with both positive and negative non-linearities in one
dimensional lattices and studied its spectral properties. Therefore, we consider a standard
finite-differences discretization scheme for equation (5) in rings the size of L (i.e. periodic
boundary conditions are assumed) [2, 20, 23]. More refined algorithms such as the one
proposed in [31] could be implemented, but they are not necessary for our purposes here.
Time is discretized in units of Δt = 0.01, ν = 1 and, following previous analyses [23], the
noise is taken to be uniformly distributed in [−a/2, a/2] with a = 4.642. Initial conditions
correspond to a flat interface of h(x, t = 0) = constant. A fresh value of the quenched
random force is extracted at position x whenever the interface advances to such a point;
this value is kept fixed until the interface moves forward again. Ensemble averages are
performed over at least 1000 different realizations of the quenched randomness. The results
have been verified to be robust against changes in these choices.

3.1. λ > 0 (P-QKPZ)

Figure 1(a) shows interface profiles for the P-QKPZ case (with λ = 0.5 > 0 and F = 1):
the interface grows until it becomes eventually pinned for F < Fc. The measured roughness
exponent at the transition point is α = 0.63(1) in good agreement with the expectation
for the DPD class. Given that the universality of this class is well understood [1, 2], we
have not performed further extensive numerical studies of this positive λ case.

3.2. λ < 0 (N-QKPZ)

Figure 1(b) shows a profile in the N-QKPZ case (λ = −0.5 < 0) obtained close to the
transition point Fc ≈ 1.98. Observe the distinct shape of the pinned interfaces exhibiting,
as expected, characteristic facets. In agreement with previous findings, we observe a
first-order pinning–depinning transition, at which the averaged interfacial velocity jumps
discontinuously from zero to a positive constant value.

3.2.1. The depinned phase. For sufficiently large driving forces—deep into the depinned
or moving phase—the quenched disorder should be irrelevant above some length and time
scales and the freely moving interface should therefore follow standard KPZ dynamics.
Indeed, taking F = 3 � Fc (see figure 2) we find that S(k, t) scales in the large-time regime
scales as a power law with the exponent 2α + 1 = 2.03(4), i.e. with α = 0.515(20), as
corresponds to standard non-anomalous Family–Vicsek behavior (see the collapse obtained
in the inset of figure 2 with α = 1/2 and z = 3/2). Therefore, the moving interface belongs
to the standard KPZ universality class, as expected.

3.2.2. The pinned phase. More interesting is the behavior of S(k) for stationary pinned
interfaces F < Fc. Figure 1(b) shows the results for a single realization; it illustrates the de-
velopment of a (single) well-defined pinning center close to x = 100, at which the interface
eventually becomes fully pinned. A careful inspection of figure 1(b) reveals that the slopes
around the peak are not just straight lines but they have some intrinsic roughness. There-
fore, two different regimes are expected to emerge when computing the structure function,

doi:10.1088/1742-5468/2014/10/P10024 6
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Figure 1. Time evolution of a KPZ interface moving in a (1 + 1)−dimensional
disordered medium (system size L = 256). (a) P-QKPZ case with λ = 0.5,
F = 1.00 < Fc) and different times (from bottom to top t = 199 000 to
t = 232 000 at uniform intervals). (b) N-QKPZ case with λ = −0.5 and
F = 1.90 < Fc) for different times (from bottom to top t = 4 030 000 to
t = 4 055 000 at uniform intervals). The average angle at the bottom of the valley,
θ = 49(2)◦, was obtained by averaging over 100 different pinned interfaces.
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Figure 2. Supercritical behavior in the N-QKPZ case: double logarithmic plots
of the structure factor S(k) versus the wave number k obtained for different
times for F = 3 � Fc, L = 50 000 and averaging over 250 configurations. The
continuous straight line is a fit of the long-k regime and has been slightly shifted
upwards for the sake of clarity. It has a slope of −2.03(4) yielding α = 0.51(2).
The inset shows a data collapse obtained using the equation (12) with α = 1/2
and z = 3/2.

corresponding to linear slopes and fluctuations on top of them, respectively. This suggests
the existence of anomalous scaling. Indeed, as shown in figure 3, S(k) exhibits a crossover
between short and large k regimes at a certain crossover value of kc. Observe that, as
illustrated in the inset of figure 3, the crossover between short and long scales is rather
insensitive to changes in F and L, revealing the absence of a diverging correlation length.
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Figure 3. Double logarithmic plot of the structure function, S(k) for the N-QKPZ
case for both subcritical and supercritical values of F (system size L = 5000).
The continuous straight lines are the fits of the large-k regime (slope −2.1(2),
i.e. α = 0.55(5)) and the small-k regime for subcritical forces (slope −3.99(2),
i.e. αs = 1.49(2)), respectively. The fits have been slightly shifted upwards for
visual clarity. Some supercritical values of F have been included in the plot to
illustrate that the short-scale behavior is indistinguishable in both cases and
is compatible with α = 1/2. Inset: log–log plots of the structure factor in the
subcritical regime, rescaled to system size, versus k/kc(L), where kc(L) is the
value of k at which the crossover occurs, obtained for samples of different side
L, i.e. L = 10 000,L = 20 000,L = 50 000,L = 100 000,L = 200 000 and for
F = 1.95 < Fc. A nice curve collapse is observed.

The structure function of the pinned interfaces (see figure 3) clearly shows two well-
separated regimes; the small-k (large wavelength) limit describes the facets, while the
large-k (short wavelengths) corresponds to the fluctuations existing on the top of the two
facets. From the slopes of the curve, as shown in figure 3, we obtain αs = 1.49(2) in the
small-k regime, i.e. for the macroscopic faceted structures. Let us remark, that for the
trivial case of a perfectly faceted interface formed by identical segments, it is not difficult
to show that the spectral roughness exponent is αs = 3/2 [24]. On the other hand, we
measure α = 0.55(5) for the large-k (small wavelength) regime, which corresponds to the
roughness that ‘modulates’ the slopes of the facets. This value is compatible with α = 1/2,
as obtained for depinned interfaces.

3.3. Global and local roughening

Now we present the results obtained using the standard measurements of the global and
local interface roughness, (equations (2) and (7), respectively). Figure 4 shows the log–log
plots of the global interface width versus time, obtained for F = 1.90 < Fc. Two types
of average are presented, either the overall runs (labelled all), or restricting the average
to the moving interfaces (label moving). Observe that the averages including all the runs
(and thus, the pinned faceted interfaces) have a greater degree of roughness.
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Figure 4. Global interfacial width in the N-QKPZ case. (a) Log–log plots of the
global width W versus t, obtained for F = 1.90 < Fc and samples of different
sizes, averaged over all realizations or restricted to moving interfaces (two curves,
corresponding to 2 different sizes are represented). Upper inset: log–log plot of
the (stationary) saturation value of the global width W versus sample size L, for
moving interfaces obtained for 5 different system sizes (including the 2 sizes in
the main plot). The best fit of the straight line yield αmoving ≈ 0.53. Lower inset:
as the upper inset, but averaging over all the runs (pinned and moving; the best
fit gives αall = 1.003(8)).

The roughness exponents corresponding to the global width measured for the depinned
interfaces αmoving ≈ 0.53, is consistent with the value obtained for the large-k regime of the
structure factor. Thus, the global width of the moving interfaces captures the roughness
that ‘modulates’ the slopes of the facets. On the other hand, once pinned (i.e. faceted)
and the interfaces are taken into account, we obtain αall ≈ 1, implying that the scaling is
dominated by the linear facets.

Figure 5 shows log–log plots of the local width w(l, t) (see equation (8)), versus l
obtained for different times. The measurements done for the pinned interfaces (in the
t → ∞ limit) allow us to determine αlocal = 0.997(5), confirming that for the pinned
interfaces, both the local and the global roughness exponents are asymptotically controlled
by the faceted structure. On the other hand, employing the scaling form w(l, t) ∼ lαF (l/ξ),
where F is a scaling function and ξ is a saturation or correlation length (i.e. the value
of l above which a constant local width is measured) and using α = 1, we obtain a good
collapse, as illustrated in the right of figure 5 (see also similar scaling laws for the pinned
and depinned phases, in [32]).

3.4. Direct analysis of local fluctuations modulating facets

Figure 6(a) shows a snapshot of a pinned configuration; the slopes of the faceted structure
have been adjusted by two straight lines. On top of these linear structures there are
fluctuations, as illustrated in the inset of figure 6(a), where the average slope has been
locally subtracted. By computing the variance (R) around the linear fits for facets of
different linear sizes, we obtain the local width as a function of the facet linear size, l (see
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Figure 5. Left: local interfacial width in the N-QKPZ case. Log–log plots of the
local width of the interface w(l, t) versus l obtained for the samples measuring
L = 4096 and different measurement times, as indicated, in the pinned phase
(F = 1.90 < Fc and averages over 500 configurations). Initially the interfaces
are flat and then, progressively, roughness develops. Diamonds indicate pinned
interfaces and the dash (which has been moved for the sake of clarity) shows the
best fit, corresponding to αloc = 0.997(5). Observe that the range in which the
linear scaling can be observed grows as time increases and the facets develop.
Right: the curve collapse is obtained using the scaling form w(l, t) ∼ lαF (l/ξ)
for times up to t = 16 000; for longer times a saturation length of ξ cannot be
properly measured.

Figure 6. Analysis of local scale fluctuations in the N-QKPZ. (a) An example
of a pinned interface with λ = −0.5 and F = 1.94. The slopes of the facets
can be linearly fitted (straight dashes with a slope h◦), allowing us to estimate
the slope and the mean squared error R around it. Inset: Zoom of the local
fluctuations y(x) around one of the facets. (b) Log–log plot of R (wlocal) versus
the linear size of the facets (the lines are guides for the naked eye). The best fit
is obtained for a local roughness exponent of 0.51(1), close to the KPZ value of
α = 1/2.
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figure 6(b)). It follows that the data can be very well-fitted into a double-logarithmic plot
by a straight line with a slope of 0.51(1), again suggesting a local roughness compatible
with α = 1/2.

4. Discussion and conclusions

We have presented a full characterization of the interfacial growing behavior of the KPZ
equation with quenched noise and a negative value of the coefficient in the non-linear term
(see equation (5)). The positive case exhibits a continuous phase transition in the DPD
universality class, while in the negative case we have found evidence of a discontinuous
transition separating a pinned phase, characterized by faceted interfaces and a moving
KPZ-like phase. Our study is focused on the negative case and our main conclusions are:

(a) The measurements of the structure factor of the pinned interfaces show anomalous
scaling behavior, which can be considered as a particular case of the general scaling
theory proposed by Ramasco et al as applied to the pinned interfaces (i.e. with no
explicit time dependence). S(k) exhibits a crossover between the small-k regime with
αs ≈ 1.5 (controlled by facets) and the large-k regime with α ≈ 0.55.

(b) The standard measurements of the local and global widths and the analysis of its
scaling behavior within the pinned phase (F < Fc) yield αlocal ≈ αall ≈ 1. However, by
excluding the pinned (faceted) interfaces in the calculation of the average we obtained
αmoving ≈ 0.53, consistent with the large-k scaling of the structure factor.

(c) Finally, the direct measurements of the fluctuation around the facets reveal that local
fluctuations can be well-represented by the roughening exponent α ≈ 0.51.

All these results put together suggest that local roughening is controlled by the
standard KPZ roughening exponent. This result is in agreement with the finding in [33] for
a similar interfacial model with columnar disorder (i.e. η = η(x)); this model was reported
to exhibit facets with roughness profiles on top of them, controlled by a 0.5 exponent.
Furthermore, in this same work [33], the authors showed analytically that the dynamics
of facets can be decoupled from short-scale fluctuations and that these latter ones exhibit
KPZ roughness. An almost identical calculation leads us to the same conclusion here:
local and global dynamics are decoupled; on the one hand there are facets and on the
other there are short-scale KPZ-like fluctuations.

Therefore, we have not found any evidence of continuous transitions, nor of roughness
exponents around 0.63, characteristic of the DPD class in the negative case and we can
safely conclude that the two cases, with both positive and negative non-linearities, are
clearly different. Obviously, the origin in this difference stems from the facet formation in
the negative case; thus it would be reasonable to conjecture that by running simulations
in tilted systems—with a tilt equal or larger to the critical slope—there should not be an
abrupt transition between the faceted and non-faceted/moving interfaces. One should not
observe a continuous transition and exponent values at the transition point compatible
with DPD class, as indeed numerically verified in [22].

Further to this new study, some important questions remain unsolved and the study
of interfaces in random media remains an intriguing research area. For example, analyzing
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in detail what happens in physically, more relevant and higher dimensional systems (e.g.
in two dimensions), where pinning paths (and thus DPD) are expected to be replaced by
‘pinning surfaces’ [34], is left for future investigation.

Interestingly, a similar physical situation arises in the study of KPZ interfaces
bounded by a wall, which is relevant in the study of non-equilibrium wetting [35, 36]
and synchronization transitions [37]. Under these circumstances, the case λ > 0 has
been shown to be radically different from the λ < 0 one; the corresponding associated
problems have very different physical behavior and they belong to two distinct universality
classes [38]. Therefore, it seems that under diverse circumstances, positive and negative
KPZ non-linearities describe very different situations.
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[33] Szendro I, López J and Rodŕıguez M 2007 Phys. Rev. E 76 011603
[34] Barabási A L, Grinstein G and Muñoz MA 1996 Phys. Rev. Lett. 76 1481
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