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Abstract In several genera, the otolith shape is species-
specific and the use of this structure provides a useful
tool aiding in the species identification. In many studies
regarding Neotropical fish fauna, species of the genus
Astyanax are commonly identified at the genus level,
mainly due to the phenotypic plasticity of the morpho-
logical characters traditionally used for species determi-
nation. In consequence, additional tools intended to
better elucidate the taxonomic boundaries between spe-
cies of Astyanax are certainly needed. In the last decade,
the shape of otoliths has allowed to discriminate among
closely related species. In this work, Fourier descriptors
and shape indices of lapillus otolith were evaluated for
the discrimination among three sympatric species of
genus Astyanax inhabiting streams of the Atlantic Rain
Forest (Argentina). Aspect ratio, roundness and elliptic-
ity of otoliths were significantly different between the
species (p < 0.05) while, no significant differences were
found for circularity, rectangularity and form factor
(p > 0.05). PERMANOVA analysis reveal significant
differences between species using Fourier descriptors

(F = 96.7, 0.0001 < p < 0.02) and the reclassification
rates of quadratic discriminant analysis were high,
averaging 86.3% (82.7 - 88.6%). Multivariate analy-
ses of shape indices were not effective to discriminate
between species. Instead, high classification percent-
ages suggest that the otolith outline is a potential tool
for the identification of sympatric morphologically
similar species of Astyanax. Our results could con-
tribute to future taxonomic and phylogenetic studies
and may be an interesting input for both paleontolog-
ical and trophic studies in sympatric species.

Keywords Astyanax . Argentina . Fourier analysis .
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Introduction

The genus Astyanax, with around 150 species
(Eschmeyer and Fricke 2017), is the most species-rich
genus in the order Characiformes and one of the most
species diverse Neotropical fish genera. It is distributed
in continental aquatic systems from South of USA
(Ornelas-García et al. 2008) to Patagonia, Argentina
(Almirón et al. 1997). This genus is of high ecological
importance because it forms the food chain base for
several predators, including other fish, mammals and
birds (De La Ducommun et al. 2010; Rodrigues et al.
2014; Pereira et al. 2016). In low-nutrient Neotropical
streams, genus Astyanax plays important roles in the
recycling of nutrients, acting as keystone nutrient recy-
clers (Small et al. 2011). In addition, species ofAstyanax
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are economically attractive as ornamental fish (Prang
2007) and show potential in both aquaculture and aca-
demic research (Bertolini et al. 2018).

Molecular (Javonillo et al. 2010) and morpholog-
ical (Mirande 2010) evidence showed that species of
the genus Astyanax do not conform a monophyletic
genus and it is currently recognized as incertae sedis
within the Family Characidae (Nelson et al. 2016).
Roughly, the genus is defined by a set of morpho-
logical characters enlisted by Eigenmann (1921) al-
most one century ago. The genus contains many
species with overlapping ranges in meristic and
morphometric characters due to the phenotypic plas-
ticity of the morphological characters traditionally
used for species determination. Unfortunately, the
use of some molecular tools, as DNA Barcoding,
which has been widely used to aid in taxonomic
questions, showed only partial satisfactory results
(Rossini et al. 2016). Altogether, these taxonomic
issues may explain why in many studies of the
Neotropical fish fauna, the species of Astyanax are
identified only at genus level. In consequence, addi-
tional tools intended to better elucidate the taxonom-
ic boundaries between species of Astyanax are cer-
tainly needed. In this respect, the study of otoliths
shape could be a promissory option.

In the last decade, the otoliths morphometry or
shape has allowed to discriminate among closely
related species (Reichenbacher et al. 2007; Bani
et al. 2013; Tuset et al. 2013; Callicó Fortunato
et al. 2014; Avigliano et al. 2015; Boudinar et al.
2016) contributing to solve these taxonomic issues.
Otoliths are complex polycrystalline structures
composed of calcium carbonate located in the inner
ear of fish and have a role in hearing and equilib-
rium (Campana et al. 1997). An additional benefit
of being able to discriminate species using otoliths
is that these structures are often found in the stom-
ach content of organisms (fish, mammals, birds)
and as well as fossils in sediments being a very
useful tool for food-chain, ecological and paleonto-
logical studies (Reichenbacher and Reichard 2014;
Buckland et al. 2017; Giménez et al. 2017).

Recently, Avigliano et al. (2017a, b) described for
the first time the otolith morphological characteris-
tics of the species captured in the Atlantic Rain
Forest (Argentina). In this sense, otolith morphome-
try could provide a useful tool aiding in the identi-
fication of the Astyanax species.

In this work, the potential use of otolith shape
(elliptic Fourier analysis and shape indices) as a
complementary tool to identify and discriminate
sympatric and morphologically similar species of
Astyanax was evaluated. Specifically, we tested
whether otolith morphometry was able to discrimi-
nate among three commonly abundant and wide-
spread (Rosso et al. 2013) species of Astyanax
(A. paris Azpelicueta et al. 2002, A. saguazu
Casciotta et al. 2003 and A. xiru de Lucena et al.
2013) coexisting (Flores et al. 2015) in streams of
the southern most extreme of the Atlantic Rain
Forest (Argentina).

Materials and methods

Study locations and collection

The study area is located among the highlands of the La
Plata Basin (South America), surrounded by subtropical
rainforests (Fig. 1). The major rivers of this region are
the Uruguay River (geographical border between Ar-
gentina and Brazil), and the Paraná River (geographical
border between Argentina and Paraguay).

Collection permits were granted by the Ministerio de
Ecología y Recursos Naturales Renovables of the
Misiones province. Fish were collected using trammel
nets between May 2016 and March 2017 in six small
tributaries of the Uruguay River (Ramos, Florida, For-
taleza, Garibaldi and Yabotí Miní streams) (Fig. 1).
Upon capture, fish were sacrificed with an overdose of
benzocaine, as recommended by the New South Wales
Fisheries Animal Care and Ethics Committee (Barker
et al. 2009). Sacrificed fish were kept refrigerated at
4 °C until reaching the laboratory, where they were
identified, measured (standard length = SL in mm) and
lapilli otoliths were extracted. Lapilli otoliths were used
rather than sagittae otoliths because they were larger
and allowed less measurement error.

The fish species were identified according to original
descriptions (Azpelicueta et al. 2002; Casciotta et al.
2003; De Lucena et al. 2013) and the taxonomic key
proposed by De Lucena et al. (2013). To avoid possible
size fish effects on otolith shape, only individuals with a
SL of 41–115mmwere selected. In total, 146A. saguazu
(SL mean ± SD, 87.7 ± 13.9 mm); 110 A. paris (61.4 ±
12.4mm) and 35A. xiru (77.2 ± 18.7 mm) were selected
for the analysis. The otolith vouchers were deposited at
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the Universidad de Buenos Aires Fish Collection
(COLV/Fish-UBA).

Otolith shape

The internal face of the right lapilli otoliths was
photographed with a digital camera attached to a stereo-
scopic microscope (Leica EZ4-HD, Singapore) at 30×

magnification (Fig. 2). The fields of the images were
digitally cleaned and they were transformed to the BMP
format.

Shape indices

The following morphometric variables were deter-
mined on the images using Image-Pro Plus 4.5

Fig. 1 Map of the study area. Numbers show the localities sampled for collecting the Astyanax spp. Each number represents more than one
sampling site
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software according to the terminology used by
Avigliano et al. (2014): otolith length (OL, mm),
otolith width (OW, mm), otolith perimeter (OP,
mm) and otolith surface (OS, mm2). Then, six

otolith shape indices were calculated (Tuset et al.
2003; Avigliano et al. 2015): aspect ratio, circular-
ity, ellipticity, form factor, rectangularity and
roundness (Table 1) (Eq. 1–6).

Elliptic Fourier analysis

The Elliptic Fourier analysis allows delineating any
object with a closed two dimensional outline. This
method is based on the separate Fourier orthogonal
decompositions of a curve into a sum of harmon-
ically related ellipses (sine and cosine) that can be
combined to reconstruct a closed outline. Each
harmonic or descriptor is composed of four elliptic
Fourier coefficients (FC) (a, b, c and d).

The FCs were obtained using Shape 1.3 soft-
ware. Following Crampton (1995), the number of
harmonics needed to obtain the best reconstruc-
tion of the otolith outline was estimated using the
Fourier power spectrum. The first 10 harmonics
achieved ~100% of the cumulated power (Fig. 2),

Fig. 2 Astyanax spp. otolith shape outlines reconstruction for
successive cumulative contribution of the first 10 harmonics of
the elliptical Fourier analysis (Fourier power spectrum =

99.9999%). Dotted line: original otolith outline; solid line: the
cumulative contribution of harmonics

Table 1 Equations of the shape indices

Shape indices Equation

Aspect ratio ¼ OW
OL

1

Circularity ¼ OP2

OS

2

Ellipticity ¼ OL−OW
OLþOW

3

Form factor ¼ 4πOS
OP2

4

Rectangularity ¼ OS
OLxOW

5

Roundness ¼ 4OS
πOL2

6

OL, otolith length; OW, otolith width; OP, otolith perimeter and
OS, otolith surface
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then, 40 FCs were sufficient to describe the oto-
liths outline. FCs were normalized in order to be
invariant with respect to size, rotation and begin-
ning position of the trace (Ferson et al. 1985).
These processes utilize parameters of the first
harmonic, resulting in degeneration of the first
three FCs (a, b and c ≈ 0) (Crampton 1995). Then,
37 FCs summarize the otoliths outline used in this
study.

Data analysis

Shape indices and FCs were tested for normality
and homogene i t y o f v a r i a n c e u s i ng t h e
Kolmogorov-Smirnov and Levene’s tests respective-
ly. Only ellipticity and 26 FCs displayed a normal
distribution and homogeneity of variance. Circular-
ity, form factor, rectangularity, roundness and the
remaining 11 FCs did not meet such assumptions
(Kolmogorov-Smirnov, p < 0.05; Levene, p < 0.05),
even after transformation like square root, cubic,
inverse or logarithm. Consequently, only ellipticity
was retained for further parametric analyses where-
as the remaining variables were subjected to non-
parametric analyses.

To ensure that differences in fish length did not
confound shape variation in otolith, the effect of
standard length (SL) on all the shape indices and
FCs was examined using Spearman correlation
(Campana 2013). Shape indices and FCs were
not significantly correlated with SL (r < 0.3,
p > 0.05), hence it was not necessary to correct
any variable.

All variables were corrected to avoid allometric ef-
fects of SL according to:

yi ¼ aixib ð7Þ

where y is an otolith shape variable (shape indices
and FCs), x is the SL and a, and b are constants.
Constant ai depends on the particular individual and
b is common for all the fish (Lleonart et al. 2000).
The constant a an b are estimated for each shape
variable as the y-intercept and slope of the regres-
sion between log(yi) and log(xi), respectively
(Lleonart et al. 2000). For example, if the linear

regression between the variables log(circularity)
and log(SL) is:

log circularityð Þi ¼ log aið Þ þ b* log SLð Þi ð8Þ
The constant a is log(ai) and the slope is b. Each yi

value was transformed into y*, according to:

y*i ¼ yi
x0
xi

� �b
ð9Þ

where y* is yi value corrected for allometry, x0 is the
mean standard length for all individuals (77.86 mm) and
xi is the standard length of the i-th specimen.

Ellipticity was compared between species with
ANOVA and differences between level means were treat-
ed using Bonferroni test. KruskalWallis test were used to
compare the aspect ratio, circularity, form factor, rectan-
gularity and roundness between species. Multivariate
statistics were also used to evaluate differences between
species. In order to prevent the use of redundant variables
and a false outcome in the multivariate analysis (Graham
2003), multicollinearity between variables was analyzed
by means of Spearman coefficient of correlation. Aspect
ratio was significantly correlated with ellipticity (r =
−0.97, p = 0.001) and roundness (r = −0.86, p = 0.001)
while circularity significantly correlated with form factor
(r = 0.97, p = 0.001). On the other hand, FCs b2, a3, a4,
b4, c5, b6, d6, a7, b7, b9, c9 and d10 significantly
correlated with others (r > 0.50, p < 0.05). Then, aspect
ratio and circularity were retained and ellipticity, round-
ness and form factor, as well as the named FCs were not
included in the multivariate analysis.

Mardia’s skewness and kurtosis tests showed multi-
dimensional non-normality; therefore, permutational
multivariate analysis of variance (PERMANOVA) was
used instead of MANOVA (French et al. 2002) to detect
differences in the otolith morphology between species.
Two analysis were performed based on Mahalanobis
distances (Anderson 2006) with 9999 permutations for
shape indices and FCs, separately.

Because the assumption of homogeneity of
variances-covariances matrices was not met (Box test,
p < 0.001), quadratic discriminant function analysis
(QDA) were used. In order to evaluate the efficiency
of morphometric methods to discriminate the species,
three QDA were performed; using shape indices and
FCs separately, as well as together. Statistical tests were
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performed using the SPSS 19 (Stacks 1989), Infostat
2016 (Di Rienzo et al. 2011), Past 3.0 (Hammer 2011)
and Ginkgo 1.7 (Bouxin 2005) programs.

Results

Descriptive statistics of shape indices are shown in
Table 2. Aspect ratio, roundness (28.5 < H < 30.4, p =
0.0001) and ellipticity (F = 15.6, p = 0.0001) were sig-
nificantly different among the species. Aspect ratio was
found to be significantly lowest for A. paris, while no
differences were found between A. xiru and A. saguazu.
Ellipticity and roundness were highest for A. paris in
relation to A. xiru and A. saguazu (H = 42.4;
p < 0.0001). No significant differences (3.9 < H < 4.6,
p > 0.05) between species for circularity, rectangularity
and form factor were found.

PERMANOVA and QDA (Table 3, Fig. 3) analyses
were not effective to discriminate between species using
shape indices. PERMANOVA analysis did not show sig-
nificant differences (F = 1.4, p = 0.2), and the percentages
of well classified individuals obtained with the QDAwere
very low for A. xiru and A. paris (20.0%-24.4%). A
moderate classification percentage was obtained for
A. saguazu (71.2%) using only the shape indices
(Table 3). Contrary to shape indices, multivariate analyses
were found to be highly effective detecting differences in
FCs between species. PERMANOVA analysis revealed
multivariate significant differences for all comparisons of
pairs between the three species using Mahalanobis dis-
tances (F = 20.4, p = 0.0001) (Fig. 3). Classification rates
of QDAwere high (mean = 86.3%), ranging from 82.7 to
88.6% (Table 3), when the FC were used. When the QDA
was performed combining the shape indices with the FCs,
the average percentage of well classified individuals ob-
tained was 87.7%, showing only an increase of 1.4% with
respect to the analysis using only the FCs (Table 3). In-
deed, no differences in correct classification were obtained
for A. saguazu and A. paris between the QDA of FCs and
the combined approach including the shape indices. An
improvement of 2.8% was registered with the combined
approach for A. xiru.

Discussion

Because the otolith shape can be under genetic influence
(Vignon and Morat 2010; Schwarzhans et al. 2012), the T

ab
le
2

D
es
cr
ip
tiv

e
st
at
is
tic

of
th
e
ot
ol
ith

sh
ap
e
in
di
ce
s

N
A
sp
ec
tr
at
io

C
ir
cu
la
ri
ty

E
lli
pt
ic
ity

Fo
rm

fa
ct
or

R
ec
ta
ng
ul
ar
ity

R
ou
nd
ne
ss

m
ea
n
±
S
D

ra
ng
e

m
ea
n
±
SD

ra
ng
e

m
ea
n
±
S
D

ra
ng
e

m
ea
n
±
S
D

ra
ng
e

m
ea
n
±
SD

ra
ng
e

m
ea
n
±
S
D

ra
ng
e

A
.x
ir
u

35
0.
75

±
0.
10

b
0.
66
–1
.2
8

5.
39

±
0.
75

a
3.
86
–6
.9
7

0.
16

±
0.
03

b
0.
10
–0
.2
1

18
.4
3
±
3.
17

a
12
.7
6–
25
.7
7

0.
79

±
0.
02

a
0.
74
–0
.8
3

1.
37

±
0.
14

b
0.
78
–1
.5
4

A
.s
ag
ua
zu

14
6

0.
72

±
0.
04

b
0.
63
–0
.8
3

5.
09

±
1.
06

a
0.
47
–8
.5
8

0.
17

±
0.
03

b
0.
09
–0
.2
4

17
.6
7
±
3.
54

a
3.
77
–3
0.
18

0.
78

±
0.
02

a
0.
72
–0
.8
5

1.
40

±
0.
10

b
1.
14
–1
.6
6

A
.p
ar
is

11
0

0.
71

±
0.
14

a
0.
60
–1
.4
9

5.
21

±
1.
12

a
1.
93
–7
.4
6

0.
18

±
0.
03

a
0.
07
–0
.2
4

18
.0
7
±
4.
89

a
4.
39
–2
7.
76

0.
79

±
0.
02

a
0.
70
–1
.0
6

1.
46

±
0.
10

a
1.
21
–1
.7
2

D
if
fe
re
nt
le
tte
rs
in
di
ca
te
st
at
is
tic
al
si
gn
if
ic
an
td
if
fe
re
nc
es

be
tw
ee
n
sp
ec
ie
s
(p
<
0.
05
).
E
lli
pt
ic
ity

w
as

co
m
pa
re
d
am

on
g
sp
ec
ie
s
w
ith

A
N
O
V
A
w
hi
le
K
ru
sk
al
W
al
lis

te
st
w
as

us
ed

to
co
m
pa
re

th
e
as
pe
ct
ra
tio

,c
ir
cu
la
ri
ty
,f
or
m

fa
ct
or
,r
ec
ta
ng
ul
ar
ity

an
d
ro
un
dn
es
s.
N
:s
am

pl
e
si
ze

1324 Environ Biol Fish (2018) 101:1319–1328

Author's personal copy



taxonomic value of otoliths is well recognized and sev-
eral morphometric methods has been used to differenti-
ate current and extinct species (Bani et al. 2013; Gierl
et al. 2013; Reichenbacher and Reichard 2014; Zhuang
et al. 2014; Avigliano et al. 2015). In particular, otolith
contour analysis has been useful even to study species of
extinct fish (Schulz-Mirbach and Reichenbacher 2008).
However, environmental factors (e.g., deep and temper-
ature) have been suggested to be responsible for inter-
and intraspecific differences in shape otoliths (Lombarte
and Lleonart 1993; Lombarte et al. 2010). Because of
these characteristics, otolith shape has been widely used
to identify nursery areas (Avigliano et al. 2017a, b), to

discriminate fish stocks (Ferguson et al. 2011;
Vasconce los e t a l . 2017) , and to desc r ibe
ecomorphological patterns (Volpedo and Diana
Echeverría 2003; Volpedo and Fuchs 2010; Jaramillo
et al. 2014).

In this work, the fish were collected in very
similar environments. Streams of the study area
can be described as shallow oligotrophic environ-
ments (0.5–2 m) with similar environmental (tem-
perature, pH, electrical conductivity, turbidity, dis-
solved oxygen, and total dissolved solids) and
chemical (trace elements, nutrients and agrochemi-
cals) characteristics (Avigliano and Schenone 2015,
2016). In this sense, it is possible that genetics
would overcome environment and likely represent
a major directive force influencing otoliths shape in
the studied species of Astyanax. However, specific
studies are necessary to understand what factors
have real influence on the morphology of otolith
in different species.

According to the univariate analyses, among the
six shape indices used in this paper, only aspect
ratio, ellipticity and roundness showed significant
differences between some of the species pair com-
parisons. These three indices clearly separated
A. paris from the remain species, but were not able
to discriminate between A. xiru and A. saguazu. The
values obtained for the indices suggest that the oto-
liths of A. paris tend to be rather elliptical and with
a relatively low width/length ratio. On the other
hand, the otoliths of A. xiru and A. saguazu do not
differ from each other and present roundness and a
relatively high width/length ratio.

Table 3 Cross-classification matrix of the quadratic discriminant
analysis

N A. xiru A. saguazu A. paris

Shape indices

A. xiru 35 20.0 68.6 11.4

A. saguazu 146 19.2 71.2 9.6

A. paris 110 8.2 65.5 26.4

Fourier descriptors

A. xiru 35 88.6 2.9 8.6

A. saguazu 146 1.4 87.7 11.0

A. paris 110 5.5 11.8 82.7

Shape indices plus Fourier descriptors

A. xiru 35 91.4 2.9 5.7

A. saguazu 146 1.4 87.7 11.0

A. paris 110 4.5 12.7 82.7

The numbers represent the classification percentage for each spe-
cies of Astyanax. N: sample size

Fig. 3 Quadratic Discriminant Analysis of the otolith morphometry of three species of Astyanax from the Atlantic Rain Forest, in Argentina
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In species where sagittae otoliths are conspicu-
ous, in addition to the aspect ratio, circularity,
ellipticity, form factor, rectangularity and round-
ness, it is common to also use relationships based
on the sulcus and rostrum (Jaramillo et al. 2014;
Zhuang et al. 2014; Avigliano et al. 2015). In the
case of Characiformes such as the Astyanax genus,
the lapillus otolith is the most conspicuous. This
does not present rostrum and in the internal view,
the sulcus is covered by the Gibbus maculae (Fig.
2), making it unfeasible to apply indices based on
these structures. In this scenario, other indices such
as compactness, convexity, eccentricity and trian-
gularity or absolute measures such as the length
and mass of the otolith (Tuset et al. 2013), could
be further likely useful tools to separate species of
Characiformes.

The multivariate analyses showed that shape in-
dices alone were not efficient to separate the three
species under study and with combination with FCs
only slightly improved the correct classification
percentages. Unlike the shape indices, the otolith
outlines (as revealed by the elliptical Fourier anal-
ysis) showed significant multivariate differences be-
tween species and high classification percentages
(Fig. 3) (Table 3) indicating that this aspect of the
morphometry of the otolith is a potential tool for
the identification of some Astyanax species. In gen-
eral, when groups are well discriminated, the results
are enhanced when methods separately effective are
combined (Ferguson et al. 2011; Avigliano et al.
2017a, b). In this study, the combination of both
techniques did not show substantial improvements
in the classification of the species.

This work is probably the first to attempt to
clarify the taxonomy of recent species using otolith
contour analysis. Results shows that some sympatric
and morphologically similar species of Astyanax
may be discriminated using the shape of the otolith,
especially the contour. This tool could contribute to
future taxonomic studies and may be an interesting
input for both paleontological and trophic works.
Indeed, several studies have used morphology of
the otoliths to perform diet studies of different ver-
tebrate groups (Buckland et al. 2017; Giménez et al.
2017). Particularly, the otoliths of Astyanax have
been used as a tool to study the diet of the Neotrop-
ical river otter Lontra longicaudis (Helder and De
Andrade 1997).
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