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We also provide obstructions for their existence on Lie groups, and reduce the 
study of conformal Killing–Yano 2-forms to a particular class of non degenerate 
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1. Introduction

A p-form ω on a Riemannian manifold (M, g) is called Killing–Yano if it satisfies the equation

(∇Xω)(Y,X1, . . . , Xp−1) = −(∇Y ω)(X,X1, . . . , Xp−1) (1)

for any vector fields X, Y, X1, . . . , Xp−1 on M . In the case of p = 1, a Killing–Yano 1-form is dual to a 
Killing vector field. In this sense, Killing–Yano forms are natural generalizations of Killing vector fields. 
They were first introduced by K. Yano ([15]), who showed that Killing–Yano forms give rise to quadratic 
first integrals of the geodesic equation. This was first used by R. Penrose and M. Walker ([13]) to integrate 
the equation of motion.

In [12] the Killing–Yano equation is studied for the fundamental forms defining a G-structure, for 
G = SO(n), SU(n), U(n), Sp(n) × Sp(1), Sp(n), G2 or Spin(7). He proves that if the fundamental form 
satisfies (1) then, in most cases, it is parallel with respect to the Levi-Civita connection. The case of a 
compact simply connected symmetric space M has been considered in [5] where it is shown that M carries 
a non-parallel Killing–Yano p-form, p ≥ 2, if and only if it is isometric to a Riemannian product Sk × N , 
where Sk is a round sphere and k > p.

* Corresponding author.
E-mail addresses: andrada@famaf.unc.edu.ar (A. Andrada), idotti@famaf.unc.edu.ar (I.G. Dotti).
https://doi.org/10.1016/j.difgeo.2018.01.003
0926-2245/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.difgeo.2018.01.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/difgeo
mailto:andrada@famaf.unc.edu.ar
mailto:idotti@famaf.unc.edu.ar
https://doi.org/10.1016/j.difgeo.2018.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.difgeo.2018.01.003&domain=pdf


104 A. Andrada, I.G. Dotti / Differential Geometry and its Applications 58 (2018) 103–119
As a further generalization, a p-form ω on an n-dimensional Riemannian manifold (M, g) is called con-
formal Killing–Yano (CKY for short) if it satisfies the following equation:

∇Xω = 1
p + 1 ιXdω − 1

n− p + 1 X∗ ∧ d∗ω, (2)

for any vector field X on M , where ∇ is the Levi-Civita connection, X∗ is the 1-form dual to X and 
d∗ = (−1)n(p+1)+1 ∗ d ∗ is the co-differential. Note that a CKY form ω is co-closed, that is d∗ω = 0, if and 
only if it is Killing–Yano.

We remark that the space of CKY forms is conformally invariant. Indeed, if ω is a CKY p-form on (M, g)
and g̃ := e2fg is a conformally equivalent metric, then the form ω̃ := e(p+1)fω is a CKY p-form on (M, ̃g)
(see [6]). Moreover, this space of CKY forms is invariant by the Hodge-star operator (see [14]).

It was proved in [14] that on a compact 7-manifold with holonomy G2 any CKY p-form with p �= 3, 4
is parallel. The description of conformal Killing–Yano p-forms on a compact Riemannian product was 
obtained in [10], proving that such a form is a sum of forms of the following types: parallel forms, pull-back 
of Killing–Yano forms on the factors, and their Hodge duals.

In this article we will deal with 2-forms which are (conformal) Killing–Yano. We observe that the 2-form 
ω associated to a nearly Kähler manifold satisfies the Killing–Yano equation (1), while the canonical 2-form 
of a Sasakian manifold satisfies (2). Our goal is to construct examples of Riemannian manifolds carrying 
these distinguished 2-forms.

This article is organized as follows. In Section 2 we recall some basic results, and in Section 3 we study 
Killing–Yano 2-forms. We prove that on the total space of certain Riemannian submersions with totally 
geodesic fibers, for any t > 0 there exists a Riemannian metric gt admitting Killing–Yano 2-forms, extending 
results by Nagy on nearly Kähler structures in this class of manifolds ([11]). We also show a method to 
build Killing–Yano 2-forms on Lie groups with left invariant metrics, starting with a Lie group equipped 
with such a tensor and a suitable representation of its Lie algebra. In Section 4 we consider invariant 
conformal Killing–Yano 2-forms on Lie groups with left invariant metrics. One first obstruction obtained 
is that those forms occur in odd dimensions, provided that they are not Killing–Yano (see Theorem 4.3). 
Furthermore, imposing certain restrictions on the codifferential of such a form, then the center of the group 
is 1-dimensional and the quotient of the group by its center inherits a non-degenerate Killing–Yano 2-form 
(see Theorem 4.6). Using this, we show that skew-symmetric non-degenerate parallel 2-forms give rise to 
CKY 2-forms on a higher dimensional Lie group by considering central extensions. This leads to the study 
of such forms in Section 5, where we give some obstructions for their existence (see Theorem 5.1). Finally, in 
Section 6 we focus on the existence of (conformal) Killing–Yano 2-forms in two special classes of Lie groups 
with left invariant metrics: (i) Lie groups with flat left invariant metric, and (ii) almost abelian Lie groups, 
that is, Lie groups such that the corresponding Lie algebra has a codimension 1 abelian ideal.

2. Preliminaries

Let (M, g) be a Riemannian manifold, and T : TM → TM a skew-symmetric endomorphism of the 
tangent bundle TM of M with its associated 2-form ω given by ω(X, Y ) = g(TX, Y ) for all X, Y vector 
fields on M .

We denote by NT the Nijenhuis tensor of T , defined by

NT (X,Y ) := [TX, TY ] − T ([X,TY ] + [TX, Y ]) + T 2[X,Y ] (3)

and by ∇ the Levi-Civita connection associated to (M, g). Since

(∇XT )Y = ∇X (TY ) − T (∇XY ) , (4)
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one has the following identity:

NT (X,Y ) = (∇TXT )Y − (∇TY T )X − T (∇XT )Y + T (∇Y T )X, (5)

for all X, Y vector fields on M .
The endomorphism T is called integrable when NT ≡ 0, and the tensor field T is called parallel with 

respect to ∇ when ∇T = 0, that is, (∇XT )Y = 0 for all X, Y vector fields on M (see (4)).
It follows from (5) that if T is parallel then T is integrable.
Recall that given a 2-form ω on M , the exterior derivative dω of ω can be computed in terms of ∇ω as 

follows:

dω(X,Y, Z) = (∇Xω)(Y,Z) + (∇Y ω)(Z,X) + (∇Zω)(X,Y ), (6)

for all vector fields X, Y, Z on M .
If T : TM → TM is a skew-symmetric invertible endomorphism of the tangent bundle TM of (M, g)

with associated 2-forms ω and μ given by

ω(X,Y ) = g(TX, Y ), μ(X,Y ) = g(T−1X,Y )

for all X, Y vector fields on M , then after standard computations we obtain the following result:

Lemma 2.1. For any X, Y, Z vector fields on M , the following identities hold:

(i) ∇XT−1 = −T−1(∇XT )T−1,
(ii) T−1NT (T−1X, T−1Y ) = TNT−1(X, Y ),
(iii) 2g ((∇XT )Y,Z) = dω(X, Y, Z) + dμ(X, TY, TZ) − g

(
NT (Y,Z), T−1X

)
,

(iv) dμ(TX, TY, TZ) = (∇TXω)(Y, Z) + (∇TY ω)(Z, X) + (∇TZω)(X, Y ).

Corollary 2.2. With notation as above, the skew-symmetric invertible tensor T is parallel if and only if 
NT = 0 and dω = dμ = 0.

3. Killing–Yano 2-forms

A 2-form ω on a Riemannian manifold (M, g) is called Killing–Yano if it satisfies the Killing–Yano 
equation,

(∇Xω)(Y,Z) = −(∇Y ω)(X,Z), (7)

where ∇ is the Levi-Civita connection and X, Y, Z are arbitrary vector fields on M (see [15]).
Using identity (6) the equivalence below follows.

Lemma 3.1. Let (M, g) be a Riemannian manifold, ∇ the Levi-Civita connection and ω a 2-form on M . The 
following conditions are equivalent:

(i) (∇Xω)(Y, Z) + (∇Y ω)(X, Z) = 0;
(ii) dω(X, Y, Z) = 3(∇Xω)(Y, Z).

Let (M, g) be a Riemannian manifold, ∇ the Levi-Civita connection and ω a 2-form on M satisfying any 
of the conditions of Lemma 3.1. Then the skew-symmetric endomorphism T of TM defined by ω and g, 
that is ω(X, Y ) = g(TX, Y ) satisfies
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(∇XT )Y = −(∇Y T )X (8)

for all X, Y vector fields on M . Conversely, if T is a skew-symmetric endomorphism of TM satisfying 
(∇XT )X = 0 then the 2-form ω(X, Y ) = g(TX, Y ) satisfies any of the conditions of Lemma 3.1. After this 
observation we will refer indistinctly to a 2-form ω or a skew symmetric (1, 1)-tensor T satisfying (7) or (8)
as Killing–Yano (KY). Note that if (J, g) is an almost Hermitian structure, then the fundamental 2 form ω
given by ω(X, Y ) = (JX, Y ) is Killing–Yano if and only if (J, g) is nearly Kähler.

Proposition 3.2. If T is a Killing–Yano tensor on M , then

〈NT (X,Y ), Z〉 = 1
3 (dω(TX, Y, Z) + dω(X,TY, Z) + 2dω(X,Y, TZ)) .

Moreover, if T is invertible, then

dμ(TX, TY, TZ) = 1
3 (dω(TX, Y, Z) + dω(X,TY, Z) + dω(X,Y, TZ)) .

Proof. From Lemma 3.1 (ii), we obtain the following relations:

dω(X,Y, TZ) = 3(∇Xω)(Y, TZ) = 3g((∇XT )Y, TZ),

dω(Y,X, TZ) = 3g((∇Y T )X,TZ),

dω(TX, Y, Z) = 3g((∇TXT )Y,Z),

dω(TY,X,Z) = 3g((∇TY T )X,Z).

Now, we apply identity (5) to obtain

3g(NT (X,Y ), Z) = dω(TX, Y, Z) − dω(TY,X,Z) + dω(X,Y, TZ) − dω(Y,X, TZ)

= dω(TX, Y, Z) + dω(X,TY, Z) + 2dω(X,Y, TZ),

and this proves the first identity in the statement.
The second identity follows from Lemma 2.1 (iii) and Lemma 3.1 (ii). �

Corollary 3.3. If T is an invertible integrable Killing–Yano tensor on M , then T is parallel.

Proof. Since NT ≡ 0, it follows from Lemma 3.2 that

dω(TX, Y, Z) + dω(X,TY, Z) + 2dω(X,Y, TZ) = 0,

for all X, Y, Z vector fields on M . Thus

dω(X,Y, TZ) = −1
2(dω(TX, Y, Z) + dω(X,TY, Z))

= −1
2(dω(Y,Z, TX) + dω(Z,X, TY ))

= 1
4(dω(TY,Z,X) + dω(Y, TZ,X) + dω(TZ,X, Y ) + dω(Z, TX, Y ))

= 1
4(2dω(X,Y, TZ) + dω(TX, Y, Z) + dω(X,TY, Z))

= 0.

As T is invertible, it follows that ω is closed and therefore parallel (Lemma 3.1). �
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Remark 1. Corollary 3.3 is a generalization of the fact that an integrable nearly Kähler structure is actually 
Kähler.

In the following examples we exhibit new solutions to the Killing–Yano equation (7).

Example 1. Let us consider a Riemannian submersion

F ↪→ (M, g) → N

with totally geodesic fibers, and let TM = V ⊕ H the corresponding decomposition of TM into vertical 
and horizontal components. Let us also assume that M carries a complex structure J such that (M, g, J) is 
Kähler and J(V) = V, J(H) = H.

For t > 0, let gt be the Riemannian metric on M defined by

gt(v, w) = tg(v, w),

gt(x, y) = g(x, y),

gt(v, x) = 0,

for any v, w ∈ V, x, y ∈ H. According to [7], F ↪→ (M, gt) → N is a Riemannian submersion with totally 
geodesic fibers.

We consider next the endomorphism Ĵ of TM defined by

Ĵ |V = aJ, Ĵ |H = bJ, (9)

for some a, b ∈ R such that a2 + b2 �= 0. Note that Ĵ is skew-symmetric with respect to gt for any t > 0. 
For instance, if a = −1, b = 1, then (M, gt, Ĵ) is almost Hermitian, and it was proved in [11] that for t = 1

2
this almost Hermitian manifold is actually nearly Kähler.

Let us denote by ∇t the Levi-Civita connection associated to gt, and let A be the O’Neill tensor of the 
Riemannian submersion (M, g) → N . After standard computations, we obtain

(∇t
V Ĵ)W = 0, (∇t

X Ĵ)Y = (b− a)JAXY,

(∇t
X Ĵ)V = (a− b)tJAXV, (∇t

V Ĵ)X = 2b(1 − t)JAXV,

for V, W vertical vector fields and X, Y horizontal vector fields. Recalling that AXY = −AY X whenever X
and Y are horizontal, it follows that Ĵ is Killing–Yano if and only if

(a− b)t = 2b(t− 1). (10)

Therefore, for a fixed t > 0, we obtain infinitely many values of a, b satisfying (10), and consequently 
infinitely many Killing–Yano tensors Ĵ as in (9).

We have proved

Theorem 3.4. Let F ↪→ (M, g) → N be a Riemannian submersion with totally geodesic fibers. Assume that M
admits a complex structure J such that (J, g) is a Kähler structure on M and J preserves the corresponding 
vertical and horizontal subbundles of TM . Then for any t > 0 the Riemannian metric gt defined above 
admits Killing–Yano tensors.

Corollary 3.5. On the twistor space of any quaternionic-Kähler manifold with positive scalar curvature and 
for any t > 0, there exists a Riemannian metric gt admitting Killing–Yano tensors.
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A particular case of twistor spaces as in the previous corollary are CP 3 (the twistor space of S4) and the 
flag manifold F3 (the twistor space of CP 2); see for instance [8].

Example 2. On a Lie group G equipped with a left invariant metric, the search for left invariant 2-forms 
satisfying the Killing–Yano equation (7) reduces to finding skew-symmetric endomorphisms T : g → g of its 
Lie algebra satisfying

(∇xT )y = −(∇yT )x, x, y ∈ g.

This endomorphism is called a Killing–Yano tensor on the Lie algebra g. Some examples of Lie groups with 
left invariant metric admitting left invariant KY tensors are given in [1,4].

In this example we exhibit a method to obtain new examples of KY tensors on Lie algebras, beginning 
with a Lie algebra equipped with such a tensor and a suitable representation.

Let (h, 〈 , 〉) be a Lie algebra with an inner product and let (V, 〈 , 〉) be a finite dimensional vector 
space with an inner product. Given a representation π : h → End(V ), set g := h �π V equipped with the 
orthogonal direct sum of the inner products on h and V .

If T and E are skew-symmetric operators on h and V , respectively, let us define a skew-symmetric 
operator T1 on g by

T1|h = T, T1|V = E.

We want to determine when T1 is a KY tensor on g. In order to do so, we compute first the Levi-Civita 
connection ∇ on g in terms of the Levi-Civita connection ∇ on h and the representation π. It is readily 
verified that, whenever x, y ∈ h and u, v ∈ V ,

∇xy = ∇xy, ∇xu = π(x)au, ∇ux = −π(x)su,

∇uv ∈ h and 〈∇uv, x〉 = 〈π(x)su, v〉,

where π(x)a and π(x)s denote the skew-symmetric and symmetric components of π(x), respectively. Using 
these expressions, we obtain the following relations concerning ∇T1, for x ∈ h and u ∈ V :

• (∇xT1)x = (∇xT )x,
• (∇uT1)u ∈ h and 〈(∇uT1)u, x〉 = 1

2 〈[π(x), E]u, u〉 + 〈π(Tx)u, u〉,
• (∇uT1)x + (∇xT1)u = −π(Tx)su + Eπ(x)su + [π(x)a, E]u.

As a consequence, we obtain the following result.

Proposition 3.6. With notation as above, if

(i) T is a Killing–Yano tensor on h,
(ii) π(x) is skew-symmetric for all x ∈ h,
(iii) [π(x), E] = 0 for all x ∈ h,

then T1 is a Killing–Yano tensor on g. Furthermore, T1 is parallel if and only if T is parallel.

For instance, we may take V = R
2n, E = J the canonical complex structure on R2n, and π a representation 

such that π(x) is skew symmetric and [π(x), J ] = 0 for all x ∈ h, that is, π(x) ∈ u(n) for all x ∈ h.
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Remark 2. If h is a solvable Lie algebra, then π(h) is a solvable Lie subalgebra of so(V ), which is compact. 
Thus, π(h) is abelian and therefore π(x) = 0 for x ∈ h′. If a is a maximal abelian subalgebra of so(V ) such 
that π(h) ⊆ a, then E ∈ a.

4. Conformal Killing–Yano 2-forms

A 2-form ω on an n-dimensional Riemannian manifold (M, g) is called conformal Killing–Yano (CKY for 
short) if it satisfies the following equation:

(∇Xω)(Y,Z) = 1
3dω(X,Y, Z) − 1

n− 1(X∗ ∧ d∗ω)(Y,Z), (11)

for any vector fields X, Y, Z on M where ∇ is the Levi-Civita connection, X∗ is the 1-form dual to X and 
d∗ = (−1)n+1 ∗ d ∗, is the co-differential. Note that such a form ω is KY if and only if d∗ω = 0.

According to [14, Proposition 2.7], a 2-form ω is a conformal Killing–Yano tensor if and only if there 
exists a 1-form θ on M such that

(∇Xω)(Y,Z) + (∇Y ω)(X,Z) = 2g(X,Y )θ(Z) − g(X,Z)θ(Y ) − g(Y,Z)θ(X), (12)

for any vector fields X, Y, Z on M . Furthermore, the 1-form θ is given by

θ = − 1
n− 1d

∗ω. (13)

An interesting class of manifolds admitting CKY 2-forms is given by the Sasakian manifolds. We recall 
that a Riemannian manifold (M, g) is called Sasakian if there exists a unit length Killing vector field ψ such 
that for any vector field X on M ,

∇Xdψ∗ = −2X∗ ∧ ψ∗ (14)

where ψ∗(Y ) = g(ψ, Y ). It was proved in [14] that dψ∗ is a CKY 2-form. In [3], many examples of left 
invariant Sasakian structures on Lie groups were provided using a central extension of a Kähler Lie group. 
In a similar fashion, we will prove that starting with a Lie group with a special left invariant KY 2-form, a 
central extension of this group carries a left invariant solution to the CKY equation (11).

4.1. Left invariant CKY 2-forms on Lie groups

Let g be a left invariant Riemannian metric on the Lie group G, and let g be its Lie algebra. Many 
geometric invariants can be computed at the Lie algebra level. In particular, the Levi-Civita connection ∇
associated to g, when applied to left invariant vector fields, is given by:

2〈∇xy, z〉 = 〈[x, y], z〉 − 〈[y, z], x〉 + 〈[z, x], y〉, x, y, z ∈ g, (15)

where 〈 , 〉 is the inner product induced by g on g. Note that ∇g = 0 implies that ∇x is a skew-symmetric 
endomorphism of g for any x ∈ g.

A left invariant 2-form ω on G is a 2-form such that L∗
aω = ω for all a ∈ G, where La is left translation 

by a ∈ G. We will consider left invariant 2-forms ω on (G, g) satisfying (11). Since ∇ω, dω and d∗ω are 
left invariant as well, we will study ω ∈

∧2
g∗ satisfying (11) for x ∈ g, or equivalently, ω satisfying (12) for 

x, y, z ∈ g and θ ∈ g∗. We will call such a form a conformal Killing–Yano 2-form on (g, 〈 , 〉).
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From now on, we will consider left invariant CKY 2-forms on (G, g), where g is a left invariant metric. 
With respect to g, any left invariant 2-form ω on G gives rise to a skew-symmetric endomorphism T of the 
Lie algebra g defined by ω(x, y) = 〈Tx, y〉, for any x, y ∈ g. If ω is a left invariant CKY 2-form on (G, g), 
the associated endomorphism T of g will be called a conformal Killing–Yano tensor on g.

All known examples of CKY tensors (not KY) on Lie algebras occur only in odd dimensions. We will 
prove next that this is always the case.

Proposition 4.1. If T is a conformal Killing–Yano tensor on the Lie algebra (g, 〈 , 〉), with associated 1-form 
θ defined by (12), then θ ◦ T = 0.

Proof. From (12), taking x = y, we obtain

〈(∇xT )x, z〉 = ‖x‖2θ(z) − 〈x, z〉θ(x), (16)

for any x, z ∈ g. If we consider z = Tx, we obtain, since T is skew-symmetric,

θ(Tx) = 〈(∇xT )x, Tx〉
‖x‖2 (17)

for any 0 �= x ∈ g. Now, using (15), we get

〈(∇xT )x, Tx〉 = 〈[T 2x, x], x〉. (18)

There is an orthonormal basis {ei, fi, uj} of g such that Tei = aifi, Tfi = −aiei and Tuj = 0, for some 
ai ∈ R

× and for 1 ≤ i ≤ r, 1 ≤ j ≤ s. Therefore T 2ei = −a2
i ei, T

2fi = −a2
i fi. Using this in (17) and (18), 

we obtain θ(Tei) = θ(Tfi) = θ(Tuj) = 0 for all i and j, hence θ ◦ T = 0. �
Corollary 4.2. With the same hypothesis as in the previous result, if ξ ∈ g is the unique element of g that 
satisfies θ(x) = 〈ξ, x〉 for all x ∈ g, then Tξ = 0.

Remark 3. It follows from [1, Lemma 2.3] that when g is an n-dimensional unimodular Lie algebra, the 
vector ξ from Corollary 4.2 is given by ξ = − 1

2(n−1)
∑n

i=1[Tei, ei], where {e1, . . . , en} is any orthonormal 
basis of g. In particular, ξ ∈ g′ := [g, g].

In the following result we provide a strong restriction to the existence of a CKY tensor which is not KY, 
namely, the dimension of the Lie algebra has to be odd and the associated 2-form has maximal rank.

Theorem 4.3. Let T be a conformal Killing–Yano tensor on the Lie algebra (g, 〈 , 〉), with associated 1-form 
θ defined by (12). If θ �= 0, then dim g is odd and T |ξ⊥ : ξ⊥ → ξ⊥ is a linear isomorphism. Moreover, 
(∇ξT )ξ = ∇ξξ = 0, and ξ⊥ is stable by the operator adξ.

Proof. Let x ∈ kerT ∩ ξ⊥, then from (16) with z = ξ, we obtain

〈(∇xT )x, ξ〉 = ‖x‖2‖ξ‖2.

Using that Tx = 0 and Tξ = 0, we see that the left-hand side of the previous equation is 0, hence x = 0. This 
means that kerT is generated by ξ, and the restriction T |ξ⊥ : ξ⊥ → ξ⊥ is a skew-symmetric isomorphism, 
therefore dim ξ⊥ = 2m and dim g = 2m + 1.

Since ∇ξT is skew-symmetric, we have 〈(∇ξT )ξ, ξ〉 = 0, and for x ∈ ξ⊥, from (16) we have

〈(∇ξT )ξ, x〉 = ‖ξ‖2〈ξ, x〉 − 〈ξ, x〉‖ξ‖2 = 0,
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so that (∇ξT )ξ = 0. Moreover, 0 = 〈(∇ξT )ξ, x〉 = −〈T∇ξξ, x〉 = 〈∇ξξ, Tx〉. Since T is an isomorphism 
on ξ⊥ and 〈∇ξξ, ξ〉 = 0, we obtain ∇ξξ = 0.

To prove the last assertion, we have for any x ∈ g,

0 = 〈∇ξξ, x〉 = −〈[ξ, x], ξ〉,

therefore adξ(x) ∈ ξ⊥ for any x ∈ g, in particular, ξ⊥ is adξ-stable. �
Corollary 4.4. Let T be a conformal Killing–Yano tensor on the n-dimensional Lie algebra (g, 〈 , 〉), with 
associated 1-form θ defined by (12). If n is even, then θ = 0, that is, T is a KY tensor on g.

Corollary 4.5. If dim g = 4, then any conformal Killing–Yano tensor is parallel.

Proof. Let T be a conformal Killing–Yano tensor on g, and let ω denote the corresponding CKY 2-form. 
According to Corollary 4.4, both T and ω are Killing–Yano, so that d∗ω = 0. It follows from [14] that ∗ω is 
a CKY 2-form on g. Again, due to Corollary 4.4, ∗ω is Killing–Yano, so that d∗(∗ω) = 0. But this implies 
∗(dω) = 0, thus dω = 0. Since ω is a closed KY 2-form, it is parallel. �
Remark 4. More generally, it was proved in [2] that on a 4-dimensional Riemannian manifold, any conformal 
Killing–Yano 2-form of constant length is parallel.

In the rest of this section we will study the case when the (2n + 1)-dimensional Lie algebra g admits a 
CKY 2-form ω such that the associated 1-form θ is dual to a non zero central element. In this case, θ turns 
out to be a contact form, that is, θ ∧ (dθ)n �= 0. Compare with the Sasakian case, where if the center is 
different from zero, then the center is generated by the Reeb vector (see [3]).

Theorem 4.6. Let T be a CKY tensor on (g, 〈 , 〉), with ω the associated 2-form and ξ ∈ g as in Corollary 4.2. 
If ξ ∈ z, then z = Rξ and h := ξ⊥ admits a Lie bracket [ , ]′ such that S := T |h is an invertible KY tensor 
on h, and the 2-form μ on (h, [ , ]′) defined by μ(x, y) = 〈S−1x, y〉 is closed and co-closed, hence harmonic.

Moreover, the 1-form θ is a contact form on g.

Proof. Let us prove first that z = Rξ. Let x ∈ z, 〈x, ξ〉 = 0, then from (16) with z = ξ, we obtain

〈(∇xT )x, ξ〉 = ‖x‖2‖ξ‖2.

Using that x ∈ z and Tξ = 0, we see that the left-hand side of the previous equation is 0, hence x = 0, so 
that z is generated by ξ.

As a consequence, we can decompose g as the orthogonal sum g = Rξ ⊕ ξ⊥. Let us denote h := ξ⊥. For 
any x, y ∈ h, we then have a decomposition

[x, y] = [x, y]′ − 2μ(x, y)ξ, [x, y]′ ∈ h, μ ∈
∧2

h∗. (19)

Computing 〈[x, y], ξ〉 = θ([x, y]) = −dθ(x, y) and using (19), we obtain the following expression for μ:

μ(x, y) = dθ(x, y)
2‖ξ‖2 . (20)

We will prove next that [ , ]′ defines a Lie bracket on h and that μ is a closed 2-form on h with this 
Lie algebra structure. Indeed, for x, y, z ∈ h, we consider the Jacobi identity for [ , ]: [[x, y], z] + [[y, z], x] +
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[[z, x], y] = 0. Expanding this expression according to the decomposition (19), and using that ξ ∈ z, we 
obtain

[[x, y]′, z]′ + [[y, z]′, x]′ + [[z, x]′, y]′ = 0, and μ([x, y]′, z) + μ([y, z]′, x) + μ([z, x]′, y) = 0.

This means that [ , ]′ is a Lie bracket on h and d′μ = 0, where d′ is the differential associated to this Lie 
bracket on h.

Next, we will show that S := T |h : h → h is a Killing–Yano tensor on h. Note that according to 
Theorem 4.6 this endomorphism is invertible. The Levi-Civita connection ∇′ associated to 〈 , 〉|h×h on 
(h, [ , ]′) is given by the h-component of ∇. Using this, and the fact that ker θ = h, it follows that

〈(∇′
xS)y, z〉 = 1

3dω(x, y, z) = 1
3d

′ω(x, y, z), x, y, z ∈ h

hence S is a Killing–Yano tensor on h.
Finally, we will find another expression for the 2-form μ, one that does not involve the 1-form θ. For 

x, y ∈ h, it is easy to see that

−dθ(x, Ty) = θ([x, Ty]) = 2〈(∇xT )y, ξ〉 = 2(∇xω)(y, ξ).

Now, using that ω is a conformal Killing–Yano 2-form and dω(x, y, ξ) = 0 (since ξ ∈ z and Tξ = 0), we 
compute

(∇xω)(y, ξ) = 1
3dω(x, y, ξ) + x∗ ∧ θ(y, ξ) (from (11) and (13))

= x∗ ∧ θ(y, ξ)

= 〈x, y〉‖ξ‖2 − 〈ξ, ξ〉θ(y)
= 〈x, y〉‖ξ‖2.

Therefore, since S = T |h is invertible, we have dθ(x, y) = 2〈S−1x, y〉‖ξ‖2, thus, replacing in (20), we obtain

μ(x, y) = 〈S−1x, y〉, x, y ∈ h.

Next, we note that

dθ(x, y) = −2ω(T−1x, T−1y)‖ξ‖2, x, y ∈ h.

Therefore, since ω is non degenerate on h, we have that θ is a contact form on g.
It remains to show that the 2-form μ is co-closed. This will be a consequence of the following lemma, 

and the proof is complete. �
Lemma 4.7. If S is an invertible Killing–Yano tensor on g and μ is the 2-form associated to S−1 then 
d∗μ = 0.

Proof. Recall that μ(x, y) = 〈S−1x, y〉, for x, y ∈ g. We compute

d∗μ(x) = −
n∑

i=1
(∇eiμ)(ei, x) = −

n∑
i=1

(∇eiμ)(SS−1ei, SS
−1x) (21)

Using Lemma 2.1 and the fact that S is a Killing–Yano tensor it then follows
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d∗μ(x) = −
n∑

i=1
(∇S−1xω)(ei, S−1ei) =

n∑
i=1

g(S−1(∇S−1xS)ei, ei)

= tr(S−1(∇S−1xS))

= 0,

as claimed. �
Remark 5. It can be seen that in the family of examples of KY tensors given in Theorem 3.4, the 2-form μ
associated to the tensor Ĵ−1 is also co-closed.

We will show next that the converse of Theorem 4.6 holds.

Theorem 4.8. Let S be an invertible Killing–Yano tensor on a Lie algebra (h, [ , ]′, 〈 , 〉) such that the 2-form 
defined by μ(x, y) = 〈S−1x, y〉 is closed. Set g := h ⊕ Rξ with Lie bracket [ , ] given by

[h, ξ] = 0, [x, y] = [x, y]′ − 2μ(x, y)ξ, x, y ∈ h

and inner product obtained by extending the one on h such that 〈h, ξ〉 = 0, ‖ξ‖ > 0 arbitrary. Then the 
endomorphism T of g given by T |h = S, Tξ = 0, is a conformal Killing–Yano tensor on g.

Proof. It is readily verified that (g, [ , ]) is indeed a Lie algebra.
The Levi-Civita connection ∇ on g is related to the Levi-Civita connection ∇′ on h in the following way:

∇xy = ∇′
xy − μ(x, y)ξ, ∇ξx = ∇xξ = ‖ξ‖2S−1x, ∇ξξ = 0, (22)

for any x, y ∈ h.
Using (22) and the fact that S is a Killing–Yano tensor on h, it is straightforward to verify that T is a 

conformal Killing–Yano tensor on g. �
Remark 6. The Lie algebra g constructed in Theorem 4.8 is known as the 1-dimensional central extension 
of h by the cocycle (−2μ).

Corollary 4.9. For any invertible parallel tensor S on a metric Lie algebra (h, 〈·, ·〉), the 1-dimensional central 
extension of h by the 2-cocycle (−2μ), with μ(x, y) = 〈S−1x, y〉, carries a conformal Killing–Yano tensor.

Remark 7. The only known examples to us of invertible Killing–Yano tensors S on Lie algebras such that 
2-form μ associated to S−1 is closed are the parallel ones.

5. Skew-symmetric invertible parallel tensors on Lie groups

According to Corollary 4.9, skew-symmetric invertible parallel tensors on a Lie algebra may be used to 
build CKY tensors on a higher dimensional Lie algebra. For that reason in this section we analyze such 
tensors and discuss their existence and properties.

The main result of this section is the following theorem, which provides an obstruction for the existence 
of skew-symmetric parallel tensors.

Theorem 5.1. If g is a Lie algebra with an inner product 〈 , 〉 such that g′ ∩ z �= {0}, then there is no skew-
symmetric invertible parallel tensor on g. In particular, this holds for any inner product on a non-abelian 
nilpotent Lie algebra.
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This theorem will follow easily from the next lemma.

Lemma 5.2. Let g be a Lie algebra such that its center z is non-zero, and let 〈 , 〉 denote an inner product 
on g. If T is a skew-symmetric invertible endomorphism of g such that ∇T = 0, where ∇ denotes the 
Levi-Civita connection associated to 〈 , 〉, then:

(i) z + T z ⊆ (g′)⊥,
(ii) z + T z is an abelian Lie subalgebra of g,
(iii) adTz is skew-symmetric for any z ∈ z,
(iv) [T, adTz] = 0 for any z ∈ z.

Proof. Let 0 �= z ∈ z. We will prove this theorem computing ρ(Tz), the Ricci curvature in the direction 
of Tz. Recall from [9] that if u ∈ (g′)⊥, then ρ(u) ≤ 0, and moreover, ρ(u) = 0 if and only if adu is 
skew-symmetric.

Since T is parallel, the 2-form ω defined by ω(x, y) = 〈Tx, y〉, x, y ∈ g, is closed, and then we compute

0 = dω(z, x, y) = −ω([x, y], z) = −〈T [x, y], z〉 = 〈[x, y], T z〉,

showing that Tz ∈ (g′)⊥. Therefore, it follows that ρ(Tz) ≤ 0 and ρ(Tz) = 0 if and only if adTz is 
skew-symmetric.

Let us now assume that the following claim holds (a proof will be given below):

Claim. For any 0 �= z ∈ z, the Ricci curvature ρ(Tz) in the direction of Tz satisfies ρ(Tz) ≥ 0. Moreover, 
ρ(Tz) = 0 if and only if z ∈ (g′)⊥.

Therefore, we have that ρ(Tz) = 0, thus z ∈ (g′)⊥, Tz ∈ (g′)⊥ and adTz is skew-symmetric, proving (i) 
and (iii).

In order to prove (ii), we recall that if T is parallel, then T is integrable, so that NT (x, y) = 0 for all 
x, y ∈ g. We only have to check that [Tz1, Tz2] = 0 for any z1, z2 ∈ z. Indeed,

[Tz1, T z2] = T ([Tz1, z2] + [z1, T z2]) − T 2[z1, z2] = 0,

and (ii) is proved.
In order to prove (iv), it is sufficient to check that if x ∈ g′ and adx is skew-symmetric then ∇xT =

[adx, T ], and this is straightforward.

Proof of Claim. Let {e1, . . . , e2n} an orthonormal basis of g such that

Te2i−1 = aie2i, T e2i = −aie2i−1, (23)

for some ai ∈ R
×, i = 1, . . . , n. Using the expression R(x, y) = [∇x, ∇y] − ∇[x,y] for the curvature tensor, 

we compute the Ricci curvature in the direction of Tz:

ρ(Tz) =
∑

〈R(Tz, ei)ei, T z〉 =
∑

〈R(Tei, z)z, Tei〉,

where in the second equality we have used that T is skew-symmetric and parallel, and the symmetries of 
the curvature tensor R. Using (23), we obtain

ρ(Tz) =
n∑

a2
i (〈R(e2i−1, z)z, e2i−1〉 + 〈R(e2i, z)z, e2i〉) .
i=1
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Since z ∈ z, it is straightforward that 〈R(x, z)z, x〉 = ‖∇zx‖2 for any x ∈ g, and using this in the expression 
above, we get

ρ(Tz) =
n∑

i=1
a2
i (‖∇ze2i−1‖2 + ‖∇ze2i‖2), (24)

and therefore, ρ(Tz) ≥ 0.
If ρ(Tz) = 0, then it follows from (24) that ∇z ≡ 0, and replacing this in (15) we obtain that z ∈ (g′)⊥, 

and the claim is proved. �
Remark 8. Theorem 5.1 is a generalization of the fact that there are no left-invariant Kähler structures on 
nilpotent Lie groups, unless the group is abelian.

Remark 9. The examples of non degenerate KY tensors on 2-step nilpotent Lie algebras given in [4] cannot 
be parallel, according to Theorem 5.1. Choosing appropriate representations of these nilpotent Lie algebras 
and applying Proposition 3.6, we may produce many non parallel KY tensors on Lie algebras, not necessarily 
nilpotent.

6. Examples and non-examples

In this section we will focus on the existence of left invariant KY and CKY tensors on special classes of 
Lie groups equipped with left invariant metrics, namely: (i) Lie groups such that the left invariant metric 
is flat, and (ii) almost abelian Lie groups. We will show that in most cases the KY and CKY tensors are in 
fact parallel.

6.1. Flat Lie groups

Let G be a Lie group with Lie algebra g. We recall from [9] that an inner product 〈 , 〉 on g induces a 
flat left invariant metric on G if and only if the following conditions are satisfied:

(i) there exists an abelian ideal u of g such that its orthogonal complement a = u⊥ is an abelian subalgebra,
(ii) adx is skew-symmetric for any x ∈ a.

Moreover, ∇u = 0 for all u ∈ u, and dim g′ ≥ 2 if g is not abelian.

Lemma 6.1. Let G be a non abelian Lie group with a flat left invariant metric. If T is a left invariant CKY 
tensor, then T is parallel.

Proof. We prove first that T is KY. Let ξ be as in Corollary 4.2, which, according to Remark 3, belongs to 
g′ ⊂ u, since g is clearly unimodular.

If ξ �= 0, take v ∈ u with 〈v, ξ〉 = 0. Then, it follows from (16) with z = ξ that

〈(∇vT )v, ξ〉 = ‖v‖2‖ξ‖2.

Since ∇v = 0, we have that the left-hand side of the equation above is 0, and therefore v = 0. This implies 
that u = Rξ, which is not possible since dim g′ ≥ 2. As a consequence, ξ = 0 and T is a KY tensor.

We will prove next that T is parallel. Since ∇u = 0 for any u ∈ u, we only have to prove that (∇aT )u = 0
and (∇aT )b = 0 for all u ∈ u and a, b ∈ a. For the former, (∇aT )u = −(∇uT )a = 0 since T is KY. For the 
latter, we compute for c ∈ a,
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〈(∇aT )b, c〉 = 〈∇aTb, c〉 + 〈∇ab, T c〉 = 0,

using (15), since a is abelian and orthogonal to g′. Next we compute, for u ∈ u,

〈(∇aT )b, u〉 = −〈b, (∇aT )u〉 = 0.

It follows that T is parallel. �
6.2. Almost abelian Lie groups

Let us recall that a Lie group is called almost abelian if its Lie algebra has a codimension one abelian 
ideal. We will prove below that any left invariant KY tensor on such a Lie group (equipped with a left 
invariant metric) has to be parallel, while if there exists a left invariant CKY tensor which is not KY, then 
the dimension of the Lie group has to be 3.

In order to do so, we will set first some notation. Let G be an almost abelian Lie group with Lie algebra g, 
and let us denote by u the codimension one abelian ideal in g. Choosing a unit vector b orthogonal to u set 
L = adb, L∗ its adjoint transformation, S = 1

2 (L +L∗) and A = 1
2 (L −L∗) the self adjoint and skew adjoint 

components of L. Note that Ab = Sb = 0. It follows from [9] that

∇bb = 0, ∇bu = Au, ∇ub = −Su, ∇uv = 〈Su, v〉b, (25)

where u, v ∈ u.

Theorem 6.2. Let g be an almost abelian Lie algebra (that is, g has a codimension one abelian ideal) equipped 
with an inner product 〈 , 〉 admitting a conformal Killing–Yano tensor T , and let θ be the associated 1-form 
given by (12).

(i) If θ �= 0, then dim g = 3 and g is isomorphic either to the Heisenberg Lie algebra h3 or to aff(R) × R, 
where aff(R) denotes the only non abelian 2-dimensional Lie algebra.

(ii) If θ = 0, then T is parallel.

Proof. With notation as above, let us suppose that dim u = n. We prove first that θ(b) = 0. Let ω denote 
the 2-form associated with T , and let {e1, . . . , en} be an orthonormal basis of u. Then we compute

d∗ω(b) = −(∇bω)(b, b) −
n∑

i=1
(∇eiω)(ei, b)

=
n∑

i=1
{ω(∇eiei, b) + ω(ei,∇eib)}

=
n∑

i=1
{ω(〈Sei, ei〉b, b) − ω(ei, Sei)} using (25)

= −
n∑

i=1
〈Tei, Sei〉

= tr(TS) = − tr(ST )

= 0.

Therefore, using (13), we obtain θ(b) = 0. Let us now compute θ on u. Setting x = b in (16), we have
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θ(z) = 〈(∇bT )b, z〉
= 〈∇bTb, z〉 + 〈∇bb, Tz〉
= 〈ATb, z〉 using (25).

From this and θ(b) = 0, it follows that ξ = ATb, where ξ is given as in Corollary 4.2.
(i) Assume θ �= 0 so that ATb �= 0. Let us take now x ∈ u ∩ ξ⊥, it follows from (16) with z = ξ that

〈(∇xT )x, ξ〉 = ‖x‖2‖ξ‖2.

Using that Tξ = 0, u is abelian and (15) in the left-hand side of the previous equation, we obtain

〈x, Tb〉〈Sx, ξ〉 = ‖x‖2‖ξ‖2. (26)

As a consequence we have that if 〈x, Tb〉 = 0 then x = 0. This shows that g is a 3-dimensional Lie algebra 
spanned by {b, Tb, ξ = ATb}.

We determine next the Lie brackets. If we take x = Tb in (26), we get 〈STb, ξ〉 = ‖ξ‖2. With this, 
we prove that ξ is in the center z of g. Indeed, 〈[ξ, b], ξ〉 = 0 since adξ : ξ⊥ → ξ⊥ (Theorem 4.3), and 
〈[ξ, b], b〉 = 0 since u is an ideal. Finally,

〈[ξ, b], T b〉 = −〈Aξ + Sξ, T b〉 = 〈ξ, ATb〉 − 〈ξ, STb〉 = ‖ξ‖2 − ‖ξ‖2 = 0.

Setting f1 := b, f2 := Tb
‖Tb‖ , f3 := ξ

‖ξ‖ , it follows that {f1, f2, f3} is an orthonormal basis of g and the Lie 
brackets in this basis are given by

[f1, f2] = αf2 + 2‖ξ‖2f3, [f1, f3] = 0, [f2, f3] = 0,

for some α ∈ R. Note that α = tr adb, and therefore, if α = 0 then g is isomorphic to the Heisenberg Lie 
algebra h3, while if α �= 0 then it is easily seen that g is isomorphic to aff(R) × R.

(ii) Assume now θ = 0, so that T is a Killing–Yano tensor on g, i.e., (∇xT )x = 0 for all x ∈ g. Using 
(25), we have that this is equivalent to the following conditions:

(C1) ATb = 0,
(C2) 〈Tu, b〉Su + 〈Su, u〉Tb = 0 for all u ∈ u, and
(C3) 〈ATu, v〉 − 〈TAu, v〉 + 〈TSu, v〉 = 0 for all u, v ∈ u.

We will consider two cases: (a) Tb �= 0, (b) Tb = 0.
(a) Tb �= 0: In (C2) set u = Tb. It follows that ‖Tb‖2STb = 〈STb, Tb〉Tb hence Tb is an eigenvector of S. 

From (C1), ATb = 0. Thus, v, the orthogonal complement of the span of {b, Tb} is preserved by S and A. 
Let {ui} an orthonormal basis of eigenvectors of S on v. If in (C2) we take u = ui one obtains Sui = 0, 
therefore S|v = 0.

Note that if Tb is an eigenvector of S with eigenvalue 0 then adb is skew-symmetric and the metric is 
flat; therefore T is parallel according to Lemma 6.1. Suppose next that STb = δTb with δ �= 0, we will prove 
that T preserves v and hence also {b, Tb}.

• If in (C3) we set u ∈ v and v = Tb, then using S|v = 0 and (C1) we obtain 〈T 2b, Au〉 = 0.
• If in (C3) we set u = Tb and v ∈ v, then using (C1) and the item above, we get 〈T 2b, v〉 = 0.

Thus, T preserves v as asserted. Using this fact together with S|v = 0 in (C3), one obtains that [A, T ] = 0.
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The matrices of A, S and T with respect to the basis {b, Tb/‖Tb‖, ui} are

T =
(0 −a 0
a 0 0
0 0 T |v

)
,

A =
(0 0 0

0 0 0
0 0 A|v

)
,

and

S =
(0 0 0

0 δ 0
0 0 0

)
,

for some a, δ ∈ R.
We show next that T is parallel. It is easy to see that ∇bT = [A, T ] = 0. Since T is Killing–Yano, we 

only have to check that (∇TbT )u = 0 and (∇uT )v = 0 for any u, v ∈ v. We compute

(∇TbT )u = ∇TbTu− T∇Tbu = 〈STb, Tu〉b− 〈STb, u〉Tb = δ(〈Tb, Tu〉b− 〈Tb, u〉Tb) = 0,

and

(∇uT )v = 〈Su, Tv〉 − 〈Su, v〉Tb = 0.

Thus, T is parallel.
(b) Tb = 0: Conditions (C1) and (C2) are trivially satisfied. Since Tb = 0, we have that T : u → u, and 

it follows from (C3) that [A, T ] = −TS. Hence, TS is skew-symmetric and as a consequence, TS = ST . It 
follows that:

• T preserves the eigenspaces gλ of the symmetric operator S;
• [A, Tn] = −nTnS for all n ∈ N.

On each eigenspace gλ of S with λ �= 0, the equation above becomes [A, Tn] = −λnTn. If Tn �= 0 for all 
n ∈ N, the operator adA : End(gλ) → End(gλ) would have infinitely many eigenvalues, which is impossible. 
Therefore, T k = 0 for some k ∈ N, so that T is nilpotent on g|λ. Since T is also skew-symmetric, we have 
T |gλ

= 0.
On the eigenspace g0, we have trivially that TS = 0. Thus, we obtain that TS = 0 on g, therefore 

[A, T ] = 0 on g.
Since (∇bT )u = [A, T ]u and (∇uT )v = 〈u, STv〉 (since Tb = 0) for any u, v ∈ u, we have that T is 

parallel. �
Remark 10. The existence of CKY 2-forms on 3-dimensional Lie groups was considered in [1], where a 
complete classification was given.
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