Accepted Manuscript = e

__|Autonomous Systems

Adaptive low-level control of autonomous underwater vehicles using deep
reinforcement learning

Ignacio Carlucho, Mariano De Paula, Sen Wang, Yvan Petillot, Gerardo G. Acosh

PII: S0921-8890(18)30151-9
DOI: https://doi.org/10.1016/j.robot.2018.05.016
Reference: ROBOT 3039

To appear in: Robotics and Autonomous Systems

Received date : 22 February 2018
Revised date: 2 May 2018
Accepted date: 30 May 2018

Please cite this article as: I. Carlucho, M. De Paula, S. Wang, Y. Petillot, G.G. Acosta, Adaptive
low-level control of autonomous underwater vehicles using deep reinforcement learning, Robotics
and Autonomous Systems (2018), https://doi.org/10.1016/j.robot.2018.05.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.robot.2018.05.016

Adaptive low-level control of autonomous underwater vehicles

using deep reinforcement learning

Ignacio Carlucho™’, Mariano De Paula®, Sen Wang®, Yvan Petillot’, Gerardo G. Acosta®

*INTELYMEC group, Centro de Investigaciones en Fisica e Ingenieria del Centro CIFICEN — UNICEN — CICpBA —
CONICET, Argentina

°School of Engineering & Physical Sciences Heriot-Watt University, EH14 4AS, Edinburgh, UK

ignacio.carlucho@fio.unicen.edu.ar,mariano.depaula@fio.unicen.edu.ar, s.wang@hw.ac.uk, y.r.petillot@hw.ac.uk,
ggacosta@fio.unicen.edu.ar

Abstract

Low-level control of autonomous underwater vehicles (AUVs) has been extensively addressed by
classical control techniques. However, the variable operating conditions and hostile environments faced by
AUVs have driven researchers towards the formulation of adaptive control approaches. The reinforcement
learning (RL) paradigm is a powerful framework which has been applied in different formulations of
adaptive control strategies for AUVs. However, the limitations of RL approaches have lead towards the
emergence of deep reinforcement learning which has become an attractive and promising framework for
developing real adaptive control strategies to solve complex control problems for autonomous systems.
However, most of the existing applications of deep RL use video images to train the decision making
artificial agent but obtaining camera images only for an AUV control purpose could be costly in terms of
energy consumption. Moreover, the rewards are not easily obtained directly from the video frames. In this
work we develop a deep RL framework for adaptive control applications of AUVs based on an actor-critic
goal-oriented deep RL architecture, which takes the available raw sensory information as input and as output
the continuous control actions which are the low-level commands for the AUV’s thrusters. Experiments on a
real AUV demonstrate the applicability of the stated deep RL approach for an autonomous robot control

problem.

Keywords: Autonomous robot; Deep Reinforcement Learning; AUV; Adaptive low-level control.

: Corresponding author

1. Introduction

Autonomous underwater vehicles are revolutionizing the oceanic research with applications on a vast
number of scientific fields such as marine geoscience, biology and archeology but also in the private sector
such as the oil and gas industry [1,2]. Over the years, there have been intensive efforts toward the
development of autonomous control strategies for AUVs [3]. Autonomy implies that an entity can act
independently according to its own criterion and it is an essential feature for engineering systems in large and
uncertain environments [4]. In this sense, adaptive low-level control techniques have arisen as a way to
provide autonomy to AUVs allowing them to operate in hostile environments [5].

Classical control theory has evolved in a variety of methods for low-level AUV control. Several versions
of the well-known PID controller have been developed and used for AUV control. To name a few, in the
early work of Jalving [6] a simple proportional derivative controller was proposed for AUV steering control.
Fjellstad and Fossen [7] designed a PID controller for position and attitude tracking of an AUV and the
global convergence of their proposal was proven by Barbalat’s lemma. More sophisticated proposals can be
found in the work of Valenciaga, et al. [8] where a proportional integrative controller for multiple inputs and
multiple outputs (PI-MIMO) was formulated to command the rudder and the propeller of an AUV. In the
work of Sutarto and Budiyono [9] a linear parameter varying (LPV) control strategy based on linear
fractional transformation to formulate a robust gain schedule strategy for robust longitudinal control of an
AUV was developed. To deal with the AUV modeling uncertainties and the saturations of the control actions
imposed by the AUV actuators, Sarhadi et al. [10], proposed an adaptive PID formulations with anti-windup
compensators and then the stability was analyzed by Lyapunov theory and the proposed control technique
was implemented in an onboard computer to be checked in a real-time dynamic simulation environment.

When model estimation accuracy could be imprecise and the system nonlinearities are considered,
Lyapunov-based algorithms have many advantages for control formulations. An example can be found in
Ferreira et al. [11] where several independent controllers have been developed, based only on Lyapunov
theory, to perform decoupled motions of an AUV. In the work of Lapierre and Jouvencel [12] a nonlinear
robust control formulation resorting to Lyapunov-based techniques was presented. In this case a virtual target
principle was used to design an asymptotically convergent kinematic control, relying on a switching control
strategy for the dynamic parameters. However, the disturbance rejection was not explicitly addressed in the
formulation and the authors have explicitly recognized that further research is needed. In another way,
developments coming from nonlinear control designs have been made where linear transformations were
used to solve Linear Quadratic and Gaussian regulators (LQR and LQG, respectively) as in the work of
Wadoo et al. [13] where a system linearization is carried out for the control of a the kinematic model of an
AUV and then a LQG was formulated as a H-2 optimization problem. Geranmher et al. [14] considered a
general fully coupled AUV and applied nonlinear suboptimal control, where the state-dependent Riccati
equation was used to generate a suboptimal path solution. In the work of Fischer et al. [15] a continuous

robust integral of the sign of the error control was used to compensate for uncertain, nonautonomous

disturbances for a coupled and fully-actuated underwater vehicle. Moreover, semiglobal asymptotic stability
was proven by a Lyapunov-based stability analysis.

Underwater vehicle hydrodynamics are highly non-linear with uncertainties that are difficult to
parameterize and, in addition, unknown disturbances are usually present as are typical of aquatic
environments. For these reasons, researchers have resorted to adaptive controllers and have often included
the dynamical model or have estimated the system parameters in the formulation of the controllers. Early,
Fossen and Fjellstad [7] discussed the performance of the adaptive control laws for controlling underwater
vehicles. Afterward, several adaptive PID formulations have been proposed as in works of Antonelli et al.
[16] where different adaptive versions based on PID control laws were formulated with an adaptive
compensation of the dynamics. However, in such proposals the control gains must be adjusted manually, first
in simulation and then with the real system during its operation [17]. An adaptive on-line tuning method for a
coupled two-loop proportional controller of four degrees-of-freedom for an autonomous underwater vehicle
is presented in the work of Barbalata et al. [18] where the gains of each controller are determined on-line
according to the error signals. Rout and Subudhi [19] developed an adaptive tuning method for a PID
controller using an inverse optimal control technique based on a NARMAX model for the representations of
the non-linear dynamics. Other adaptive feedback controller was proposed by Narasimhan and Singh [20]
using LQR theory for the computation of the optimum feedback gain vector of the control system, in this
case used for depth control of a low-speed underwater vehicle. These facts evidence a growing need for self-
adapting controllers to environmental conditions.

To enhance the different control formulations researchers have turned their attention to artificial
intelligence techniques to be incorporated in adaptive control formulations to develop real autonomous
systems. Particularly, using artificial neural networks (ANNs) in AUV control formulations has the
advantage that the dynamics of the AUVs do not need be fully known and ANNs can learn a full, or partial,
model of the nonlinear dynamics which can in turn be used for the controller design [21]. In Shi et al. [22] a
hybrid control approach for AUV depth control has been proposed using the Lyapunov theory approach for
the synthesis of an adaptive controller and an ANN was employed to model the depth dynamics. A dual
closed loop control system was proposed in [23] where a bio-inspired model for velocity control was used in
an inner control loop and a sliding-mode controller was used in an outer tracking control loop which
managed the position and orientation of an AUV. Also, a traditional Lyapunov stability analysis was carried
out based on the AUV dynamic model. However, strong nonlinearities, as in underwater vehicles
applications, make this analysis difficult. In this sense, after the development of the fuzzy logic many fuzzy
control strategies were proposed for AUV control [24-27]. Briefly, fuzzy logic control makes a smooth
approximation of a nonlinear system using a fuzzy inference system [28] consisting of a set of linguistic
rules about the system behavior and membership functions which must be conveniently defined. In the work
of Raeisy et al. [29] a simple fuzzy control formulation can be found with two fuzzy control loops, one that
controlled the roll and yaw and the other the depth of the AUV, while incorporating an optimization

procedure for the fuzzy parameters using the root mean square error between the input and the output as cost

function. Recently, Khodayari et al. [30] have proposed a self-adaptive fuzzy PID controller for the attitude
control of an AUV based on its previously obtained dynamic model from mechanical principles. Also, fuzzy
control formulations for underwater vehicle-manipulator system (UVMS) were formulated in Esfahani et al.
[31]. However, one disadvantage for using fuzzy control systems for AUVs is that subjective knowledge is
required for the definition of the fuzzy rules and membership functions.

Other important branch with growing importance in the field of artificial intelligence for autonomous
control systems is the RL paradigm [32]. Instead of supervised learning as ANNs, RL is a mixed approach
between supervised and unsupervised learning using actor-critic approach with potential advantages for
adaptive control formulations in robotics [33,34]. In a nutshell, RL algorithms are able to learn a control
policy through the interactions between the system and its environment. RL algorithms can be formulated as
model-free and/or model-based [35,36]. The former uses the experience from interaction to determine
directly the optimal control policy [32,37] while the latter uses it to learn/update the current model of the
system or to improve the value function and/or the policy directly [38].

Particularly, for AUVs relevant works have been developed using RL formulations. In the early work of
Gaskett et al. [39] a model-free RL algorithm was developed to control the thrusters responses of an AUV.
More recently, Carreras et al. [40] proposed a hybrid behavior-based scheme using RL for high-level control
of an AUV. In this work a semi-online neural-Q-learning algorithm was formulated using a multilayer neural
network to learn the internal continuous state-action mapping of each behavior. In the work of El-Fakdi et al.
[41] an on-line direct policy search algorithm based on a stochastic gradient descent method with respect to
the policy parameter space was proposed. In this formulation, the policy was represented by a neural
network, where its weights were the policy parameters. The states of the systems were the inputs to the
neural network and the outputs were the action selection probabilities [42]. Then, El-Fakdi and Carreras [43]
developed a simulation-based actor-critic algorithm using policy gradient method to solve a cable tracking
task. In this formulation an initial policy is learned off-line using a hydrodynamic model of the AUV.
Similarly, a two layered control architecture was proposed in [44], where an on-line RL algorithm selects the
desired direction of the velocity of a marine vehicle and which, in turn, are the downstream references for a
low-level proportional-derivative controller. In this work, only simulation results were reported using a
computational dynamic model. In the work of Frost and Lane [45] an evaluative simulation analysis of the
performance of the Q-learning algorithm for an AUV in search and inspect missions was performed using a
discretized version of a continuous simulation environment to turn the problem into a grid-world type
scenario. This study concluded in the need of improvements for the function approximation of the state
space. In Frost et al. [46] a behavior-based architecture for AUV path planning using an actor-critic RL
approach was developed. The proposed architecture regulates a set of weights of a behavior based module
which, in turn, sets the control signals of the thrusters. Also, the adaptation capability of the propose
approach was analyzed by a thruster failure-tolerant study for different fault scenarios. Cui et al. [47]
proposed an adaptive trajectory tracking control for AUVs using a discrete dynamical model of the

underwater vehicle integrated with two artificial neural network of radial basis functions, one of them used to

evaluate the long-time performance of the designed AUV control and the other is used to compensate the
unknown dynamics. The weights of the ANN are adjusted by a standard formulation of a RL algorithm.

One of the major obstacles for RL formulations resides in dealing with applications in continuous
state/action spaces when the use of function approximators is required to approximate the control policy and
the state/action value functions [48,49]. Often, linear approximators are not suitable for complex systems and
then nonlinear function approximators, like artificial neural networks, are required. However, the
nonlinearity in ANNs may cause instabilities in the RL algorithms or may even diverge. From the
developments of training algorithms for deep neural networks [50,51], Mnih et al. [52] introduced the deep
Q-Network (DQN) which uses deep neural networks, i.e. Convolutional Neural Networks (CNN), to
approximate the action-value function and have shown that the training of the Q function has been stabilized
using experience replay and a target network. From this seminal contribution, deep RL has emerged as a
modern research field and it has become an attractive and promising framework for developing real-time
adaptive control strategies to formulate adaptive control proposals for autonomous systems However, the
DQN algorithm can only be applied to discrete problems, that is, with finite discretized spaces of states and
actions. Llicrap et al. [53] extended deep RL formulations for continuous state/action domains for what they
developed the deep deterministic policy gradient (DDPG) algorithm based on the deterministic policy
gradient (DPG) algorithm [54] incorporating the ideas of batch normalization [55] and experience replay as
in [52].

Mostly, the proposed deep RL algorithms have been tested on simulated systems mainly using simulation
environments as video games simulators. Yu et al. [56] implemented the DQN algorithm to learn to avoid
obstacles by learning the turning actions for a simulated car using the raw video frame images as inputs,
which are directly obtained from a video game simulator. Ganesh et al. [57] used TensorFlow [58] and
Keras [59] software frameworks to train a fully-connected deep neural networks, as deep RL agent, to
autonomously drive across a diverse range of track geometries using a 3D car racing simulator called
TORCS (The Open Racing Car Simulator) which is a modern open source simulation platform used for
research in control systems and autonomous driving [60]. Similarly, El Sallab et al. [61] proposed a deep
learning algorithm for autonomous driving, incorporating recurrent neural networks and attention models to
integrate the information and to focus on relevant information, respectively. This proposal was tested in
TORCS with successful results and a good computational performance, which is an important feature for
potential deployments on real robots. Specifically, for control applications of AUVs,Yu et al. [62] have
solved, in a simulation environment, the trajectory tracking control problem of an AUV using a deep RL
algorithm with two embedded neural networks, the actor deep neural network and the critic deep neural
network. In the formulation, the DPG algorithm was used to update the critic function and the first-order
gradient-based stochastic optimization method was used to update the weights of the actor function [63].

Particularly, during the literature review a non-significant amount of previous works in deep RL has been
identified for continuous control applications and, even less so, to develop autonomous control strategies for

underwater vehicles. In this work we propose a deep RL formulation with a deterministic actor-critic

architecture, mainly based on the DDPG algorithm [53], adapted for low-level control of an AUV using only
its on-board sensors as perception system which, in turn, becomes the inputs for the control algorithm. The
successful results obtained from real experiments using an underwater vehicle demonstrated the applicability
of deep RL for robotics. In this way, the obtained results demonstrated the feasibility for deep RL to be
applied on a real robot and also the encouraging results open a new promising avenue for the application of
the deep RL paradigm in the engineering community and, specifically, to develop autonomous systems into
the robotics field, such as AUVs.

The paper is structured as follows: In Section 2, we briefly introduce the necessary background on RL
and the standard Q-learning algorithm as well as an overview to deep neural networks. In Section 3 we
develop our proposed deep RL framework for AUV control. In Section 4, we provide experimental evidence

of our proposal. Section 5 concludes the paper with the relevant contributions.

2. Background

In this section we give a non-exhaustive overview of the fundamentals of RL as well as the well-known
Q-learning algorithm that form the basis for the subsequent deep RL developments. Following, the
deterministic policy gradient method for RL formulations is summarized. Also, a brief and general overview
of deep neural networks is presented which will be used as function approximators in deep RL formulations.
These concepts are the basis for our proposed adaptive scheme for the low-level control of an underwater

vehicle which will be developed in the next sections.

2.1. Reinforcement learning statement

The RL problem [32] consists in learning iteratively how to achieve a goal, or to accomplish a control
task, from ongoing interactions with a real or simulated system. Commonly, in RL formulations the control
problem is defined by four elements, namely, the state space X, the action space U, the state transition
probability P and the reward function 7, (+).

In a control problem, at time t, an action is a vector, u;, of selected values for the manipulated variables
which could be the inputs to the system actuators. During the learning process, an artificial agent interacts
with the system by taking an action, in our case, a new set of control actions u; € U S R™ and, after that,
the system evolves from the state x; € X S R™* to X;,, and the agent receives a numerical signal r; called
reward (or punishment) which provides a measure of how good (or bad) the action taken at X; was in terms
of the observed state transition. Rewards are given as hints regarding goal achievement or optimal behavior.
Thus, the objective of the RL methods is to obtain the optimal policy * satisfying the Eq.(1), where J is the
expected total reward under the control policy . The main objective of an RL agent is to learn an optimal
policy, m*, which defines the optimal control actions (u;) for different system’s states (X;), bearing in mind

both short and long term rewards.

J* = maxy J; = max, Ex{R.|x, = x} (1)

Let’s assume that under a given policy 7, the expected cumulative reward V™ (x), or value function over a
certain time interval, is a function of x™, where X" = {x,}\=% are the corresponding state values and
u” = {u,}i=" defines the policy-specific sequence of the agent’s actions. The sequence X" of state
transitions gives rise to rewards {r;}:=". Robot control is a continuous task without a single final state
therefore the discounted sum of future rewards Ry = 7pq + YTpyn + V2Tea3 + o = Dpe0 ¥ T4 k4+1 18 used to

define the (discounted) expected state-value function for a policy m from the state X, as:

V*(x) = Ex{R|x; = x} = Ex {2}~ Vkrt+k+1 |Xt = x} ()

where y € (0,1] is the discount factor which weights future rewards. Similarly, the state-action value

function is defined as:
Q"(x,u) = E{R¢|x; =x,u; = u} = E . {¥k=0 Vkrt+k+1 |Xt =X, u; = u} (3)
When the agent starts in state X and executes the optimal policy 7*, V*(x) is used to denote the maximum

discounted obtained reward. Thus, the associated optimal state-value function that satisfies the Bellman's

equation for all state X is:

V*(x¢) = arg maxy{r; + y.Ex,,, [(V"(Xe41) X up)]})
where u, = 7*(X;). Similarly, the optimal state—action value function Q" is defined by:
Q' (xp,u) =1+ v. Ex,, [(V"(Xer1) Xp,up)] (5)

such that V*(x) = max, Q"(x,u) for all x. Once Q" is known through interactions, then the optimal policy

can be obtained directly through:

m*(x) = argmax;, Q" (x,u) 6)

2.2. RL in continuous domain: AUV low-level control
The previously exposed Q learning method results in an adaptive control algorithm that converges on-line
to the optimal control solution for completely unknown systems [32]. That is, the recursive Bellman equation

Error! Reference source not found. is solved, using data coming from system interactions without any

previous knowledge of the system dynamics, to learn an optimal control policy. Commonly, in a Q-learning
application a state-action discretization is made in advance. However, if a coarse discretization is made the
results could be poor or if the discretization is too thin the Q-learning algorithm could become intractable. In
addition, directly applying this method to a continuous control formulation, such as underwater vehicle
manipulation, may be almost impracticable.

In our RL formulation we define the markovian underwater vehicle state using a set of observable
variables. In this manner, the markovian system state, X;, contains information given by the onboard devices,
which provide the linear and angular velocities and accelerations of the underwater vehicle, with respect to
the axes x, y and z, respectively. Also, information about the instantaneous error, computed between the
controlled magnitudes and their fixed set points, is used to form the system state. The control variables, u,
are the commands for the AUV thrusters.

For continuous RL, policy gradient methods are among the most widely used. These model-free methods
can be applied to solve robotics problems without the need of prior knowledge of the problem or the robot
dynamics. The core idea of the policy gradient methods is to improve the performance of a control policy, or
simply policy, by updating the parameters of the policy function in the direction of a performance gradient.
Commonly, these methods approximate a stochastic policy using an independent function approximator with
its own parameters @ that maximizes the future expected reward. However, in our formulation we use a
deterministic policy gradient algorithm which has shown to be more computationally efficient than the
stochastic one [54]. Thus, let u(-) be the policy function that uniquely maps states to actions, such that
u = Ue(x) and it has £ parameters grouped in a vector 0, such that @ = (64, ...,08,). Note, that at each
moment that we interact with the system, we have an action vector u; = pg(X;), but to simplify the notation
we omit the subscript ¢.

Greedy policy improvements may be problematic due to the large computational load required to solve
the optimization problem (Eq.(6)) in a continuous domain. Therefore instead of computing Eq. (6) it is easier
to “move” the policy parameters proportionally to a feasible direction of the gradient of the action value

function, Q, i.e.:

051 o VoQH' (X, (X)) 7

However, each state proposes a different feasible direction for the policy improvement, consequently

these directions must be averaged by means of an expectation taken with respect to the state distribution p”k,
k
0 o E i [VoQ" (x, o ()] ()

therefore, by optimizing with the feasible directions we have

01 = 06+ B i [V6Q (x o ()] ©)

where a € R is a positive step-size parameter. Clearly, as can be seen in Eq. (9) the chain rule may be

applied, then:

0k+l = @k + o B, [Velle(x) Vo Q¥ (x, U)| u= Me(x)] (10)

Using the deterministic gradient theorem, which ensures the existence of the deterministic gradient policy,

such that the off-policy deterministic policy gradient is given as (for further details refer to [54]):

Vol (o) = [, pP*(X)Vore ()7, Q" (x, wdx | u = p1p(x)
= Ex~pr[Vore (0 Vy Q" (x, u) | u = pp(x)] (1D

then, with Error! Reference source not found. and Error! Reference source not found. we have the

policy updating rule,
04+ = 0K + aVo/ (up) (12)

2.3. Deep neural networks

Not long ago particularly for engineering applications, most of the reported applications of artificial
neural networks correspond to shallow architectures with no more than 1, 2 or 3 depth levels with deeper
networks showing poorer results. However, deep neural networks have recently arisen as a way to deal with
large data sets for applications in classification and regression. These new neural networks structures can be
used in different areas, for example to solve engineering control problem.

Deep neural networks refer to networks organized in depth architectures as in the mammal brains [64].
Particularly, Convolutional Neural Networks (CNNs) [51] are a class of deep neural network with a general
depth topology as in Fig. 1, which have been successfully used as function approximators of the value
function Q in deep RL formulations [52]. As can be seen in Fig. 1 the architecture of a CCN network is made
up of one or more convolutional layers and then followed by one or more fully connected layers as in the
well-known multilayer neural networks [65]. As in classical artificial neural network applications, the
number of convolutional and fully connected layers, as well as their size, must be fixed before training.
These magnitudes cannot be learned and are usually referred to as hyper-parameters of the network which
are given in advance. Specifically, in our application, the network inputs are given by the sensory system of
the autonomous underwater vehicle which will be used to learn the low-level control task of the AUV.

Commonly, the main types of layers used to build CNN architectures are: convolutional layers, activation

layers, pooling layers, and fully-connected layers. Normally, there is an input layer which contains the raw

data coming from the sensory system; usually this data can be of large size and can even be in two-
dimensional or three-dimensional arrays as for example, 2D or 3D images. In CNNs, the convolutional
layers are only connected to a small region of the preceding layer. The network parameters consist of a set of
trainable filters which convolve the input by computing the dot products between their weights and the
entries that they are connected. Following the constitutional layers there are activation layers applying an
elementwise activation function o(*), commonly, a rectified linear activation function is used (ReLU) such
that o(x) = max(x; 0) leaving the size unmodified, i.e. the input and output size of the layers are equals.
The pooling layers perform a down sampling operation along the input dimensions obtaining a low-
dimensional feature representation which will be the input for the following layer. Finally, fully-connected
layers lie at the end of the structure containing neurons that are connected to all neurons in the previous
layer, in other words, this layers work in the same way as the layers of the ordinary multilayer neural
networks. In summary, deep neural network architectures are structures of sequential layers able to transform
a high dimensional input data into a reduced output feature and the parameters of the networks (0) are
learned in a supervised way using training algorithms as the gradient descend method, used in
backpropagation algorithms. Further details about deep neural networks can be found in [65] and the

references there in.

1 —’— - e
B ~—— ":::"_'_‘_-:1.-\ il ._,_“Wﬂ]!'_—"‘ .
b :?‘. s = -~ ..
Input Convolution Layer Pooling Convolution Pooling Fully Connected Output

Figure 1. General deep neural network architecture.

3. Deep RL adaptive low-level control for AUV

The most common underwater vehicle configurations have four, five and even six engines. This implies
that the low-level control system must simultaneously manipulate the continuous output of up to six thrusters
to achieve the stated dynamic references, i.e. the set points for the linear and angular velocities. Thus, the
control system must be able to deal with a non-linear continuous problem in six degrees of freedom in an
uncertain and variable environment.

Most of the deep learning control proposals have used image pixels to learn a control policy to solve
complex control tasks. In addition, most of them have been tested using only simulation platforms. Also, in

these cases an entire characterization of the environment is always available. However, our study aims to

propose an adaptive controller based on the previous exposed ideas for low-level control of underwater

mobile robots using only the navigation measurements.

3.1. Deep RL actor-critic for continuous control

To solve the continuous control problem we employ an actor-critic model-free RL method based on the
deterministic gradient theorem (Eq. (11)). In this architecture, the actor is an action selection policy that
maps continuous states to continuous actions in a deterministic way and the critic is a state-value function
mapping states to expected cumulative reward. However, in continuous control problems the actor and critic
cannot be learned directly with the standard table-based Q-learning algorithm (Section 2) therefore function
approximators are required.

In our formulation, we use a deterministic policy (as in Section 2.2) to approximate the actor behavior,
Ue~T, with parameters that are updated periodically using a recursive rule as in Eq. (12). Therefore, the
adaptability is achieved by means of the continuous update of the policy parameters based on the collected
experience coming from the interactions between the robot and its environment. On the other hand, the critic
is approximated as Q" (x,u)~Q"(x,u) with a deep network Q% (:). Thus, this is a parametric function
approximator, of the true state-action value function Q™ (-,-), with all its parameters contained in a vector w.

Due to the nature of the problem, the sensory system does not need to provide images to the control
system and only low-level measurements of dynamic magnitudes are available at each time step t. Therefore,
we use an actor-critic architecture as in Fig. 2, where deep neural networks are used for the state-action value
function and policy representation, respectively. As it can be seen we used deep fully connected neural
networks of ReLU layers [50] without convolutional and pooling layers for these functions approximation.
Due that the size of the input vector, given by the sensor measurements, it is dimensionally smaller than an
average image frame, it is convenient to avoid the use of CNN. In this way, we drastically simplify the
network architecture, the computational burden [66,67] and also we have a compatible function
approximation for the critic representation [54,68].

In order to learn an optimal policy, we first must obtain an optimal critic function as in Eq. (5). To do this,
in a continuous domain, we consider a deep neural network as a function approximator parameterized by w
and the optimal state-value function (critic function) can be found by minimizing the ordinary mean square

error function, L(+), defined as:

Lw) =23, (v — QG wiw))” (13)

where N represents a time horizon of N sampling times, dt. Then, the gradient of the mean square error

function L(*), is:

9Q(x;u;
VWL w) = =23, (y; — Q(x;, u;|w)) 2 (14)

where y; are the target state-action values generated by other target deep network, Q, parameterized by W,

such that:

yi = r(x;, 0) + yQ(x;, 0;|W) (15)

where the target action U; is given by an actor target deep network, (i, such that:

4; = A(x:44110) (16)

Then, the actor policy function represented by the deep network pu, is updated determining the critic
parameters 0 using the deterministic gradient theorem for optimizing the expected return (as in Eq. (11)).
Thus, after the critic function is found it is used to update the actor function, being u, = u(x;|0)
and J(ug) = Q(x;, u(x;]0)|w), the deterministic policy gradient is given as in Eq. (17) and we use a

stochastic optimization method [63] to obtain the optimal policy representation.

0Q(x;u(xi|0)[w) Iu(x¢|6)
7y = POt an

The target networks parameters updates are made using the rules in Eq. (18) and (19) for the parameters

of the actor and critic networks, respectively:
0-po+(1-p)0 (18)
W e pw+ (1-pW (19)

with f « 1. Note that two separated deep networks are used for generating the Q-learning targets y; and two
for the actor approximations as in [52]. With the rules of Eq. (18) and (19) a weighted update of the weights
of the targets networks is made instead of directly copying the weights, as is done in direct applications,
which have been proven to be unstable in the learning phase. In this way, the networks parameters change

slower than in direct applications improving the stability of the learning process [53].

| Reward |_ Reward . Deep Agent

| Function! = { o o ACtOl‘\‘i =™
1 S i :
i : £ : ®. ! | Thrusters | et
—— @ — o
| g e e |
i (] ! : s]
1 & 1
e I Input Hidden Output | I
| oP |Measurements || | o Uyes layer J ! :
~ -
,. """"""""" B L™ |
------------------ . \
£ el " . ;
el H ; Critic H -
Sensory ! i 3 g i 1 Actuators
System 7] s ! N
I o] ! . 3
i & = oY : Qixg,ug)
T o * |
1 Input Hidden Output
'l Layer Layers Layer ’I
. Y AR Y (L oS e e s

Figure 2. Actor-critic architecture using deep fully connected neural network of ReLU layers as function

approximators.

3.2. Goal-oriented actor-critic control architecture

We seek the adaptive low-level control system for the underwater vehicle to be able to deal with different
operative conditions. Thus, based on the actor-critic architecture of Fig. 2 we enhanced this proposal by
formulating a goal-oriented control architecture as shown in Fig. 3 in order to achieve a rich control policy.
As it can be seen, a goal-oriented module was incorporated with an embedded dynamic reference generator.
The main function of this dynamic reference generator is to periodically change the set points for the low-
level controlled variables of the AUV in a wide operative range. In this way, the deep agent could face
different operative conditions of the underwater vehicle. This fact implies totally different behaviors of the
robot and it allows a broader exploration of the state space for the deep agent.

The system dynamic information is the set of measurements of the controlled variables, obtained by the
robot sensory system, which are combined in a vector x7. The current target specifications are the references

given for the controlled low-level variables, combined in vector Xz, During training the vector Xz, is
generated by the goal-oriented module. However, during a real mission the requested x¢, 7, velocity vector

will be given to the agent by a module in a higher hierarchy, such as a path planning module. Thus, with the

[

information provided by X{ and X7,

it is possible to obtain a characterization about the discrepancy
between the current and the expected dynamic behavior of the robot. This information is given in an
instantaneous error vector, e;, computed between the measurements of the controlled variables x§, at time t,

and the fixed set points for such magnitudes x5, 7,- Thus, e, provides instantaneous information to the deep

agent about the performance of the autonomous control system itself. Also, the deep agent receives
information about the control system behavior, summarized in the last executed action, u;_.

As can be seen in Fig. 3, the deep agent receives information summarized in the markovian system state
X, =[x, e, u,4]7. An advantage of perceiving the system state (X;) in this way is the fact that it only
involves readily known variables, yet they are informative enough to describe the autonomous system state

for a successful low-level control. In addition, the state configuration, X;, only contains measurable

information coming from common sensors, which are widely used in the field of underwater applications,
avoiding expensive computational treatments as in video images which are widely used as input in most of

the deep learning applications but are not, however, mainly applied in the underwater domain.

Goal-Oriented Module

S ——
| Reward |
| Function | {t
st \\
|~ : Deep Agent Foy
' |Xcr xc, | oy
|]
2 : "’ Actor : 9
it) e ¢ [.
Sensory =t N i
System) 5 Critic i ==
ey |
:Dynamic \\ i =] !
| Reference N
|Generator/ ¢ Actuators
L /" Kref,

Figure 3. Goal-oriented control architecture based on actor-critic architecture.

3.3. Deep RL algorithm for AUV low-level control

Based on the presented goal-oriented actor-critic architecture, following we develop our deep RL
approach for adaptive low-level control for AUVs. Therefore, an algorithmic representation will be
developed aiming to present a computationally feasible version. Thus, Algorithm 1 outlines the pseudocode
of our deep learning agent for underwater vehicle low-level control.

In line 1 of Algorithm 1, the inputs are the maximum number of training episodes M, the time horizon of
each episode T, the maximum size of the replay buffer m™*, the minimum size of the replay buffer m_, the
number N of state transitions 7; = (X;,u;,7;,X;41) to be taken from the replay buffer R to define a subset
S ={7,..7;, ...y} such that § € R which will be used for minibatch training, the discount rate y, the
updating rate for the deep target networks parameters, the reward function 7, () and the temporally
correlated Ornstein-Uhlenbeck process noise with scale factor ¢ and mean and variance parameters p and v,
respectively. This process is incorporated for exploration purposes (line 11).

Algorithm 1 was formulated to learn a control task from scratch but it also can continue learning from
data of a pre-trained policy represented in the deep networks Q(:,- [w), u(- |0) and in a replay buffer R. For
this reason, in line 2 and in line 4, there are both options: to initialize or load. In line 3 the target networks, Q
and 1 are initialized with the same parameterization of Q and p,i.e. W = wand @ = 0.

In the RL paradigm, the low-level control problem of an AUV can be seen as a continuous control task.
Thus, from an algorithmic point of view, each training episode j is defined along a time horizon T. In
Algorithm 1, each learning episode is carried out in the loop from line 5 to line 33. At the beginning of each

episode the random Ornstein-Uhlenbeck stochastic process is initialized (line 6), in order to carry out the

environment exploration and the dynamic variables of the system are obtained from the sensory system (line
7) to set the initial system state X, (line 8).

Into the inner loop from line 9 to 31 the core of the deep RL low-level AUV control algorithm is
performed. Keeping in mind that our proposal is developed to be applied on a real robot we must keep a
fixed sample time, dt. Then, the loop execution time must strictly be as long as a sampling time, dt, to
satisfy the hardware constrains imposed by the technological the system. Thus, to achieve this requirement
we use a timer to manage the execution time and guarantying a sample time dt. So, in line 10, we initialize a
timer which waits a time lapse dt to continue with the execution of the Algorithm 1 in line 27. Note that dt
must be long enough to allow the execution of the commands from line 11 to 26. Using the current actor
control policy a control action is determined (line 11) and it is immediately sent to the actuators of the
underwater vehicle (line 12).

Aiming to improve the stability of the learning process and to make an efficient use of the computational
resources, we implement batch learning [69] using an experience replay buffer R which can reach a
maximum size m*. Thus, in R the experience is stored in the form of transitions 7;, such that R =
{17,7, ...,T,+}. In this way, after each interaction step, the actor and critic are updated based on the
experience stored in a replay buffer R. To do this, if the buffer has stored at least m1_ transitions (i.e.
condition of line 13 is true), a random minibatch § of experimented transitions is sampled from R (line 14).
Then, with this subset of previous experience, in the inner loop from line 15 to 18 the state-action value
targets (y;) are computed, which are necessary to obtain the critic parameterization w, by miniminzing the
loss function (Eq.13), and to obtain the actor parameterization 0. In this way, the actor and critic deep
networks are parameterized as (- |0) and Q(: |[w) (line 19-20). In line 21-22 the parameters of the target
networks, fi(- |0) and Q (- [w), are updated.

As was said, we use a replay buffer R to store the experience thus when the buffer reaches its allowable
maximum size m* we simply remove the oldest stored experience (line 24-26). Thus, with the dynamic
measurements obtained from the sensory system the transition state representation X;,, is made (line 28).
Then, with the transition state the instantaneous reward signal is computed using the reward function, i.e.
1 = 1, (Xe41) (line 29). Next, with this information, the experimented transition (X, W7, Xeq) 1S
incorporated into the buffer R (line 30).

Finally, the outputs of the algorithm (line 34) are the low-level control policy, synthetized in the deep

network p(- |0), the critic function summarized in the deep network Q(-,- |[w) and the buffer replay R.

Algorithm 1. Deep RL algorithm for AUV low-level control

1. Inputs: M, T, m*, m_, N,vy, B, 1,(),9, p, v

2. Randomly initialize/load critic network Q(-, [w) and actor network u(- |0) with weights w and 0, respectively

3. Initialize target networks Q and i with weights W = wand ® = 0

4. Initialize /load replay buffer R
S5.Forj = 1toM do

6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.
31.
32.
33. End

Initialize a random process NV; (¢, p,v) for action exploration
Get AUV dynamic measurements from sensory system
Set initial state x,
Fort = 1toT do
Initialize the timer
Select action u; = u(x,|0) + N; according to the current policy and exploration noise
Execute action u, over the system
If |R| >m_ then
Sample a random minibatch § of N transitions 7; from R, such that S = {73, ... 7}, ... [y} € R
Fori=1toN
With the target actor function fi(|8) obtain @i;,, = ﬁ(xiHlﬁ) (Eq.(16))
Set the state-action value target ¥; = 1; + YQ(X;41, U;41|W) (Eq.(15))
End
Obtain the critic parameterization w minimizing the loss function L(w) (Eq.(13))
Obtain the actor policy parameterization 0 using the deterministic policy gradient Vo] (Eq.(17))
Update the actor target network parameterization 8 < 50 + (1 —)8
Update the critic target network parameterization W < fw + (1 — f)w
End
If |R| > m* then
Remove the oldest 7, € R from the replay buffer R, i.e. R = {R} — {7.}
End
Wait until timer is over
Get AUV dynamic measurements from sensory system and set the transition state X, ;
Observe the reward 1y, i.e. 13 = 1, (X¢11)
Store the transition (X, g, 77, X;41) in R
End

Reset time, i.e.t =1

34.QC w), u(- 16), R

4. AUV control experiments and results discussion

4.1. Experimental setup

In order to test our proposal the underwater vehicle Nessie VII (Fig. 4) developed by the Heriot-Watt
University was used [70]. Briefly, this robot has six thrusters, indicated as T; to T in Fig. 4, allowing for a
five degree of freedom control (surge, heave, sway, pitch and yaw) and it is equipped with a DVL and an
IMU to measure the linear and angular velocities. This underwater vehicle serves as an excellent platform for
testing and development of underwater applications and it has already been used in various research articles
as an experimental platform [18,45,46,71].

During the experiments the robot interacted with an external computer using ROS (Robot Operating
System), exchanging messages in a network, with a sampling time dt = 0.1 seconds. In this way, the on-
board computer managed the sensory and navigation systems, while the external computer held the deep RL
controller. The underwater vehicle is controlled by setting a vector u, = (uf, u?,ud, uf,uz,uf), where
uf, u? ...u? are the thrusters commands, at time ¢, for the thruster 1, 2, ... 6, respectively. These commands
are determined by a control policy, synthetized in the actor deep neural network u(- |0) (Algorithm 1).

In our deep RL problem formulation we define the markovian system state at time ¢, using the observable
state variables given by the instantaneous measurements from the robot sensors, as
Xt = (Vi 0, Vi, O, Us_q, €;). The magnitudes v = (vy, vy, V,) and w; = (wy, wy, w,) are the linear and
angular velocities with respect to the axes x, y and z, given by the DVL and IMU, respectively.
Analogously, vy = (¥, 1y, V) and ®; = (wy, ®y, w,) are the linear and angular accelerations with respect to
the axes x, y and z, respectively. While u,_, is the vector of the commands executed in the previous time
step t — 1 and e, is the instantaneous velocity error computed between the velocities at time ¢ and the fixed
set points.

We seek to minimize the deviations of the controlled dynamic variables from their references whilst also
trying to minimize the thruster use, to reduce overall energy consumption and sudden variations of the
controlled signals. Note that in order to accomplish this we propose an appropriate reward function 7, () as
in Eq.(20). In this way, the immediate reward, ¢, is given by an evaluation of the effects the executed action

(uy) had in the state of the system. This evaluation consists of three different terms:

1 T —
e = hexp (=25 (%€ = Xy) AKE = Xep)) =Tl = § 1T re s — ull (20)

where the first term evaluates the square error between the controlled dynamic variables (xf) and their
references (X,C,ef) with A = diag([#y,¥3, ..., £n]) and £y, k = 1, ..., n., being the characteristic length-scales,
the second term weights the thruster usage and the last term penalizes sudden changes in thrusters commands
by computing the norm between the current action (u;) and the moving average of past taken actions

(W¢_1.t—1). The mean U;_;.;_q is backward computed using a slide windows of length t. The parameters 2, {

and ¢ are scale factors € (0, 1]. Note that the first term of Eq.(20), penalizes for great deviations of the
controlled variables from their reference but saturates for significant deviations. In this manner, we aim to
constrain the reward magnitude to avoid numerical instability in the learning process. Observing Eq.(20) it
can be clearly seen that as the value of a decreases, the reward function spans a smaller interval for the
controlled dynamic variables and consequently the control task is more challenging. Note that the optimal
control policy (1) should generate a sequence of actions uy, Us,..., U;, ... such that the cumulative reward is

maximized instead of maximizing each immediate reward in Eq.(20).

(b)

Figure 4. The autonomous underwater vehicle, Nessie VII, designed and built at the Heriot-Watt
University.

a) Experimental platform and facilities; b) AUV reference system.

4.2. Simulation results

The implementation of the Algorithm 1 was done in Python using Tensorflow’, a machine learning
library with specially developed tools for deep learning applications. Hereinafter, as was mentioned in
Section 3.1, for the policy network we used a deep fully connected neural network with an input layer of size
21, three hidden layers using ReLLU activation functions, of size 600, 400 and 300, and one output layer of
size 6, with sigmoid activation function, giving a total of 375056 free parameters. The state-action value
function uses a similar deep neural network structure, with the difference that the state vector is fed to the
input layer, and the action vector is fed to the first hidden layer. Moreover, before we begin describing the
trials, we must mention that for both the simulated experiments and the wet experiments (presented in
Section 4.3) in all trials we fix M = 500 episodes of length T = 700 time steps with sampling time of 0.1
seconds. The minimum and maximum size for the replay buffer R were set in m~ = 100 and m* =
200000 elements. The number of state transitions for the minibatch sampling was fixed as N = 60. We use
a discount rate y = 0.99 and the updating rate for the deep target networks parameters is § = 0.001.

First, to illustrate the significance of each term for the reward function (Eq.(20)) we design a series of
experiments which are shown in Fig. 5. Note that the simulated results’ showed in Fig. 5 were performed
under the same training conditions for the different configurations of the reward function. The immediate
reward is computed according to Eq. (20) with a = 1 and A = diag([1,0.75,0.75,0.25,1], with a given set
point for the controlled variables, xﬁef = (Vx, Vy,, Vz,, Wy, W,) and the action vectors U, Us_q,..., Us_g
with T = 100.

Fig. 5a shows the results for a simple reward function where only the deviations of the controlled
dynamic variables from their references are taken into account, i.e. 4 # 0, { = 0, £ = 0. As it can be seen,

Algorithm 1 finds a policy capable of achieving the target references for the dynamic variables, Xf.ef =

(vx, Uy, Uy, Wy, a)z) = (0.3m/s,0,0,0,0), however the thruster output patterns are too variable and
aggressive to be applied in a real underwater vehicle. Fig. 5b depicts the results for a reward function that
incorporates the second term, that is penalizing the usage of the thrusters, i.e. A# 0, { #0 and £ =0 in
Eq.(20). As it can be seen, Algorithm 1 finds a control policy capable of successfully control the AUV but
the performance of the thruster outputs is still not suitable to be applied on real actuators. Following, we
incorporate the third term to the reward function, i.e. we use the Eq. (20) with A # 0, { #+ 0 and € # 0, and
again performed the same training experiment with Algorithm 1, obtaining the results showed in Fig. 5c. As
it can be seen, the improvements in the results are clearly noticeable which validates the use of a reward
function like the one presented in Eq.(20). Therefore, in the following experiments (simulated and real) we
will adopt a reward function parameterized as the experiment of Fig. 5c, i.e. witha =1, 4 = 0.75, { = 0.1,

£ = 0.4 and A = diag([1,0.75,0.75,0.25,1]).

? For further details refer to the web site https://www.tensorflow.org/.
? For simulation we use the Nessie simulator [70].

& 53 — wx 100 — .1 2— 3— 4— 5— 6
— — Wy |
) '% —_ Wz | |
E 02 £ 02 50| il
F 2 £ L "|I | L | il &
o o 3 (gl Ah T
= = = £ s T e - Wl
g 00 g 00 T ot
o " y (1
Z = E | 1 Ilf
g 0.2 x| 3 -02 50 | |
5 g‘ |
— vy i \
-0.4 — vz =0.4 -100 L L
0 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Time [s] Time [s] Time [s]
(@)
5 i — wx m]{— 1— 2— 3— 4— 5— 6
- 7 — Wy
£ 02 5 o2 — Wz 50 i\ Ak
- _ - ' T ol
2 s L
g 00 - g 00— R i i
2 2 2
] o 5
g -0 — x| 3-02 -5
-0.4 — 3z =0.4 -wol
0 10 20 30 40 50 60 10 20 30 40 50 60 0 10 20 30 40 50 60
Time [s] Time [s] Time [s]
i 04 — W w00 — 1— 2— 3— 4— 5— 6
_ z Wy
) g — Wz
E 02 £ 02
2 £
g 00 2 00 3
: :
- -
g-o.z — x E‘-M
Vy
-0.4 — vz -0.4
] 10 20 30 40 50 60 10 20 30 40 50 60 0 10 20 30 40 S0 60
Time [s] Time [s] Time [s]
©

Figure 5. Comparative examples for different structures for the reward function.
a) Results for a reward function of Eq. (20) with A = 0.75 and { = & = 0; b) Results for a reward
function of Eq. (20) with A = 0.75, { = 0.1 and ¢ = 0; c) Results for a reward function of Eq. (20) with
A=0.75,{=0.1and ¢ = 0.4.

In order to test the algorithm capability, we carried out an experiment where the reference for the low-
level controlled variables was changed during a trial. Fig. 6 shows the results for a trial were the initial set
point was fixed as Xﬁef = (0.3,0.2,0.2,0,0) and after 100 seconds was changed to xﬁef = (0.5,0,0,0,0). In
this case, the Algorithm 1 successfully controls the system, driving it rapidly towards the specified reference

despite the set point been suddenly changed to a considerably different operating region.

Linear Velocities [m/s)]

i 100
Time [s]

50

-0.2]

Angular Velocities [rad/s]

-0.4
100 150
Time [s]

150 0 50

Figure 6. Simulations results of a trial with a sudden change of the controlled variables, due to a step change

in references from xﬁefo = (0.3m/s,0.2m/s,0.2m/s,0,0) to xﬁefo = (0.5m/s,0,0,0,0) during the

execution of Algorithm 1.

In order to make a performance comparison of the Algorithm 1, we compared our algorithm against the

well-known PID controller used in seve

ral previous works. For this comparison example we set X, fo =

(0.3,0.2,0.2,0,0). Then, we find a set of gains for a suitable performance of the PID controllers without

overshoot (optimizing ITAE index) and the obtained simulation results are shown in Fig. 7.

0.0

Linear Velocities [m/s]

~02|

045 a0 &0
Time [s]

20

Figure 7. Simulations results for a PID controller during a trial with x

Following, Fig. 8 shows the results

[— wx]|
Wy
- Wz

=

Angular Velocities [radis)

— L - -
100 1] 80 100

= (0.3 m/s,0.2,0.2,0,0).

0 60
Time [s]

c
refo

80 20

for an analogous experiment to the showed in Fig. 6, where the

reference was changed from xﬁefo = (0.3,0.2,0.2,0,0) to Xgefloo = (0.5,0,0,0,0) after 100 seconds of

operation. In this case, it is worth noting

that the dynamic behavior is not the same for both operative points

due to the high nonlinearities, proper of the dynamics of an underwater vehicle. Clearly, the PID controller

exhibits a poor performance under this r

equirement which is a common requirement during an underwater

task. The unknown dynamical model and the coupling between surge and yaw motions of the AUV are the

major barriers that cannot be effectively

control strategy. However, our proposed

solved by one of the most popular control technique, as is the PID

algorithm was able to successful solve the same control challenge

without problems as could be seen in the results shown in Fig. 6.

Linear Velocities [m/s]
S
1

Angular Velocities [rad/s]

i £ 100 150) 0 50 100 150
Time [s] Time [s]

Figure 8. Simulations results for a PID controller during a trial where the reference for the controlled

variables is given a step from xﬁefo = (0.2m/s,0,0,0,0) to Xﬁefo = (—-0.2m/s,0,0,0,0) after 30 seconds.

4.3. Wet experimental results

In order to test our proposed deep RL approach for adaptive low-level control of an AUV, we used the
underwater vehicle Nessie VII as an experimental platform to carry out a number of experiments. This
underwater robot is equipped with all the necessary instruments for underwater navigation (compass,
gyroscope, accelerometers, DVL, IMU, depth meter, and others).

As was explained in Section 3.2, Algorithm 1 was formulated so as to learn a control task from scratch
but it can also continue the learning process from data of a pre-trained policy summarized in the deep
networks Q(+, |w), u(- |0) and in a replay buffer R. So, by taking advantage of this fact, we first carried our
training experiments on the simulator and then, in a following training step, the learning procedure continues
on-line, in the real vehicle, improving and adapting the low-level control policy. This operational scheme
gives flexibility, reducing costs and operational risks by learning initially on the simulator. Besides, it
demonstrates the capability of the proposed technique to self-adapt, since it is capable to overcome the
inevitable behavioral gap between the simulator and the real robot in its environment.

Initially, during the training phase with the AUV simulator, in each training episode the set points of the

dynamic specifications (Xz,s) for the controlled variables (xf) are randomly chosen within a certain range of

possible values by the dynamic reference generator module (Fig. 3). In this way, we seek to learn a control
policy able to manipulate the underwater vehicle within an operation range instead of doing so only in a
neighborhood of an operating point.

The experiments with the real robot were carried out in the Ocean System Laboratory of the Heriot-Watt
University. Due to the physical constrains imposed by the AUV and the experimental facilities, we only
controlled the linear velocities (surge, sway and heave) and the rotational movements around its vertical and
transversal axes (yaw and pitch, respectively). Therefore, the controlled linear velocities are limited to:

—-05m/s<v, <05m/s, —02m/s<v, <02m/s and Om/s<v,<02m/s and the angular
velocities are constrained as w, = w, =0 (no pitch or yaw velocities). Note that, v, refers to
forward/backward speed (surge), v, is the lateral speed to the left/right (sway) and v, is the vertical velocity

(heave). Also note that the angular movement around the longitudinal axis (roll, w,) of the AUV is not

controlled. Thus, at a certain time t, the vector of controlled variables is defined as X§ = (v, Vy, Uz, Wy, wy).

The immediate reward is computed according to Eq. (20) with a =1, 1 =0.75, { =0.1, £ = 0.4 and
A = diag([1,0.75,0.75,0.25,1]), with a given set point for the controlled variables,
xﬁef = (Vx,» Vy,) Vy,, Wy,, Wy) and the action vectors Uz, Us_q,..., Uy_; with 7 = 100.

Using Nessie’s simulator, we ran Algorithm 1 during 500 training episodes (this is equivalent to almost
10 hours of real interaction) obtaining an initial low-level control policy. Afterwards, we continued the
training phase using the real robot, fixing different set points for each training episode. In the rest of the
section we show and discuss the obtained results of applying Algorithm 1 for the low-level control of the
AUV so to achieve the fixed dynamic specifications. We set different operational conditions to demonstrate
the adaptive features of the proposed algorithm to adapt the control policy. It is worth noting that as the
algorithm runs, the learning process is actively seeking to achieve the dynamic specifications while
simultaneously improving the control policy. In this sense, it is also worth mentioning that the dynamics of
the vehicle changes substantially for different operating conditions, for example its forward behavior is very
different from the backward or lateral behavior.

Figure 9 shows the results of a training episode carried out on the real experimental platform (Fig. 4),
with a reference X,C,ef = (vx,vy, Uy, Wy, wz) = (0.4m/s,0,0,0,0). As it can be seen, the control policy
drives the vehicle to the reference in just 10 seconds. Note that the variation of the controlled variables
around its reference values are directly associated with the noise of the measuring instruments and, it can
also be seen that the angular velocities measurements are noisier. However, this phenomenon is common in
real applications with underwater vehicles [72]. The right panel of Fig. 9 shows the usage (in percentage) of

each thruster.

0.4 —— 0.4 W || 100 |
- — s ——rre =
_ Pe 3 wy | e
o
E 02 / g o2 wz|l _ sof _]
& / H £ A A Tl |
= = " -1 bt 1 W
S0, e i it g 0.0 SRS OO E ol AN | w ‘rf'! Ll u l..'w\f_
z] 3 —— WM e
| i 2 Loy~
—] 372 B Bl 4
Wy < _|___A e S
-0.4 — -0.4 1 —100! e —_— |
I vz 100/
0 5 10 15 20 5 10 15 20 0 5 10 15 FI

Time [s] Time [s] Time [s]

Figure 9. Results of a training episode for X;, 5 = (0.4m/s,0,0,0,0) during the execution of Algorithm 1.

Figure 10 shows the results of a training episode with Xy, = (vx, Vy, Uy, Wy, wz) = (—0.4m/
s,0,0,0,0), in which the low-level control policy takes around ten seconds to reach the set point. This case is
useful, since it allows to analyze the capability of Algorithm 1 to adapt the low-level control policy to a
different operation condition. Unlike the previous case, the learned control policy must drive the vehicle in a

linear backward movement. This operation setting is different to the previous results (Fig. 9) in the sense that

the forward and the backward dynamics exhibited a different behavior. This difference has multiple reasons,
for example, the thrusters are not symmetrically located in the AUV body, the force made by the propellers
may vary according to the direction of rotation, among others. In summary, this example further

demonstrates the ability of the proposed Algorithm 1 to adapt itself while facing a different situation.

0.4 — vx|| 0.4 —— Wik —=d 2— 3— 4— 5— 5|
Vy Wy
(¥ v 0.2 | w2 e W
A
al

VoA e

-
i=3
=]

w
L=}

Thruster [%]

Linear Velocities [m/s]
o
=
Angular Velocities [rad/s]
=
o

O =] e e e e

N\

-0 \\\ -0.2 s)
\\‘
e 1 -

-0.4 — -0.4 ~100 ™ R

2 4 6 @8 10 12 14 16 2 4 6 @8 10 12 14 16 g 2 4 & @& 10 12 14 16

Time [s] Time [s] Time [s]

Figure 10. Results of a training episode for X7, = (—0.4 m/s, 0, 0,0, 0) during the execution of Algorithm
1.

In Fig. 11 the results of an episode with a positive heave velocity as set point are shown. The requested
heave velocity was set to 0.18 m/s, i.e. xﬁef = (0,0,0.18m/s, 0,0). As it can be seen, the low-level control
policy successfully achieves the specification. The thrusters 5 and 6 are placed vertically in the AUV (Fig.

4), therefore their relative higher usage can be easily understood as it is showed in the right panel of Fig. 11.

0.4 Vx 0.4} Wx || 100
— Wl 7 Wy
m
E 02 vz E 0.2 Wz 50,
g ————— 1% z
2 0.0 == — { 8 00 e e g % 0
-] £ B
o a
E -0.2 3 -0.2 ~50
- -]
<
—0.4 -0.4 -100/
2 a 3] 10 12]]) 3 8 10 12 a 3 a 6 a 10 12
Time [s] Time [s] Time [s]

Figure 11. Results of a training episode for X7, = (0,0,0.18 m/s, 0, 0) during the execution of Algorithm 1.

A more complex control task was imposed by setting x7,r = (0, —0.1m/s, 0,0, 0), where a pure lateral
movement (sway) is requested. It should be noted that the thrusters of the AUV are not arranged so as to
directly generate a pure lateral displacement, that is, the control system must determine the necessary thrust
composition of the engines to achieve this pure lateral displacement. Figure 12 shows the obtained results for
a training episode with sway velocity v, = —0.1. As it can be seen, the control policy can successfully drive

the vehicle towards the specified set point in almost 16 seconds.

0.4 — Vx 0.4 — wx 100 — 1 2— 3— 4— 3— B
. Wil g Wy R PR
m |
E 02 Vzil E o2 Wz sof o~
. 7 £ f T =
3 S = | L f. JI ﬁ"\b"'«.ﬂ.-:"*‘-—;_-.-.-l—--—
g 0.0 e 8 0.0p=—== Tresetanfestad £ Ojl | | w‘ L
& 2 2 NHN 'lc" o
= = E | Wl
= 5 = TN
g-02 3702 =500 ! _,.w',h.'Lm.lnl-l\lLﬂ,j_‘]'ﬂ] LA =
= 5 - i .um..‘i]'.m

i
-0.4 =0.4 -100)
10 20 30 a0 50 10 20 30 a0 50 0 10 20 30 a0 50
Time [s] Time [s] Time [s]

Figure 12. Results of a training episode for X, s =(0,—0.1m/s,0,0,0) during the execution of Algorithm
1.

In order to make the control task even harder, during a training episode the set point was set as X%, =
(=0.2m/s,—0.1 m/s,0,0,0). With this requested reference the control policy must achieve a complex
combined movement of the AUV with a simultaneous backward and lateral motion with a speed of 0.2 m/s
and 0.1 m/s, respectively. Figure 13 shows the obtained results for this episode. In this case, again, the low-

level control policy was successfully adapted by Algorithm 1 achieving the requested velocities in almost 18

seconds.
0.4 — Vx 0.4l — Wx| o e A w— & > |
- Vy iy | Wy |
= #
E 02 vz E 0.2} Wz 50/
m 2 £
E : | = | _\\ T
8 0.0kpacyantirm— g 00—t Apeem—— & 0 I i S WA,
. “ § — E 1
; \] £ N I‘JII HJ.! é
—0. e, SO = |
302 8% 50 J iL“‘J{N‘ I LAJ’:;
< | L - —— —"A
e L iy
=4 -04 ~100| = el]
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time [s] Time [5] Time [s]

Figure 13. Results of a training episode for X, 5 =(=0.2m/s,—0.1 m/s, 0,0, 0) during the execution of

Algorithm 1.

As we could see along the presented results, the underlying nonlinearities of the AUV dynamics are
present. For example, if we look at the case showed in Fig. 9, where the AUV must follow a simple forward
reference velocity, a priori, we would intuitively expect that only the two forward facing thrusters will be
used. However, not only the two forward facing thrusters must be used to achieve a positive surge velocity,
but, on the contrary, a more complex thrusters output scheme was needed to satisfy a dynamic reference with
a positive linear velocity (forward velocity) and the others null. This fact shows that an underwater vehicle is
a dynamic system with a complex couple dynamics hard to be modeled and controlled, which justifies the

development of this kind of adaptive control techniques.

5. Final Remarks

In this work an adaptive controller based on the deep RL framework was proposed for low-level control
of an AUV. The proposed algorithm uses only the low-level data provided by the on-board sensors of the
vehicle to make the decisions needed for successfully solving the continuous control task. Moreover, unlike
classic control theory, which requires a model of the system, or fuzzy control strategies, that requires prior
expert knowledge, the proposed algorithm carries out a specialization process with minimum prior
knowledge. Effectively, using only the input parameters the deep agent is able to learn a successful control
strategy. Note that the reward function design is an important part for the implementation of deep RL
methods in autonomous systems. In this sense, in this work a detailed reward function analysis and
development was carried out to successfully satisfy the physical and operative constrains required by the
AUV such as restraining the actuators sudden changes, optimization of the energy consumptions and others.
In addition, an actor-critic goal-oriented architecture was developed to aid the deep agent to achieve a more
generalized policy and therefore solve a bigger range of dynamic problems.

It is important to note that many previous approaches, based on deep RL framework, have used images as
inputs for the state representation in order to learn a policy able to solve the control tasks. However, this type
of representations are not straightforward for underwater applications where underwater images are not clear
and require artificial lightning sources, which in turn increases the energy consumption of the vehicle
diminishing the available mission time. In addition, the computational requirement for such an application
raises the need for higher computational capability on board of the AUV, therefore increasing the energy
consumption even further. Moreover, an additional image processing is needed to obtain the immediate
reward from a sequence of images, which is not a trivial problem in real-time applications. In contrast, our
proposed adaptive low-level control algorithm based on deep RL framework only uses a low-level
representation of the system state, based on the measures of dynamic magnitudes (linear and angular
velocities), therefore higher computational costs are avoided.

The articles found in the literature with similar features to the present work, were only tested in
simulation where the characterization of the systems and its environments were always available. Instead of
this, our work contributes with valuable experimental results which demonstrate the capability and the
successful performance of the proposed approach for AUV low-level control. During the experiments we
worked with Nessie, an AUV developed at Heriot-Watt University, obtaining satisfactory results which
demonstrate the feasibility of the proposed control approach to be implemented as an adaptive low-level
control strategy of AUVs.

Previous works on AUVs, controlled only a limited amount of degrees of freedom, or utilized different
discretization schemes to be able to control the AUV. However, this article showed that it was possible to
control the six degrees-of-freedom of a real underwater vehicle by directly sending the low-level commands
to the thrusters. In this sense, we think that this work is a relevant contribution for the field of autonomous

underwater robotics opening a new area of research by means of including deep RL for autonomous control

formulations of AUVs. However, further research is necessary to improve the general autonomy of the
robots. For example, it would be interesting to consider the possibility of enhancing our proposal by adding
prior expert knowledge or combining our proposal with other low-level control techniques. Moreover, it
would be also possible to include safety constraints for the training phase, or utilizing a more complex
supervisor layer. It would also be interesting to test the proposed approach in other types of mobile robots
due that our proposal is of a general nature and it is not only restricted to AUVs.

Our proposed approach uses recently developed ideas coming from the emergent branch of deep learning
in the artificial intelligence community. Nowadays, deep RL is at an early stage and in this paper we have
contributed with real evidence for its application in robot adaptive low-level control, particularly, for AUV
applications. However, there are open issues that deserve attention in the immediate future. For example,
about how the efficiency of the learning process is affected by the different configurations of the adopted
deep networks architectures, for functions approximation, is a not trivial issue that deserves a thorough
discussion and quantitative analysis that could be the subject for future research papers. Finally, for this and
other issues, there are several open issues for future research regarding deep reinforcement learning as a

powerful tool for real autonomous developments in underwater robotics.

Acknowledgements

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal
GPU used for this research. The authors would like to especially thank Len McLean, the technician of the
Heriott-Watt University, for all the help during trials, and the people of the Ocean System Laboratory for
hosting this research. Particularly, we thank UNCPBA and CONICET for the financial support of Ignacio
Carlucho at the Ocean System Laboratory.

References

[1] M. Chyba, Autonomous underwater vehicles, Ocean Eng. 36 (2009) 1. doi:10.1016/j.oceaneng.2008.12.005.

[2] A. Rozenfeld, G. Acosta, A. Sousa, H. Curti, O. Calvo, A guidance and control system proposal for autonomous pipeline
inspections, Trans. Syst. Signals Devices. 5 (2010) 5-27.

[3] K. Alam, T. Ray, S.G. Anavatti, Design and construction of an autonomous underwater vehicle, Neurocomputing. 142
(2014) 16-29. doi:10.1016/j.neucom.2013.12.055.

[4] M. Knudson, K. Tumer, Adaptive navigation for autonomous robots, Rob. Auton. Syst. 59 (2011) 410-420.
doi:10.1016/j.robot.2011.02.004.

[5] S.A. Gafurov, E. V. Klochkov, Autonomous Unmanned Underwater Vehicles Development Tendencies, Procedia Eng. 106
(2015) 141-148. doi:10.1016/j.proeng.2015.06.017.

[6] B. Jalving, The NDRE-AUYV flight control system, IEEE J. Ocean. Eng. 19 (1994) 497-501. doi:10.1109/48.338385.

[7] T.I. Fossen, O.-E. Fjellstad, Robust Adaptive Control of Underwater Vehicles: A Comparative Study, IFAC Proc. Vol. 28
(1995) 66-74. doi:10.1016/S1474-6670(17)51653-5.

[8] F. Valenciaga, P.F. Puleston, O. Calvo, G.G. Acosta, Trajectory Tracking of the Cormoran AUV Based on a PI-MIMO
Approach, in: Ocean. 2007 - Eur., IEEE, 2007: pp. 1-6. doi:10.1109/OCEANSE.2007.4302301.

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

H. Sutarto, A. Budiyono, Development of linear parameter varying control system for autonomous underwater vehicle,
Indian J. Geo-Marine Sci. 40 (2011) 275-286.

P. Sarhadi, A.R. Noei, A. Khosravi, Model reference adaptive PID control with anti-windup compensator for an autonomous
underwater vehicle, Rob. Auton. Syst. 83 (2016) 87-93. doi:10.1016/j.robot.2016.05.016.

B. Ferreira, M. Pinto, A. Matos, N. Cruz, F. Deec, Control of the MARES Autonomous Underwater Vehicle, in: Ocean.
2009, MTS/IEEE Biloxi, 2009. doi:10.23919/0CEANS.2009.5422133.

L. Lapierre, B. Jouvencel, Robust Nonlinear Path-Following Control of an AUV, IEEE J. Ocean. Eng. 33 (2008) 89-102.
doi:10.1109/JOE.2008.923554.

S.A. Wadoo, S. Sapkota, K. Chagachagere, Optimal control of an autonomous underwater vehicle, in: 2012 IEEE Long Isl.
Syst. Appl. Technol. Conf., IEEE, 2012: pp. 1-6. doi:10.1109/LISAT.2012.6223100.

B. Geranmehr, S.R. Nekoo, Nonlinear suboptimal control of fully coupled non-affine six-DOF autonomous underwater
vehicle using the state-dependent Riccati equation, Ocean Eng. 96 (2015) 248-257. doi:10.1016/j.oceaneng.2014.12.032.

N. Fischer, D. Hughes, P. Walters, E.M. Schwartz, S. Member, W.E. Dixon, S. Member, Nonlinear RISE-Based Control of
an Autonomous Underwater Vehicle, [IEEE Trans. Robot. 30 (2014) 845-852. doi:10.1109/TR0.2014.2305791.

G. Antonelli, On the use of adaptive/integral actions for six-degrees-of-freedom control of autonomous underwater vehicles,
IEEE J. Ocean. Eng. 32 (2007) 300-312. doi:10.1109/JOE.2007.893685.

G. Antonelli, S. Chiaverini, N. Sarkar, M. West, Adaptive control of an autonomous underwater vehicle: experimental
results on ODIN, IEEE Trans. Control Syst. Technol. 9 (2001) 756-765. doi:10.1109/87.944470.

C. Barbalata, V. De Carolis, M.W. Dunnigan, Y. Petillot, D. Lane, An adaptive controller for autonomous underwater
vehicles, in: 2015 IEEE/RSJ Int. Conf. Intell. Robot. Syst., IEEE, Hamburg, 2015: pp. 1658-1663.
doi:10.1109/TR0OS.2015.7353590.

R. Rout, B. Subudhi, Inverse optimal self-tuning PID control design for an autonomous underwater vehicle, Int. J. Syst. Sci.
48 (2017) 367-375. doi:10.1080/00207721.2016.1186238.

M. Narasimhan, S.N. Singh, Adaptive optimal control of an autonomous underwater vehicle in the dive plane using dorsal
fins, 33 (2006) 404—416. doi:10.1016/j.oceaneng.2005.04.017.

P.W.J. van de Ven, C. Flanagan, D. Toal, Neural network control of underwater vehicles, Eng. Appl. Artif. Intell. 18 (2005)
533-547. doi:10.1016/j.engappai.2004.12.004.

Y. Shi, W. Qian, W. Yan, J. Li, Adaptive Depth Control for Autonomous Underwater Vehicles Based on Feedforward
Neural Networks, Intell. Control Autom. 4 (2007) 207-218. doi:10.1007/978-3-540-37256-1 29.

D. Zhu, B. Sun, The bio-inspired model based hybrid sliding-mode tracking control for unmanned underwater vehicles, Eng.
Appl. Artif. Intell. 26 (2013) 2260-2269. doi:10.1016/j.engappai.2013.08.017.

S.M. Smith, G.J.S. Rae, D.T. Anderson, A.M. Shein, Fuzzy Logic Control of an Autonomous Underwater Vehicle, Control
Eng. Pract. 2 (1994) 321-331. doi:10.1016/0967-0661(94)90214-3.

P.A. DeBitetto, Fuzzy logic for depth control of unmanned undersea vehicles, in: Proc. IEEE Symp. Auton. Underw. Veh.
Technol., IEEE, 1995: pp. 233-241. doi:10.1109/AUV.1994.518630.

J. Guo, F.-C. Chiu, C.-C. Huang, Design of a sliding mode fuzzy controller for the guidance and control of an autonomous
underwater vehicle, Ocean Eng. 30 (2003) 2137-2155. doi:10.1016/S0029-8018(03)00048-9.

S.M. Smith, G.J.S. Rae, D.T. Anderson, Applications of fuzzy logic to the control of an autonomous underwater vehicle, in:
[Proceedings 1993] Second IEEE Int. Conf. Fuzzy Syst., IEEE, 1993: pp. 1099-1106. doi:10.1109/FUZZY.1993.327361.
L.A. Zadeh, Fuzzy logic, neural networks, and soft computing, Commun. ACM. 37 (1994) 77-84.
doi:10.1145/175247.175255.

B. Raeisy, A.A. Safavi, A.R. Khayatian, Optimized fuzzy control design of an autonomous underwater vehicle, Iran. J.
Fuzzy Syst. 9 (2012) 25-41.

M.H. Khodayari, S. Balochian, Modeling and control of autonomous underwater vehicle (AUV) in heading and depth
attitude via self-adaptive fuzzy PID controller, J. Mar. Sci. Technol. 20 (2015) 559-578. doi:10.1007/s00773-015-0312-7.

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[49]

[50]
[51]

[52]

P.S. Londhe, S. Mohan, B.M. Patre, L.M. Waghmare, Robust task-space control of an autonomous underwater vehicle-
manipulator system by PID-like fuzzy control scheme with disturbance estimator, Ocean Eng. 139 (2017) 1-13.
doi:10.1016/J.OCEANENG.2017.04.030.

R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction, MIT Press, 1998.
http://books.google.com/books?id=CAFR6IBF4xYC.

J. Kober, J.A. Bagnell, J. Peters, Reinforcement Learning in Robotics: A Survey, Int. J. Rob. Res. (2013) 579-610.
http:/link.springer.com/chapter/10.1007/978-3-642-27645-3 18 (accessed August 8, 2015).

D.R. Parhi, S. Kundu, Review on Guidance , Control and Navigation of Autonomous Underwater Mobile Robot, Int. J.
Artif. Intell. Comput. Res. 4 (2012) 21-31.

P. Dayan, K.C. Berridge, Model-Based and Model-Free Pavlovian Reward Learning: Revaluation, Revision and Revelation,
Cogn Affect Behav Neurosci. 14 (2014) 473—492. doi:10.1086/498510.

Y. Chebotar, K. Hausman, M. Zhang, G. Sukhatme, S. Schaal, S. Levine, Combining Model-Based and Model-Free Updates
for Trajectory-Centric Reinforcement Learning, (2017). http://arxiv.org/abs/1703.03078 (accessed September 19, 2017).
C.J.C.H. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (1992) 279-292. doi:10.1007/BF00992698.

T. Hester, M. Quinlan, P. Stone, RTMBA: A real-time model-based reinforcement learning architecture for robot control, in:
2012: pp. 85-90. doi:10.1109/ICRA.2012.6225072.

C. Gaskett, D. Wettergreen, A. Zelinsky, Reinforcement Learning applied to the control of an Autonomous Underwater
Vehicle, in: 1999: pp. 125-131. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.8469&rep=rep1 &type=pdf.

M. Carreras, J. Yuh, J. Batlle, P. Ridao, A behavior-based scheme using reinforcement learning for autonomous underwater
vehicles, IEEE J. Ocean. Eng. 30 (2005) 416—427. doi:10.1109/JOE.2004.835805.

A. El-Fakdi, M. Carreras, N. Palomeras, P. Ridao, Autonomous underwater vehicle control using reinforcement learning
policy search methods, in: 2005: p. 793—-798 Vol. 2. doi:10.1109/OCEANSE.2005.1513157.

A. El-Fakdi, Gradient-based reinforcement learning techniques for underwater robotics behavior learning, 2010.
http://tesisenred.net/handle/10803/7610 (accessed April 26, 2012).

A. El-Fakdi, M. Carreras, Two-step gradient-based reinforcement learning for underwater robotics behavior learning, Rob.
Auton. Syst. 61 (2013) 271-282. doi:10.1016/j.robot.2012.11.009.

K. Blekas, K. Vlachos, RL-based path planning for an over-actuated floating vehicle under disturbances, Rob. Auton. Syst.
101 (2018) 93-102. doi:S0921889017301884.

G. Frost, D.M. Lane, Evaluation of Q-learning for search and inspect missions using underwater vehicles, in: 2014 Ocean. -
St. John’s, IEEE, 2014: pp. 1-6. doi:10.1109/OCEANS.2014.7003088.

G. Frost, F. Maurelli, D.M. Lane, Reinforcement learning in a behaviour-based control architecture for marine archaeology,
in: Ocean. 2015 - Genova, IEEE, 2015: pp. 1-5. doi:10.1109/0CEANS-Genova.2015.7271619.

R. Cui, C. Yang, Y. Li, S. Sharma, Adaptive Neural Network Control of AUVs With Control Input Nonlinearities Using
Reinforcement Learning, IEEE Trans. Syst. Man, Cybern. Syst. 47 (2017) 1019-1029. doi:10.1109/TSMC.2016.2645699.
M. Riedmiller, Neural Fitted Q Iteration — First Experiences with a Data Efficient Neural Reinforcement Learning Method,
in: Springer, Berlin, Heidelberg, 2005: pp. 317-328. doi:10.1007/11564096_32.

T. Degris, P.M. Pilarski, R.S. Sutton, Model-Free reinforcement learning with continuous action in practice, in: 2012 Am.
Control Conf., IEEE, 2012: pp. 2177-2182. doi:10.1109/ACC.2012.6315022.

Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature. 521 (2015) 436—444. doi:10.1038/nature14539.

A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, Proceeding
NIPS’12 Proc. 25th Int. Conf. Neural Inf. Process. Syst. 25 (2012) 1097-1105.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.299.205 (accessed September 22, 2017).

V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G.
Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis,
Human-level control through deep reinforcement learning, Nature. 518 (2015) 529-533. doi:10.1038/nature14236.

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

(61]

[62]

[63]

[64]

[65]
[66]

T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra, Continuous control with deep
reinforcement learning, in: ICLR 2016, 2016: pp. 1-14. doi:10.1561/2200000006.

D. Silver, N. Heess, T. Degris, D. Wierstra, M. Riedmiller, Deterministic Policy Gradient Algorithms, in: 31 St Int. Conf.
Mach. Learn., 2014. http://proceedings.mlr.press/v32/silver14.pdf (accessed September 22, 2017).

S. Joffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, in:
32 Nd Int. Conf. Mach. Learn., 2015. doi:10.1007/s13398-014-0173-7.2.

A. Yu, R. Palefsky-Smith, R. Bedi, Deep Reinforcement Learning for Simulated Autonomous Vehicle Control, 2016.

A. Ganesh, J. Charalel, M. Das Sarma, N. Xu, Deep Reinforcement Learning for Simulated Autonomous Driving, 2016.
http://cs229.stanford.edu/proj2016/report/Ganesh-Charalel-DasSarma-Xu-

DeepReinforcementLearningForSimulated AutonomousDriving-report.pdf (accessed September 21, 2017).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V.
Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems, (2015). http://arxiv.org/abs/1603.04467 (accessed September 21,
2017).

F. Chollet, Keras: Deep learning library for Theano and TensorFlow, Https://keras.io/. (2016) https://keras.io/.
https://keras.io/.

D. Loiacono, P.L. Lanzi, J. Togelius, E. Onieva, D.A. Pelta, M. V Butz, T.D. LolInneker, L. Cardamone, D. Perez, Y. Saez,
M. Preuss, J. Quadflieg, The 2009 Simulated Car Racing Championship, IEEE Trans. Comput. Intell. Al Games. 2 (2010)
131-147. doi:10.1109/TCIAIG.2010.2050590.

A. El Sallab, M. Abdou, E. Perot, S. Yogamani, Deep Reinforcement Learning framework for Autonomous Driving, Soc.
Imaging Sci. Technol. 7 (2017) 70-76. doi:10.2352/ISSN.2470-1173.2017.19.AVM-023.

R. Yu, Z. Shi, C. Huang, T. Li, Q. Ma, Deep Reinforcement Learning Based Optimal Trajectory Tracking Control of
Autonomous Underwater Vehicle, in: 36th Chinese Control Conf., 2017: pp. 4958—4965.

D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: 3rd Int. Conf. Learn. Represent., San Diego, 2015.
http://arxiv.org/abs/1412.6980 (accessed September 21, 2017).

T. Serre, G. Kreiman, M. Kouh, C. Cadieu, U. Knoblich, T. Poggio, A quantitative theory of immediate visual recognition,
in: Prog. Brain Res., 2007: pp. 33-56. doi:10.1016/S0079-6123(06)65004-8.

I. Goodfellow, Y. Bengio, A. Courville, Deep learning, The MIT Press, London, 2017.

J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for Simplicity: The All Convolutional Net, ICLR 2015.
(2015). http://arxiv.org/abs/1412.6806 (accessed October 10, 2017).

R. Arora, A. Basu, P. Mianjy, A. Mukherjee, Understanding Deep Neural Networks with Rectified Linear Units, in: ICLR
2018, 2018: pp. 1-17. http://arxiv.org/abs/1611.01491.

X. Jiang, Y. Pang, X. Li, J. Pan, Y. Xie, Deep neural networks with Elastic Rectified Linear Units for object recognition,
Neurocomputing. 275 (2018) 1132-1139. doi:10.1016/JNEUCOM.2017.09.056.

S. Lange, T. Gabel, M. Riedmiller, Batch Reinforcement Learning, 2012. doi:10.1007/978-3-642-27645-3.

N. Valeyrie, F. Maurelli, P. Patron, J. Cartwright, B. Davis, Y. Petillot, Nessie v turbo: a new hover and power slide capable
torpedo shaped auv for survey, inspection and intervention, in: AUVSI North Am. 2010 Conf., 2010.

C. Barbalata, M.W. Dunnigan, Y. Petillot, Dynamic coupling and control issues for a lightweight underwater vehicle
manipulator system, in: 2014 Ocean. - St. John’s, IEEE, 2014: pp. 1-6. doi:10.1109/OCEANS.2014.7002989.

A. Lammas, K. Sammut, F. He, 6-DoF Navigation Systems for Autonomous Underwater Vehicles, in: Mob. Robot. Navig.,

InTech, 2010. doi:10.5772/8978.

Ignacio Carlucho graduated as Electromechanical Engineer at the
i Engineering Faculty of National Buenos Aires Province Centre University
i (UNCPBA), Argentina (2015) and currently he is a PhD Student at the
INTELYMEC group in the National Buenos Aires Province Centre
University. His main interests are cognitive control techniques for marine
- -, g8 robotics. He is currently working with deep reinforcement learning for
control of underwater vehicles.

Mariano De Paula graduated as Industrial Engineer at the Engineering
Faculty of National Buenos Aires Province Centre University (UNCPBA),
Argentina (2007) and as Ph.D. in Engineering, at National Technological
University — UTN - (2013). He is also a researcher of the Argentinean
National Research Council (CONICET) since 2015, working in
Engineering Group INTELYMEC (Av. del Valle 5737-B7400JWI
Olavarria; Argentina), UNCPBA. mariano.depaula@fio.unicen.edu.ar,
marianodepauala@gmail.com.

Dr. Sen Wang is an Assistant Professor in Robotics and Autonomous Systems at
Heriot-Watt University and a faculty member of the Edinburgh Centre for
Robotics. Previously, he was a post-doctoral researcher at the University of
Oxford, working on EPSRC Programme Grant project "Mobile Robotics" led by
Prof. Paul Newman with co-investigators Prof. Ingmar Posner, Prof. Niki Trigoni
and Prof. Marta Kwiatkowska. He obtained his PhD degree in the Robotics Group
at the University of Essex in 2015. His research focuses on robot perception and
autonomy using probabilistic and learning approaches, especially autonomous navigation, robotic
vision, SLAM and robot learning. His research has been published in a number of flagship venues,
including URR, ICRA, IROS, CVPR and AAAI, and been awarded a Best Paper Award and an
Outstanding Paper Award.
iy

Yvan Petillot is a Professor of Robotics and Computer Vision at Heriot-Watt
University. He is a leading member of the Oceans Systems Laboratory, the deputy
director of the Institute for Sensor Signals and Systems and the deputy director of the
joint research institute in Signal and Image Processing (ERP-SIP) with Edinburgh
University. Yvan specialises in robotics and sensing and is an expert in autonomous systems, image
analysis and control applied to the subsea domain. He has made major contributions in sonar image
processing and target detection and recognition.

Gerardo G. Acosta graduated as Engineer in Electronics at the National
University of La Plata, Argentina (1988), and as Ph.D. in Computer
Science, at the University of Valladolid, Spain (1995). He is currently a
Full Professor in Control Systems (Electronic Area) in the Engineering
Faculty at the National Buenos Aires Province Centre University
(UNCPBA), Argentina. He is also a researcher of the Argentinean
National Research Council (CONICET), since 1997 and Director of the Research & Development
Group “INTELYMEC”, CIFICEN CONICET-UNCPBA. His working interests comprise the use of
computational intelligence in automatic control, particularly intelligent control techniques in
terrestrial and underwater robotics. He has more than one hundred and fifty publications and two
copyrights in this and related fields. He is Senior Member of the IEEE since 2001, Chairman of the
IEEE Computational Intelligence Society Argentinean Chapter (2007-2008), receiving the 2010
Outstanding Chapter Award from CIS, and current Chairman of the IEEE Oceanic Engineering
Society Argentinean Chapter, being one of its founders. Member of the Administrative Committee
of IEEE OES (2015-2016). He has been the research leader of more than ten R+D projects, funded
by the Argentinean Government, the Spanish Government and the European Union. He has been
invited as a professor of Ph.D programs in Argentina and Spain, he is the present Director of the
PhD program at the Engineering Faculty-UNCPBA, and serve as reviewer and member of the
scientific committee of several national and international journals and conferences.
gerardo.acosta@ieee.org.

Adaptive low-level control strategy of autonomous underwater vehicle
Deep reinforcement learning to solve a continuous control problem

Real experiments demonstrated the feasibility of deep RL for AUV low-

level control

Only raw sensory information is used for the deep RL actor-critic

architecture

