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Abstract 

 

Low-level control of autonomous underwater vehicles (AUVs) has been extensively addressed by 

classical control techniques. However, the variable operating conditions and hostile environments faced by 

AUVs have driven researchers towards the formulation of adaptive control approaches. The reinforcement 

learning (RL) paradigm is a powerful framework which has been applied in different formulations of 

adaptive control strategies for AUVs. However, the limitations of RL approaches have lead towards the 

emergence of deep reinforcement learning which has become an attractive and promising framework for 

developing real adaptive control strategies to solve complex control problems for autonomous systems. 

However, most of the existing applications of deep RL use video images to train the decision making 

artificial agent but obtaining camera images only for an AUV control purpose could be costly in terms of 

energy consumption. Moreover, the rewards are not easily obtained directly from the video frames. In this 

work we develop a deep RL framework for adaptive control applications of AUVs based on an actor-critic 

goal-oriented deep RL architecture, which takes the available raw sensory information as input and as output 

the continuous control actions which are the low-level commands for the AUV’s thrusters. Experiments on a 

real AUV demonstrate the applicability of the stated deep RL approach for an autonomous robot control 

problem. 
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1. Introduction  

Autonomous underwater vehicles are revolutionizing the oceanic research with applications on a vast 

number of scientific fields such as marine geoscience, biology and archeology but also in the private sector 

such as the oil and gas industry [1,2]. Over the years, there have been intensive efforts toward the 

development of autonomous control strategies for AUVs [3]. Autonomy implies that an entity can act 

independently according to its own criterion and it is an essential feature for engineering systems in large and 

uncertain environments [4]. In this sense, adaptive low-level control techniques have arisen as a way to 

provide autonomy to AUVs allowing them to operate in hostile environments [5]. 

Classical control theory has evolved in a variety of methods for low-level AUV control. Several versions 

of the well-known PID controller have been developed and used for AUV control. To name a few, in the 

early work of Jalving [6] a simple proportional derivative controller was proposed for AUV steering control. 

Fjellstad and Fossen [7] designed a PID controller for position and attitude tracking of an AUV and the 

global convergence of their proposal was proven by Barbalat’s lemma. More sophisticated proposals can be 

found in the work of Valenciaga, et al. [8] where a proportional integrative controller for multiple inputs and 

multiple outputs (PI-MIMO) was formulated to command the rudder and the propeller of an AUV. In the 

work of Sutarto and Budiyono [9] a linear parameter varying (LPV) control strategy based on linear 

fractional transformation to formulate a robust gain schedule strategy for robust longitudinal control of an 

AUV was developed. To deal with the AUV modeling uncertainties and the saturations of the control actions 

imposed by the AUV actuators, Sarhadi et al. [10], proposed an adaptive PID formulations with anti-windup 

compensators and then the stability was analyzed by Lyapunov theory and the proposed control technique 

was implemented in an onboard computer to be checked in a real-time dynamic simulation environment. 

When model estimation accuracy could be imprecise and the system nonlinearities are considered, 

Lyapunov-based algorithms have many advantages for control formulations. An example can be found in 

Ferreira et al. [11] where several independent controllers have been developed, based only on Lyapunov 

theory, to perform decoupled motions of an AUV. In the work of Lapierre and Jouvencel [12] a nonlinear 

robust control formulation resorting to Lyapunov-based techniques was presented. In this case a virtual target 

principle was used to design an asymptotically convergent kinematic control, relying on a switching control 

strategy for the dynamic parameters. However, the disturbance rejection was not explicitly addressed in the 

formulation and the authors have explicitly recognized that further research is needed. In another way, 

developments coming from nonlinear control designs have been made where linear transformations were 

used to solve Linear Quadratic and Gaussian regulators (LQR and LQG, respectively) as in the work of 

Wadoo et al. [13] where a system linearization is carried out for the control of a the kinematic model of an 

AUV and then a LQG was formulated as a H-2 optimization problem. Geranmher et al. [14] considered a 

general fully coupled AUV and applied nonlinear suboptimal control, where the state-dependent Riccati 

equation was used to generate a suboptimal path solution. In the work of Fischer et al. [15] a continuous 

robust integral of the sign of the error control was used to compensate for uncertain, nonautonomous 



disturbances for a coupled and fully-actuated underwater vehicle. Moreover, semiglobal asymptotic stability 

was proven by a Lyapunov-based stability analysis. 

Underwater vehicle hydrodynamics are highly non-linear with uncertainties that are difficult to 

parameterize and, in addition, unknown disturbances are usually present as are typical of aquatic 

environments. For these reasons, researchers have resorted to adaptive controllers and have often included 

the dynamical model or have estimated the system parameters in the formulation of the controllers. Early, 

Fossen and Fjellstad [7] discussed the performance of the adaptive control laws for controlling underwater 

vehicles. Afterward, several adaptive PID formulations have been proposed as in works of Antonelli et al. 

[16] where different adaptive versions based on PID control laws were formulated with an adaptive 

compensation of the dynamics. However, in such proposals the control gains must be adjusted manually, first 

in simulation and then with the real system during its operation [17]. An adaptive on-line tuning method for a 

coupled two-loop proportional controller of four degrees-of-freedom for an autonomous underwater vehicle 

is presented in the work of Barbalata et al. [18] where the gains of each controller are determined on-line 

according to the error signals. Rout and Subudhi [19] developed an adaptive tuning method for a PID 

controller using an inverse optimal control technique based on a NARMAX model for the representations of 

the non-linear dynamics. Other adaptive feedback controller was proposed by Narasimhan and Singh [20] 

using LQR theory for the computation of the optimum feedback gain vector of the control system, in this 

case used for depth control of a low-speed underwater vehicle. These facts evidence a growing need for self-

adapting controllers to environmental conditions. 

To enhance the different control formulations researchers have turned their attention to artificial 

intelligence techniques to be incorporated in adaptive control formulations to develop real autonomous 

systems. Particularly, using artificial neural networks (ANNs) in AUV control formulations has the 

advantage that the dynamics of the AUVs do not need be fully known and ANNs can learn a full, or partial, 

model of the nonlinear dynamics which can in turn be used for the controller design [21]. In Shi et al. [22] a 

hybrid control approach for AUV depth control has been proposed using the Lyapunov theory approach for 

the synthesis of an adaptive controller and an ANN was employed to model the depth dynamics. A dual 

closed loop control system was proposed in [23] where a bio-inspired model for velocity control was used in 

an inner control loop and a sliding-mode controller was used in an outer tracking control loop which 

managed the position and orientation of an AUV. Also, a traditional Lyapunov stability analysis was carried 

out based on the AUV dynamic model. However, strong nonlinearities, as in underwater vehicles 

applications, make this analysis difficult. In this sense, after the development of the fuzzy logic many fuzzy 

control strategies were proposed for AUV control [24–27]. Briefly, fuzzy logic control makes a smooth 

approximation of a nonlinear system using a fuzzy inference system [28] consisting of a set of linguistic 

rules about the system behavior and membership functions which must be conveniently defined. In the work 

of Raeisy et al. [29] a simple fuzzy control formulation can be found with two fuzzy control loops, one that 

controlled the roll and yaw and the other the depth of the AUV, while incorporating an optimization 

procedure for the fuzzy parameters using the root mean square error between the input and the output as cost 



function. Recently, Khodayari et al. [30] have proposed a self-adaptive fuzzy PID controller for the attitude 

control of an AUV based on its previously obtained dynamic model from mechanical principles. Also, fuzzy 

control formulations for underwater vehicle-manipulator system (UVMS) were formulated in Esfahani et al. 

[31]. However, one disadvantage for using fuzzy control systems for AUVs is that subjective knowledge is 

required for the definition of the fuzzy rules and membership functions. 

Other important branch with growing importance in the field of artificial intelligence for autonomous 

control systems is the RL paradigm [32]. Instead of supervised learning as ANNs, RL is a mixed approach 

between supervised and unsupervised learning using actor-critic approach with potential advantages for 

adaptive control formulations in robotics [33,34]. In a nutshell, RL algorithms are able to learn a control 

policy through the interactions between the system and its environment. RL algorithms can be formulated as 

model-free and/or model-based [35,36]. The former uses the experience from interaction to determine 

directly the optimal control policy [32,37] while the latter uses it to learn/update the current model of the 

system or to improve the value function and/or the policy directly [38].  

Particularly, for AUVs relevant works have been developed using RL formulations. In the early work of 

Gaskett et al. [39] a model-free RL algorithm was developed to control the thrusters responses of an AUV. 

More recently, Carreras et al. [40] proposed a hybrid behavior-based scheme using RL for high-level control 

of an AUV. In this work a semi-online neural-Q-learning algorithm was formulated using a multilayer neural 

network to learn the internal continuous state-action mapping of each behavior. In the work of El-Fakdi et al. 

[41] an on-line direct policy search algorithm based on a stochastic gradient descent method with respect to 

the policy parameter space was proposed. In this formulation, the policy was represented by a neural 

network, where its weights were the policy parameters. The states of the systems were the inputs to the 

neural network and the outputs were the action selection probabilities [42]. Then, El-Fakdi and Carreras [43] 

developed a simulation-based actor-critic algorithm using policy gradient method to solve a cable tracking 

task. In this formulation an initial policy is learned off-line using a hydrodynamic model of the AUV. 

Similarly, a two layered control architecture was proposed in [44], where an on-line RL algorithm selects the 

desired direction of the velocity of a marine vehicle and which, in turn, are the downstream references for a 

low-level proportional-derivative controller. In this work, only simulation results were reported using a 

computational dynamic model. In the work of Frost and Lane [45] an evaluative simulation analysis of the 

performance of the Q-learning algorithm for an AUV in search and inspect missions was performed using a 

discretized version of a continuous simulation environment to turn the problem into a grid-world type 

scenario. This study concluded in the need of improvements for the function approximation of the state 

space.  In Frost et al. [46] a behavior-based architecture for AUV path planning using an actor-critic RL 

approach was developed. The proposed architecture regulates a set of weights of a behavior based module 

which, in turn, sets the control signals of the thrusters. Also, the adaptation capability of the propose 

approach was analyzed by a thruster failure-tolerant study for different fault scenarios. Cui et al. [47] 

proposed an adaptive trajectory tracking control for AUVs using a discrete dynamical model of the 

underwater vehicle integrated with two artificial neural network of radial basis functions, one of them used to 



evaluate the long-time performance of the designed AUV control and the other is used to compensate the 

unknown dynamics. The weights of the ANN are adjusted by a standard formulation of a RL algorithm.  

One of the major obstacles for RL formulations resides in dealing with applications in continuous 

state/action spaces when the use of function approximators is required to approximate the control policy and 

the state/action value functions [48,49]. Often, linear approximators are not suitable for complex systems and 

then nonlinear function approximators, like artificial neural networks, are required. However, the 

nonlinearity in ANNs may cause instabilities in the RL algorithms or may even diverge. From the 

developments of training algorithms for deep neural networks [50,51], Mnih et al. [52] introduced the deep 

Q-Network (DQN) which uses deep neural networks, i.e. Convolutional Neural Networks (CNN), to 

approximate the action-value function and have shown that the training of the Q function has been stabilized 

using experience replay and a target network. From this seminal contribution, deep RL has emerged as a 

modern research field and it has become an attractive and promising framework for developing real-time 

adaptive control strategies to formulate adaptive control proposals for autonomous systems However, the 

DQN algorithm can only be applied to discrete problems, that is, with finite discretized spaces of states and 

actions. Llicrap et al. [53] extended deep RL formulations for continuous state/action domains for what they 

developed the deep deterministic policy gradient (DDPG) algorithm based on the deterministic policy 

gradient (DPG) algorithm [54] incorporating the ideas of batch normalization [55] and experience replay as 

in [52].  

Mostly, the proposed deep RL algorithms have been tested on simulated systems mainly using simulation 

environments as video games simulators. Yu et al. [56] implemented the DQN algorithm to learn to avoid 

obstacles by learning the turning actions for a simulated car using the raw video frame images as inputs, 

which are directly obtained from a video game simulator.  Ganesh et al. [57] used TensorFlow [58] and 

Keras [59] software frameworks to train a fully-connected deep neural networks, as deep RL agent, to 

autonomously drive across a diverse range of track geometries using a 3D car racing simulator called 

TORCS (The Open Racing Car Simulator) which is a modern open source simulation platform used for 

research in control systems and autonomous driving [60]. Similarly, El Sallab et al. [61] proposed a deep 

learning algorithm for autonomous driving, incorporating recurrent neural networks and attention models to 

integrate the information and to focus on relevant information, respectively. This proposal was tested in 

TORCS with successful results and a good computational performance, which is an important feature for 

potential deployments on real robots. Specifically, for control applications of AUVs,Yu et al. [62] have 

solved, in a simulation environment, the trajectory tracking control problem of an AUV using a deep RL 

algorithm with two embedded neural networks, the actor deep neural network and the critic deep neural 

network. In the formulation, the DPG algorithm was used to update the critic function and the first-order 

gradient-based stochastic optimization method was used to update the weights of the actor function [63]. 

Particularly, during the literature review a non-significant amount of previous works in deep RL has been 

identified for continuous control applications and, even less so, to develop autonomous control strategies for 

underwater vehicles. In this work we propose a deep RL formulation with a deterministic actor-critic 



architecture, mainly based on the DDPG algorithm [53], adapted for low-level control of an AUV using only 

its on-board sensors as perception system which, in turn, becomes the inputs for the control algorithm. The 

successful results obtained from real experiments using an underwater vehicle demonstrated the applicability 

of deep RL for robotics. In this way, the obtained results demonstrated the feasibility for deep RL to be 

applied on a real robot and also the encouraging results open a new promising avenue for the application of 

the deep RL paradigm in the engineering community and, specifically, to develop autonomous systems into 

the robotics field, such as AUVs. 

The paper is structured as follows: In Section 2, we briefly introduce the necessary background on RL 

and the standard Q-learning algorithm as well as an overview to deep neural networks. In Section 3 we 

develop our proposed deep RL framework for AUV control. In Section 4, we provide experimental evidence 

of our proposal. Section 5 concludes the paper with the relevant contributions. 

2. Background 

In this section we give a non-exhaustive overview of the fundamentals of RL as well as the well-known 

Q-learning algorithm that form the basis for the subsequent deep RL developments. Following, the 

deterministic policy gradient method for RL formulations is summarized. Also, a brief and general overview 

of deep neural networks is presented which will be used as function approximators in deep RL formulations. 

These concepts are the basis for our proposed adaptive scheme for the low-level control of an underwater 

vehicle which will be developed in the next sections. 

 

2.1. Reinforcement learning statement 

The RL problem [32] consists in learning iteratively how to achieve a goal, or to accomplish a control 

task, from ongoing interactions with a real or simulated system. Commonly, in RL formulations the control 

problem is defined by four elements, namely, the state space ॿ, the action space ॼ, the state transition 

probability ࣪ and the reward function ݎ௪ሺ∙ሻ. 

In a control problem, at time ݐ, an action is a vector, ܝ௧, of selected values for the manipulated variables 

which could be the inputs to the system actuators. During the learning process, an artificial agent interacts 

with the system by taking an action, in our case, a new set of control actions ܝ௧ ∈ ࣯ ⊆ Թೠ  and, after that, 

the system evolves from the state ܠ௧ ∈ ࣲ ⊆ Թೣ  to ܠ௧ାଵ and the agent receives a numerical signal ݎ௧ called 

reward (or punishment) which provides a measure of how good (or bad) the action taken at ܠ௧ was in terms 

of the observed state transition. Rewards are given as hints regarding goal achievement or optimal behavior. 

Thus, the objective of the RL methods is to obtain the optimal policy ߨ∗ satisfying the Eq.(1), where ܬగ is the 

expected total reward under the control policy ߨ. The main objective of an RL agent is to learn an optimal 

policy, ߨ∗, which defines the optimal control actions (ܝ௧) for different system’s states (ܠ௧), bearing in mind 

both short and long term rewards.  

 



∗ܬ  ൌ maxగ గܬ ൌ maxగ Eగሼܴ௧|ܠ௧ ൌ  ሽ  (1)ܠ

 

Let’s assume that under a given policy ߨ, the expected cumulative reward ܸగሺܠሻ, or value function over a 

certain time interval, is a function of ܠగ, where ܠగ ൌ ሼܠ௧ሽ௧ୀଵ
௧ୀ are the corresponding state values and 

గܝ ൌ ሼܝ௧ሽ௧ୀଵ
௧ୀ defines the policy-specific sequence of the agent’s actions. The sequence ܠగ of state 

transitions gives rise to rewards ሼݎ௧ሽ௧ୀଵ
௧ୀ. Robot control is a continuous task without a single final state 

therefore the discounted sum of future rewards ܴ௧ ൌ ௧ାଵݎ  ௧ାଶݎߛ  ௧ାଷݎଶߛ  ⋯ ൌ ∑ ௧ାାଵݎߛ
ஶ
ୀ  is used to 

define the (discounted) expected state-value function for a policy ߨ from the state ܠ, as:  

 

 ܸగሺܠሻ ൌ ௧ܠ|గሼܴ௧ܧ ൌ ሽܠ ൌ ∑గሼܧ ௧ାାଵݎߛ

ୀ หܠ௧ ൌ  ሽ (2)ܠ

 

where ߛ ∈ ሺ0,1ሿ is the discount factor which weights future rewards. Similarly, the state-action value 

function is defined as: 

 

 Qగሺܠ, ሻܝ ൌ ௧ܠ|గሼܴ௧ܧ ൌ ,ܠ ௧ܝ ൌ ሽܝ ൌ ∑గሼܧ ௧ାାଵݎߛ

ୀ หܠ௧ ൌ ,ܠ ௧ܝ ൌ  ሽ (3)ܝ

 

When the agent starts in state ܠ and executes the optimal policy ߨ∗, ܸ∗ሺܠሻ is used to denote the maximum 

discounted obtained reward. Thus, the associated optimal state-value function that satisfies the Bellman's 

equation for all state ܠ is: 

 ܸ∗ሺܠ௧ሻ ൌ arg	maxܝሼݎ௧  .ߛ	 శభሾሺܸܠܧ
∗ሺܠ௧ାሻ|ܠ௧,  ௧ሻሿሽ  (4)ܝ

 

where ܝ௧ ൌ  :௧ሻ. Similarly, the optimal state–action value function Q∗ is defined byܠሺ∗ߨ

 

 Q∗ሺܠ௧, ௧ሻܝ ൌ ௧ݎ  .ߛ	 శభሾሺܸܠܧ
∗ሺ࢚ܠାሻ|ܠ௧,  ௧ሻሿ  (5)ܝ

 

such that ܸ∗ሺܠሻ ൌ maxܝ Q∗ሺܠ,  is known through interactions, then the optimal policy	Once Q∗ .ܠ ሻ for allܝ

can be obtained directly through: 

 

ሻܠሺ∗ߨ  ൌ argmaxܓ 	Q
∗ሺܠ,    (6)	ሻܝ

  

 

 

2.2. RL in continuous domain: AUV low-level control 

The previously exposed Q learning method results in an adaptive control algorithm that converges on-line 

to the optimal control solution for completely unknown systems [32]. That is, the recursive Bellman equation 

Error! Reference source not found. is solved, using data coming from system interactions without any 



previous knowledge of the system dynamics, to learn an optimal control policy. Commonly, in a Q-learning 

application a state-action discretization is made in advance. However, if a coarse discretization is made the 

results could be poor or if the discretization is too thin the Q-learning algorithm could become intractable. In 

addition, directly applying this method to a continuous control formulation, such as underwater vehicle 

manipulation, may be almost impracticable. 

In our RL formulation we define the markovian underwater vehicle state using a set of observable 

variables. In this manner, the markovian system state, ܠ௧, contains information given by the onboard devices, 

which provide the linear and angular velocities and accelerations of the underwater vehicle, with respect to 

the axes ݕ ,ݔ and ݖ, respectively. Also, information about the instantaneous error, computed between the 

controlled magnitudes and their fixed set points, is used to form the system state. The control variables, ܝ௧, 

are the commands for the AUV thrusters.  

For continuous RL, policy gradient methods are among the most widely used. These model-free methods 

can be applied to solve robotics problems without the need of prior knowledge of the problem or the robot 

dynamics. The core idea of the policy gradient methods is to improve the performance of a control policy, or 

simply policy, by updating the parameters of the policy function in the direction of a performance gradient. 

Commonly, these methods approximate a stochastic policy using an independent function approximator with 

its own parameters ી that maximizes the future expected reward. However, in our formulation we use a 

deterministic policy gradient algorithm which has shown to be more computationally efficient than the 

stochastic one [54]. Thus, let ߤሺ∙ሻ be the policy function that uniquely maps states to actions, such that 

ܝ ൌ ሻ and it has ℓ parameters grouped in a vector ી, such that ીܠીሺߤ ൌ ሺߠଵ,… ,  ℓሻ. Note, that at eachߠ

moment that we interact with the system, we have an action vector ܝ௧ ൌ  ௧ሻ, but to simplify the notationܠીሺߤ

we omit the subscript ݐ. 

Greedy policy improvements may be problematic due to the large computational load required to solve 

the optimization problem (Eq.(6)) in a continuous domain. Therefore instead of computing Eq. (6) it is easier 

to “move” the policy parameters proportionally to a feasible direction of the gradient of the action value 

function, Q, i.e.: 

 

 ીାଵ ∝ 		 ,ܠીQఓೖሺ  ሻሻ (7)ܠીሺߤ

 

However, each state proposes a different feasible direction for the policy improvement, consequently 

these directions must be averaged by means of an expectation taken with respect to the state distribution ߩఓ
ೖ
,  

 

 ીାଵ ∝ 		 E
ఘഋ~ܠ

ೖ ቂીQఓೖሺܠ,  ሻሻቃ (8)ܠીሺߤ

  

therefore, by optimizing with the feasible directions we have  

 



 ીାଵ ൌ 	ી  E	ߙ
ఘഋ~ܠ

ೖ ቂીQఓೖሺܠ,  ሻሻቃ (9)ܠીሺߤ

 

where ߙ ∈ Թ is a positive step-size parameter. Clearly, as can be seen in Eq. (9) the chain rule may be 

applied, then: 

 ીାଵ ൌ 	ી  E	ߙ
ఘഋ~ܠ

ೖ ቂીߤીሺܠሻ	ܝ Qఓೖሺܠ, ሻቚܝ ܝ ൌ  ሻቃ (10)ܠીሺߤ

 

Using the deterministic gradient theorem, which ensures the existence of the deterministic gradient policy, 

such that the off-policy deterministic policy gradient is given as (for further details refer to [54]): 

 

ીሻߤሺܬી  ൌ  ,ܠQఓሺܝሻܠીሺߤીሻܠఓሺߩ ܝ	|	ܠሻ݀ܝ ൌ ሻࣲܠીሺߤ  

 ൌ Eܠ~ఘഋሾીߤીሺܠሻܝQఓሺܠ, ܝ	|	ሻܝ ൌ  ሻሿ (11)ܠીሺߤ

 

then, with Error! Reference source not found. and Error! Reference source not found. we have the 

policy updating rule, 

 

 ીାଵ ൌ 	ી   ીሻ (12)ߤሺܬીߙ

 

2.3. Deep neural networks 

Not long ago particularly for engineering applications, most of the reported applications of artificial 

neural networks correspond to shallow architectures with no more than 1, 2 or 3 depth levels with deeper 

networks showing poorer results. However, deep neural networks have recently arisen as a way to deal with 

large data sets for applications in classification and regression. These new neural networks structures can be 

used in different areas, for example to solve engineering control problem. 

Deep neural networks refer to networks organized in depth architectures as in the mammal brains [64]. 

Particularly, Convolutional Neural Networks (CNNs) [51] are a class of deep neural network with a general 

depth topology as in Fig. 1, which have been successfully used as function approximators of the value 

function Q in deep RL formulations [52]. As can be seen in Fig. 1 the architecture of a CCN network is made 

up of one or more convolutional layers and then followed by one or more fully connected layers as in the 

well-known multilayer neural networks [65]. As in classical artificial neural network applications, the 

number of convolutional and fully connected layers, as well as their size, must be fixed before training. 

These magnitudes cannot be learned and are usually referred to as hyper-parameters of the network which 

are given in advance. Specifically, in our application, the network inputs are given by the sensory system of 

the autonomous underwater vehicle which will be used to learn the low-level control task of the AUV. 

Commonly, the main types of layers used to build CNN architectures are: convolutional layers, activation 

layers, pooling layers, and fully-connected layers. Normally, there is an input layer which contains the raw 
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propose an adaptive controller based on the previous exposed ideas for low-level control of underwater 

mobile robots using only the navigation measurements. 

 

3.1. Deep RL actor-critic for continuous control  

To solve the continuous control problem we employ an actor-critic model-free RL method based on the 

deterministic gradient theorem (Eq. (11)). In this architecture, the actor is an action selection policy that 

maps continuous states to continuous actions in a deterministic way and the critic is a state-value function 

mapping states to expected cumulative reward. However, in continuous control problems the actor and critic 

cannot be learned directly with the standard table-based Q-learning algorithm (Section 2) therefore function 

approximators are required.   

In our formulation, we use a deterministic policy (as in Section 2.2) to approximate the actor behavior, 

 with parameters that are updated periodically using a recursive rule as in Eq. (12). Therefore, the ,ߨ~ી	ߤ

adaptability is achieved by means of the continuous update of the policy parameters based on the collected 

experience coming from the interactions between the robot and its environment. On the other hand, the critic 

is approximated as Q࢝ሺܠ, ,ܠሻ~Qగሺܝ  ሺ∙,∙ሻ. Thus, this is a parametric function࢝ሻ with a deep network Qܝ

approximator, of the true state-action value function Qగሺ∙,∙ሻ, with all its parameters contained in a vector ࢝.  

Due to the nature of the problem, the sensory system does not need to provide images to the control 

system and only low-level measurements of dynamic magnitudes are available at each time step ݐ. Therefore, 

we use an actor-critic architecture as in Fig. 2, where deep neural networks are used for the state-action value 

function and policy representation, respectively. As it can be seen we used deep fully connected neural 

networks of ReLU layers [50] without convolutional and pooling layers for these functions approximation. 

Due that the size of the input vector, given by the sensor measurements, it is dimensionally smaller than an 

average image frame, it is convenient to avoid the use of CNN. In this way, we drastically simplify the 

network architecture, the computational burden [66,67] and also we have a compatible function 

approximation for the critic representation [54,68].  

In order to learn an optimal policy, we first must obtain an optimal critic function as in Eq. (5). To do this, 

in a continuous domain, we consider a deep neural network as a function approximator parameterized by ࢝ 

and the optimal state-value function (critic function) can be found by minimizing the ordinary mean square 

error function, ܮሺ∙ሻ, defined as: 

 

ሻ࢝ሺܮ  ൌ
ଵ

ே
∑ ൫ݕ െ Qሺܠ, ሻ൯࢝|ܝ

ଶே
ୀଵ  (13) 

 

where N represents a time horizon of N sampling times, dt. Then, the gradient of the mean square error 

function ܮሺ∙ሻ, is: 

 

ሻ࢝ሺܮ࢝  ൌ െ
ଶ

ே
∑ ൫ݕ െ Qሺܠ, ሻ൯࢝|ܝ

డQሺܠ,ܝ|࢝ሻ

డ࢝
ே
ୀଵ  (14) 



 

where ݕ are the target state-action values generated by other target deep network, Q , parameterized by ࢝ෝ , 

such that: 

 

ݕ  ൌ ,ܠሺݎ ෝሻܝ  ,ܠQሺߛ  ෝሻ (15)࢝|ෝܝ

 

where the target action ܝෝ is given by an actor target deep network, ̂ߤ, such that: 

 

ෝܝ  ൌ  ାଵ|ી൯ (16)ܠ൫ߤ̂

 

Then, the actor policy function represented by the deep network ߤ, is updated determining the critic 

parameters ી using the deterministic gradient theorem for optimizing the expected return (as in Eq. (11)). 

Thus, after the critic function is found it is used to update the actor function, being ܝ௧ ൌ  ௧|ીሻܠሺߤ

and	ܬሺߤીሻ ൌ Qሺܠ,  ሻ, the deterministic policy gradient is given as in Eq. (17) and we use a࢝||ીሻܠሺߤ

stochastic optimization method [63] to obtain the optimal policy representation. 

 

ܬી  ൌ
డQሺܠ,ఓሺܠ|ીሻ|࢝ሻ

డܝ
∙
డఓሺܠ|ીሻ

డી
 (17) 

 

The target networks parameters updates are made using the rules in Eq. (18) and (19) for the parameters 

of the actor and critic networks, respectively: 

 

 ી ← ીߚ  ሺ1 െ  ሻી (18)ߚ

 

ෝܟ  ← ࢝ߚ  ሺ1 െ ෝܟሻߚ  (19) 

 

with ߚ ≪ 1. Note that two separated deep networks are used for generating the Q-learning targets ݕ and two 

for the actor approximations as in [52]. With the rules of Eq. (18) and (19) a weighted update of the weights 

of the targets networks is made instead of directly copying the weights, as is done in direct applications, 

which have been proven to be unstable in the learning phase. In this way, the networks parameters change 

slower than in direct applications improving the stability of the learning process [53].  
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environment exploration and the dynamic variables of the system are obtained from the sensory system (line 

7) to set the initial system state ܠଵ (line 8). 

Into the inner loop from line 9 to 31 the core of the deep RL low-level AUV control algorithm is 

performed. Keeping in mind that our proposal is developed to be applied on a real robot we must keep a 

fixed sample time, ݀ݐ. Then, the loop execution time must strictly be as long as a sampling time, ݀ݐ, to 

satisfy the hardware constrains imposed by the technological the system. Thus, to achieve this requirement 

we use a timer to manage the execution time and guarantying a sample time ݀ݐ. So, in line 10, we initialize a 

timer which waits a time lapse ݀ݐ to continue with the execution of the Algorithm 1 in line 27.  Note that ݀ݐ 

must be long enough to allow the execution of the commands from line 11 to 26. Using the current actor 

control policy a control action is determined (line 11) and it is immediately sent to the actuators of the 

underwater vehicle (line 12).  

Aiming to improve the stability of the learning process and to make an efficient use of the computational 

resources, we implement batch learning [69] using an experience replay buffer ࣬ which can reach a 

maximum size ࣾା. Thus, in ࣬ the experience is stored in the form of transitions ࣮, such that ࣬ ൌ

ሼ ଵ࣮, ଶ࣮ … , ࣮ࣾ శሽ. In this way, after each interaction step, the actor and critic are updated based on the 

experience stored in a replay buffer ࣬. To do this, if the buffer has stored at least ࣾି	 transitions (i.e. 

condition of line 13 is true), a random minibatch ࣭ of experimented transitions is sampled from ࣬ (line 14). 

Then, with this subset of previous experience, in the inner loop from line 15 to 18 the state-action value 

targets (ݕ) are computed, which are necessary to obtain the critic parameterization ࢝, by miniminzing the 

loss function (Eq.13), and to obtain the actor parameterization ી. In this way, the actor and critic deep 

networks are parameterized as ߤሺ∙ |ીሻ and Qሺ∙  ሻ (line 19-20). In line 21-22 the parameters of the target࢝|

networks,	̂ߤሺ∙ |ીሻ and ܳሺ∙  .ሻ, are updated࢝|

As was said, we use a replay buffer ࣬ to store the experience thus when the buffer reaches its allowable 

maximum size ࣾା we simply remove the oldest stored experience (line 24-26). Thus, with the dynamic 

measurements obtained from the sensory system the transition state representation ܠ௧ାଵ is made (line 28). 

Then, with the transition state the instantaneous reward signal is computed using the reward function, i.e. 

௧ݎ ൌ ,௧ܠ௧ାଵሻ (line 29). Next, with this information, the experimented transition ሺܠ௪ሺݎ ,௧ܝ ,௧ݎ  ௧ାଵሻ isܠ

incorporated into the buffer ࣬ (line 30). 

Finally, the outputs of the algorithm (line 34) are the low-level control policy, synthetized in the deep 

network ߤሺ∙ |ીሻ,  the critic function summarized in the deep network Qሺ∙,∙  .࣬ ሻ and the buffer replay࢝|

 

  



Algorithm 1. Deep RL algorithm for AUV low-level control  

 1. Inputs: 	ܯ, ܶ, ࣾା, ࣾି	,	 ܰ, ݎ ,ߚ ,ߛ௪ሺ∙ሻ,߮, ߥ ,ߩ 

 2. Randomly initialize/load critic network Qሺ∙,∙ ∙ሺߤ ሻ and actor network࢝| |ીሻ with weights ࢝ and ી, respectively 

 3. Initialize target networks ܳ  and ̂ߤ with weights ࢝ෝ ൌ and ી ࢝ ൌ ી 

 4. Initialize /load replay buffer ࣬ 

 5. For ݆	 ൌ 	1 to ܯ do 

 6. Initialize a random process ௧ࣨሺ߮,  ሻ for action explorationߥ,ߩ

 7. Get AUV dynamic measurements from sensory system 

 8. Set initial state ܠଵ 

 9. For ݐ	 ൌ 	1 to ܶ do 

10.  Initialize the ݎ݁݉݅ݐ 

11.  Select action ܝ௧ ൌ ௧|ીሻܠሺߤ  ௧ࣨ according to the current policy and exploration noise 

12.  Execute action ܝ௧ over the system 

13.  If |࣬| > ࣾି	 then   

14.   Sample a random minibatch ࣭ of ܰ transitions ࣮ from ࣬, such that ࣭ ൌ ሼ ଵ࣮, … ࣮, … ே࣮ሽ ⊆ ࣬   

15.   For ݅ ൌ 1 to ܰ 

16.    With the target actor function ̂ߤሺ∙ |ીሻ obtain ܝෝାଵ ൌ  ାଵ|ી൯    (Eq.(16))ܠ൫ߤ̂

17.    Set the state-action value target ݕ ൌ ݎ  ,ାଵܠQሺߛ  ෝሻ      (Eq.(15))࢝|ෝାଵܝ

18.   End 

19.   Obtain the critic parameterization ࢝ minimizing the loss function ܮሺ࢝ሻ (Eq.(13))   

20.   Obtain the actor policy parameterization ી using the deterministic policy gradient ીܬ (Eq.(17)) 

21.   Update the actor target network parameterization  ી ← ીߚ  ሺ1 െ  ሻીߚ

22.   Update the critic target network parameterization  ܟෝ ← ࢝ߚ ሺ1 െ ෝܟሻߚ    

23.  End 

24.  If  |࣬|  ࣾା then 

25.   Remove the oldest ∗࣮ ∈ ࣬ from the replay buffer ࣬, i.e. ࣬ ൌ ሼ࣬ሽ െ ሼ ∗࣮ሽ 

26.  End 

27.  Wait until ݎ݁݉݅ݐ is over 

28.  Get AUV dynamic measurements from sensory system and set the transition state ܠ௧ାଵ 

29.  Observe the reward ݎ௧, i.e. ݎ௧ ൌ  (௧ାଵܠ௪ሺݎ

30.  Store the transition ሺܠ௧, ,௧ܝ ,௧ݎ  ࣬ ௧ାଵሻ inܠ

31. End 

32. Reset time, i.e. ݐ ൌ 1 

33. End 

34. Qሺ∙,∙ ∙ሺߤ ,ሻ࢝| |ીሻ, ࣬ 

 

  



4. AUV control experiments and results discussion 

4.1. Experimental setup 

In order to test our proposal the underwater vehicle Nessie VII (Fig. 4) developed by the Heriot-Watt 

University was used [70]. Briefly, this robot has six thrusters, indicated as T1 to T6 in Fig. 4, allowing for a 

five degree of freedom control (surge, heave, sway, pitch and yaw) and it is equipped with a DVL and an 

IMU to measure the linear and angular velocities. This underwater vehicle serves as an excellent platform for 

testing and development of underwater applications and it has already been used in various  research articles 

as an experimental platform [18,45,46,71]. 

During the experiments the robot interacted with an external computer using ROS (Robot Operating 

System), exchanging messages in a network, with a sampling time ݀ݐ ൌ 0.1 seconds. In this way, the on-

board computer managed the sensory and navigation systems, while the external computer held the deep RL 

controller. The underwater vehicle is controlled by setting a vector ܝ௧ 	ൌ ሺݑ௧
ଵ, ௧ݑ

ଶ, ௧ݑ
ଷ, ௧ݑ

ସ, ௧ݑ
ହ, ௧ݑ

), where 

௧ݑ
ଵ, ௧ݑ

ଶ ௧ݑ…
 are the thrusters commands, at time ݐ, for the thruster 1, 2, … 6, respectively. These commands 

are determined by a control policy, synthetized in the actor deep neural network ߤሺ∙ |ીሻ (Algorithm 1). 

In our deep RL problem formulation we define the markovian system state at time ݐ, using the observable 

state variables given by the instantaneous measurements from the robot sensors, as 

௧ܠ ൌ ሺܞ௧,௧, ,ሶ௧ܞ ሶ ௧, ,௧ିଵܝ ௧ܞ ௧ሻ. The magnitudes܍ ൌ ሺݒ௫, ,௬ݒ ௭ሻ and ௧ݒ ൌ ሺ߱௫,߱௬, ߱௭ሻ are the linear and 

angular velocities with respect to the axes ݕ ,ݔ and ݖ, given by the DVL and IMU, respectively. 

Analogously, ܞሶ௧ ൌ ሺݒሶ௫, ,ሶ௬ݒ ሶ௭ሻ and ሶݒ ௧ ൌ ሺ ሶ߱ ௫, ሶ߱ ௬, ሶ߱ ௭ሻ are the linear and angular accelerations with respect to 

the axes ݕ ,ݔ and ݖ, respectively. While ܝ௧ିଵ is the vector of the commands executed in the previous time 

step ݐ െ 1 and ܍௧ is the instantaneous velocity error computed between the velocities at time ݐ and the fixed 

set points.  

We seek to minimize the deviations of the controlled dynamic variables from their references whilst also 

trying to minimize the thruster use, to reduce overall energy consumption and sudden variations of the 

controlled signals. Note that in order to accomplish this we propose an appropriate reward function ݎ௪ሺሻ as 

in Eq.(20). In this way, the immediate reward, ݎ௧, is given by  an evaluation of the effects the executed action 

       :had in the state of the system. This evaluation consists of three different terms (௧ܝ)

 

௧ݎ  ൌ λ	exp ൬െ
ଵ

మ
൫ܠ௧

ୡ െ ܠ
ୡ ൯

்
Λ൫ܠ௧

ୡ െ ܠ
ୡ ൯൰		 െ ߞ ∑ |ݑ|


ୀଵ െ ഥ௧ିఛ:௧ିଵܝ||	ߦ െ  ௧|| (20)ܝ

 

where the first term evaluates the square error between the controlled dynamic variables (ܠ௧
ୡ) and their 

references (ܠ
ୡ ) with Λ ൌ diagሺሾℓଵ, ℓଶ, … , ℓሿሻ and ℓ, ݇ ൌ 1,… , ݊, being the characteristic length-scales, 

the second term weights the thruster usage and the last term penalizes sudden changes in thrusters commands 

by computing the norm between the current action (ܝ௧) and the moving average of past taken actions 

 ߞ ,ഥ௧ିఛ:௧ିଵ is backward computed using a slide windows of length ߬. The parameters λܝ The mean .(ഥ௧ିఛ:௧ିଵܝ)
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4.2. Simulation results 

The implementation of the Algorithm 1 was done in Python using Tensorflow2, a machine learning 

library with specially developed tools for deep learning applications. Hereinafter, as was mentioned in 

Section 3.1, for the policy network we used a deep fully connected neural network with an input layer of size 

21, three hidden layers using ReLU activation functions, of size 600, 400 and 300, and one output layer of 

size 6, with sigmoid activation function, giving a total of 375056 free parameters. The state-action value 

function uses a similar deep neural network structure, with the difference that the state vector is fed to the 

input layer, and the action vector is fed to the first hidden layer. Moreover, before we begin describing the 

trials, we must mention that for both the simulated experiments and the wet experiments (presented in 

Section 4.3) in all trials we fix ܯ ൌ 500 episodes of length ܶ ൌ 700 time steps with sampling time of 0.1 

seconds. The minimum and maximum size for the replay buffer ࣬ were set in ࣾି ൌ 100 and ࣾା ൌ

200000 elements. The number of state transitions for the minibatch sampling was fixed as ܰ ൌ 60. We use 

a discount rate ߛ ൌ 0.99 and the updating rate for the deep target networks parameters is ߚ ൌ 0.001.  

First, to illustrate the significance of each term for the reward function (Eq.(20)) we design a series of 

experiments which are shown in Fig. 5. Note that the simulated results3 showed in Fig. 5 were performed 

under the same training conditions for the different configurations of the reward function. The immediate 

reward is computed according to Eq. (20) with ܽ ൌ 1 and Λ ൌ diagሺሾ1,0.75,0.75,0.25,1ሿ, with a given set 

point for the controlled variables, ܠ
ୡ ൌ ሺݒ௫ೝ, ,௬ೝݒ ,௭ೝݒ ߱௬ೝ, ߱௭ೝሻ and the action vectors ܝ௧, ܝ௧ିଵ,…, ܝ௧ିఛ 

with ߬ ൌ 100.  

Fig. 5a shows the results for a simple reward function where only the deviations of the controlled 

dynamic variables from their references are taken into account, i.e. ߣ ് ߞ ,0 ൌ ߦ ,0 ൌ 0. As it can be seen, 

Algorithm 1 finds a policy capable of achieving the target references for the dynamic variables,	ܠ
ୡ ൌ

൫ݒ௫, ,௬ݒ ,௭ݒ ߱௬, ߱௭൯ ൌ ሺ0.3	m/s, 0, 0, 0, 0ሻ, however the thruster output patterns are too variable and 

aggressive to be applied in a real underwater vehicle. Fig. 5b depicts the results for a reward function that 

incorporates the second term, that is penalizing the usage of the thrusters, i.e. ߣ ് ߞ ,0 ് 0 and ߦ ൌ 0 in 

Eq.(20). As it can be seen, Algorithm 1 finds a control policy capable of successfully control the AUV but 

the performance of the thruster outputs is still not suitable to be applied on real actuators. Following, we 

incorporate the third term to the reward function, i.e. we use the Eq. (20) with ߣ	 ് ߞ ,0 ് 0 and ߦ ് 0, and 

again performed the same training experiment with Algorithm 1, obtaining the results showed in Fig. 5c. As 

it can be seen, the improvements in the results are clearly noticeable which validates the use of a reward 

function like the one presented in Eq.(20). Therefore, in the following experiments (simulated and real) we 

will adopt a reward function parameterized as the experiment of Fig. 5c, i.e. with ܽ ൌ ߣ ,1 ൌ ߞ ,0.75 ൌ 0.1, 

ߦ ൌ 0.4 and Λ ൌ diagሺሾ1,0.75,0.75,0.25,1ሿሻ.  

 

                                                      
2 For further details refer to the web site https://www.tensorflow.org/. 
3 For simulation we use the Nessie simulator [70]. 
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5. Final Remarks 

In this work an adaptive controller based on the deep RL framework was proposed for low-level control 

of an AUV. The proposed algorithm uses only the low-level data provided by the on-board sensors of the 

vehicle to make the decisions needed for successfully solving the continuous control task. Moreover, unlike 

classic control theory, which requires a model of the system, or fuzzy control strategies, that requires prior 

expert knowledge, the proposed algorithm carries out a specialization process with minimum prior 

knowledge. Effectively, using only the input parameters the deep agent is able to learn a successful control 

strategy. Note that the reward function design is an important part for the implementation of deep RL 

methods in autonomous systems. In this sense, in this work a detailed reward function analysis and 

development was carried out to successfully satisfy the physical and operative constrains required by the 

AUV such as restraining the actuators sudden changes, optimization of the energy consumptions and others. 

In addition, an actor-critic goal-oriented architecture was developed to aid the deep agent to achieve a more 

generalized policy and therefore solve a bigger range of dynamic problems. 

It is important to note that many previous approaches, based on deep RL framework, have used images as 

inputs for the state representation in order to learn a policy able to solve the control tasks. However, this type 

of representations are not straightforward for underwater applications where underwater images are not clear 

and require artificial lightning sources, which in turn increases the energy consumption of the vehicle 

diminishing the available mission time. In addition, the computational requirement for such an application 

raises the need for higher computational capability on board of the AUV, therefore increasing the energy 

consumption even further. Moreover, an additional image processing is needed to obtain the immediate 

reward from a sequence of images, which is not a trivial problem in real-time applications. In contrast, our 

proposed adaptive low-level control algorithm based on deep RL framework only uses a low-level 

representation of the system state, based on the measures of dynamic magnitudes (linear and angular 

velocities), therefore higher computational costs are avoided.  

The articles found in the literature with similar features to the present work, were only tested in 

simulation where the characterization of the systems and its environments were always available. Instead of 

this, our work contributes with valuable experimental results which demonstrate the capability and the 

successful performance of the proposed approach for AUV low-level control. During the experiments we 

worked with Nessie, an AUV developed at Heriot-Watt University, obtaining satisfactory results which 

demonstrate the feasibility of the proposed control approach to be implemented as an adaptive low-level 

control strategy of AUVs.  

Previous works on AUVs, controlled only a limited amount of degrees of freedom, or utilized different 

discretization schemes to be able to control the AUV. However, this article showed that it was possible to 

control the six degrees-of-freedom of a real underwater vehicle by directly sending the low-level commands 

to the thrusters. In this sense, we think that this work is a relevant contribution for the field of autonomous 

underwater robotics opening a new area of research by means of including deep RL for autonomous control 



formulations of AUVs. However, further research is necessary to improve the general autonomy of the 

robots. For example, it would be interesting to consider the possibility of enhancing our proposal by adding 

prior expert knowledge or combining our proposal with other low-level control techniques. Moreover, it 

would be also possible to include safety constraints for the training phase, or utilizing a more complex 

supervisor layer. It would also be interesting to test the proposed approach in other types of mobile robots 

due that our proposal is of a general nature and it is not only restricted to AUVs. 

Our proposed approach uses recently developed ideas coming from the emergent branch of deep learning 

in the artificial intelligence community. Nowadays, deep RL is at an early stage and in this paper we have 

contributed with real evidence for its application in robot adaptive low-level control, particularly, for AUV 

applications. However, there are open issues that deserve attention in the immediate future. For example, 

about how the efficiency of the learning process is affected by the different configurations of the adopted 

deep networks architectures, for functions approximation, is a not trivial issue that deserves a thorough 

discussion and quantitative analysis that could be the subject for future research papers. Finally, for this and 

other issues, there are several open issues for future research regarding deep reinforcement learning as a 

powerful tool for real autonomous developments in underwater robotics. 
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 Adaptive low‐level control strategy of autonomous underwater vehicle 

 Deep reinforcement learning to solve a continuous control problem  

 Real experiments demonstrated the feasibility of deep RL for AUV low‐

level control 

 Only raw sensory information is used for the deep RL actor‐critic 

architecture   


