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Abstract—The traditional methodology for defining the ampac-
ity of overhead lines is based on conservative criteria regarding
the operating conditions of the line, leading to the so-called
static line rating. Although this procedure has been considered
satisfactory for decades, it is nowadays sensible to account for
more realistic line operating conditions when calculating its
dynamic ampacity. Dynamic line rating is a technology used
to improve the ampacity of overhead transmission lines based
on the assumption that ampacity is not a static value but a
function of weather and line’s operating conditions. In order
to apply this technology, it is necessary to monitor and predict
the temperature of the conductor over time by direct or indirect
measurements. This paper presents an algorithm to estimate and
predict the temperature in overhead line conductors using an
Extended Kalman Filter, with the aim of minimizing the mean
square error in the current and subsequent states (temperature)
of the conductor. The proposed algorithm assumes both actual
weather and current intensity flowing along the conductor as
control variables. The temperature of the conductor, mechanical
tension and sag of the catenary are used as measurements because
the common practice is to measure these values with dynamic
line rating hardware. The algorithm has been validated by both
simulations and measurements. The results of this study conclude
that it is possible to implement the algorithm into Dynamic
Line Rating systems, leading to a more accurate estimation and
prediction of temperature.

Index Terms—Dynamic Line Rating (DLR), Dynamic State
Estimation, Extended Kalman Filter (EKF), Overhead Line
(OHL)

I. INTRODUCTION

W ITH the constant increase in power consumption, an

upgrade and update of current assets are necessary for

control and operation of existing power networks. As a result

of the advances in renewable power generation, such as wind

and solar energy, there exists a constant growth in new power

plants. Therefore, bottlenecks are arising in transmission level,

mainly in overhead lines (OHLs), which are facing economic,

social, political and implementation time challenges. In order

to reduce both congestion and face these challenges, different
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techniques [1] can be used depending on the characteristics

of the line. Among these solutions is monitoring the line state

allowing the assessment of thermal limits and the application

of DRL [2], as long as the ampacity is limited by the sag

of the catenary. As the forerunner of DLR, OHL’s ampacity

by probabilistic methods was introduced using seasonal atmo-

spheric conditions [3]. Subsequently, the monitoring of OHL’s

thermal state was reached using information technologies.

Because of only one span in an OHL can limit the ampacity

and its behavior depends on the adjacent suspension spans,

this set of spans is assumed monitored for DLR. This set is

commonly known as the critical stringing section. However,

this section can change over time as a result of weather

variations. Consequently, different methodologies can be used

to identify critical stringing sections and to define DLR devices

location [4], [5].

In OHLs, two types of thermal limits are defined. The first

one is related to thermal equilibrium (steady state) and used for

planning and control. The second one is related to transient

state and given by a relationship between current intensity

and time; this limit is used for contingencies assessment

during operation. Using DLR, the data required to define

these two limits are historic reports of weather or low scale

atmospheric models based on local measurements [6] and

direct measurements in critical stringing sections whether of

sag length, mechanical tension, inclination, clearance, among

others [7].

The ampacity limit at steady state using DLR can estimate

with weather forecast [8]. On the other hand, to compute

dynamic limits (at thermal transient state) with DLR, it is

necessary to know on-line both the conductor temperature

and the atmospheric conditions. To this end, some techniques

are proposed, such as computing wind speed from direct

measurements [9] or including a weather station together with

the direct monitoring device [10]. However, given the nature of

the atmospheric conditions, which vary in space and time and

the uncertainty in the parameters of the OHL, an inaccuracy

is obtained in the ampacity when the temperature is used [11].

The variation in the atmospheric conditions along a string-

ing section can be modeled by the average conductor tem-

perature with an effective wind speed in order to avoid spot

temperature [12]. The impact of data uncertainty is addressed

in the literature. For instance, the uncertainties in input data

as well as in the parameters used in heat transfer models

are addressed by affine arithmetic in [13]. Similarly, robust



corrective control measures considering the weather forecast

uncertainty is used in reference [14]. The impact of the

uncertainty in both the catenary parameters and temperature

in the calculation of the sag is analyzed in [15]. An enhanced

methodology is presented in [16] using on-line information of

a self-organized sensor network. This network uses tempera-

ture sensors and has the ability to predict, estimate and validate

information used for DLR. In this way, this paper presents a

state estimation algorithm for DLR at thermal transient state

which allows to estimate and predict the average conductor

temperature of stringing sections. The algorithm is based on

an Extended Kalman Filter (EKF), and it has the advantage

of using available DLR systems. To implement the EKF, it is

provided that the set of critical stringing sections are monitored

by DLR hardware and their atmospheric conditions are known.

The motivation to propose this algorithm is that currently

used methods to minimize errors in the estimation of tem-

perature in OHLs [17], [18], [19] are probably not the best

choice for on-line dynamic state estimation during thermal

transients. With the EKF, estimation and prediction of both

states and parameters of nonlinear dynamic systems is reached

[20]. Additionally, the uncertainties in the atmospheric con-

ditions, the current intensity and the direct measurements

are considered by the proposed EKF with the computing of

covariance propagation matrix and the Kalman gain. The state

variables of the proposed EKF are the average conductor

temperature, the average effective wind speed, the emissivity

and the solar absorptivity of conductor surface. The average

temperature was chosen because it is possible to estimate the

OHL ampacity with this value. The consideration of additional

parameters leads to improvements in temperature prediction,

since wind speed has the greatest impact on cooling [12],

and emissivity and absorptivity commonly present a high

uncertainty [21].

This paper is organized as follows: Section II provides a

brief introduction to heat transfer in OHL’s conductor and

to direct measurements used in DLR. Section III introduces

the algorithm developed. Section IV presents a case study

and experimental test carried out with the aim of evaluating

the performance of the algorithm. Finally, conclusions are

presented in section V.

II. BACKGROUND

Thermal behavior of OHLs is determined by heat transfer

as a result of heat gains and heat losses. This phenomenon

affects the thermal, electrical, and mechanical characteristics

of OHLs. Consequently, it is possible to estimate the thermal

state of the conductor by monitoring these physical changes.

A. Heat Transfer at Transient State

Heat transfer in OHL conductors is a well-known process

[22] and is described in standards and guides [21], [23]. The

main equation for this process is

dTS

dt
=

ikm
2R (TS) + qs − qc (TS)− qr (TS)

mCp

(1)

where TS is the temperature of the conductor at the surface,

ikm is the current intensity, R is the ac electrical resistance

per unit length, qs is the solar heating, qc is the convective

cooling, qr is the radiative cooling, m is the mass per unit

length and Cp is the specific heat capacity of the conductor.

Equation (1) can solve by numerical integration by using

∆TS =
ikm

2R (TS) + qs − qc (TS)− qr (TS)

mCp

∆t (2)

taking time intervals ∆t, provided that the initial temperature,

the thermal parameters of the conductor and the atmospheric

conditions along the integration time are known. The comput-

ing time to calculate temperature by this numerical method

is not a problem with modern computers, because under

contingencies or normal operation the thermal constant of the

conductors is higher (commonly 15 min) than the processing

time used to solve it (less than 1 s).
The maximum current intensity (|ikm|max) at conductor

reach the thermal equilibrium can compute using the maxi-

mum allowable conductor temperature (TSmax
) as follow

|ikm|max =

√

qc (TSmax
) + qr (TSmax

)− qs

R (TSmax
)

(3)

Thus, OHL’s ampacity can be estimated using both static or

dynamic line ratings. For contingencies management, com-

monly the maximum current intensity vs time plot is computed

solving (1) until the conductor reach the maximum allowable

temperature for different values of ikm.

B. Direct Measurements for DLR

Although (1) correctly models the behavior of tempera-

ture in OHL’s conductors, there exist uncertainties in the

computing results because of inaccuracies in the inputs and

parameters. Thus, direct measurements for DLR are required

in critical stringing sections to enhance the accuracy. With

these measurements, the thermal state is measured discretely

by taking samples between 1 min and 10 min [12], allowing

a thermal monitoring. Direct measurements are classified by

CIGRE [7] into temperature, sag and mechanical tension.

From measurements of these variables, the temperature of the

conductor is computed using known relationships, such as the

state equation (temperature related to tension) and the catenary

equation (related tension with sag). Although the conductor

temperature can be directly monitored, the monitoring system

has errors produced whether by changes in the temperature

along the span, the influence of measurement devices over

the spot where the reading is taken, uncertainties in the

catenary parameters such as the mechanical tension reference,

conductor creep, among others. Finally, an error propagation

occurs in the prediction of temperature during a thermal

transient given the uncertainty of atmospheric conditions. For

instance, when the temperature in the conductor reaches the

steady state after a thermal transient, it is not affected by the

initial value of temperature, but only atmospheric conditions

and current intensity.

III. PROPOSED DYNAMIC STATE ESTIMATOR

A hybrid EKF algorithm is proposed in this paper since

the heat transfer phenomenon in conductors is continuous
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Figure 1. Proposed EKF model to estimate and predict thermal states on
OHL conductors

in time, and measurements for DLR are commonly taken at

discrete times. With this algorithm is aimed to estimate and

predict the temperature in OHL’s conductors by using both

direct measurements of DLR and the atmospheric conditions.

To implement an EKF is necessary to model the system

(ẋ = f (x, . . .)), predict future states
(

x̂−
k

)

and update the cur-

rent states
(

x̂+

k

)

with new measurements (zk). The proposed

EKF for DLR is described by means of Fig. 1 as follows:

A. System modeling

Significant errors in the prediction of the temperature during

a thermal transient occur mainly because of inaccuracies in

the value of wind speed under forced cooling. Additionally,

the values of emissivity (εs) and solar absorptivity (αs) of

conductor surface can vary between 0.2 and 0.9 [21], de-

pending on the environmental conditions and time. Hence, this

paper proposes to consider (εs, αs), along with the effective

wind speed (|ϑ|) and the average conductor temperature as

state variables. By assuming that OHL’s thermal constant is

in a time interval of 5 - 15 min and based on CIGRE rec-

ommendations [12], |ϑ| can consider as the average effective

wind speed during this period and therefore assumed constant.

Likewise, εs and αs are assumed constant. Thus, the system

can be modeled by

ẋ =









f (x,u,w, t)
0
0
0









zk = h (xk,vk)

w (t) ∼ (0,Q)

vk ∼ (0,Rk)

(4)

where f is the function (1), x is the state vector, u is the vector

of control variables, t is the time and w are the errors in the

system. The state vector is x =
[

TS |ϑ| εs αs

]T
. The

control variables selected are |ikm|, the ambient temperature

(Ta), the wind attack angle (δ) and the solar radiation (S),
i.e., u =

[

|ikm| Ta δ S
]

. Finally, the state variables are

related to a set of measurements zk at time k by means of

measurement functions h (xk,vk), which have errors vk. The

errors vk and w are assumed to have a normal probability

distribution with mean zero and covariance Q and Rk.

B. Prediction of future states

To predict a future state, a system error w = 0 is assumed

and a state prediction
(

x̂−
k

)

is carried out at time t by

˙̂x−
k =









f
(

x̂+

k−1
,u, 0, t

)

0
0
0









Ṗ−
k = FP+

k−1
+P+

k−1
FT + LQLT

(5)

taking the estimation of the current states
(

x̂+

k−1

)

. ˙̂x−
k is

computed by numerical integration (2). P is the covariance

of the estimation error, F is the Jacobian of the model with

respect to state variables (F = ∂f/∂x) calculated by

F =













df

dTS

df

dϑ

df

dεs

df

dαs

0 0 0 0
0 0 0 0
0 0 0 0













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂,u

(6)

and L is the Jacobian of the model with respect to control

variable errors (L = ∂f/∂w) computed using

L =













df

dwikm

df

dwTa

df

dwδ

df

dwS

0 0 0 0
0 0 0 0
0 0 0 0













∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂,u

(7)

C. Update of current states

The system update is performed by

Kk = P−
k H

T
k

(

HkP
−
k H

T
k +MkRkM

T
k

)−1

x̂+

k = x̂−
k +Kk

(

zk − h
(

x̂−
k

))

P+

k = (I−KkHk)P
−
k (I−KkHk)

T +KkMkRkM
T
kK

T
k

(8)

using the measurements recorded at time k, where K is the

Kalman gain, H is the Jacobian of the measurement functions

respect to state variables (H = ∂h/∂x) calculated with

H =

[

dh

dTS

0 0 0

]
∣

∣

∣

∣

x̂

(9)

and M is the Jacobian of the measurement functions respect

to measurement errors (M = ∂h/∂v) computed by

M =
dh (TS)

dv

∣

∣

∣

∣

∣

x̂

(10)

The expressions used for computing the partial derivatives

of matrices F,L,H,M can be found in [19]. Finally, the

proposed EKF for DLR estimation is shown in algorithm 1.



Algorithm 1 Proposed algorithm for DLR Dynamic SE

1: procedure HYBRIDEKF(zk ,uk,x̂+

k−1
,P+

k−1
,∆t,tk,Q,Rk)

2: x̂−
k ← x̂+

k−1

3: P−
k ← P+

k−1

4: for j ← ∆t to tk step ∆t do ⊲ Predict

5: ˙̂x−
k ← f

(

x̂−
k , u, 0,∆t

)

6: x̂−
k ← x̂−

k + ˙̂x−
k

7: F← ∂f/∂x|
x̂
−

k
,uk

8: L← ∂f/∂w|
x̂
−

k
,uk

9: Ṗ−
k ← FP−

k +P−
k F

T + LQLT

10: P−
k ← P−

k + Ṗ−
k

11: end for

12: Hk ← ∂h/∂x|
x̂
−

k

13: Mk ← ∂h/∂v|
x̂
−

k

14: Kk ← P−
k H

T
k

(

HkP
−
k H

T
k +MkRkM

T
k

)−1

15: x̂+

k ← x̂−
k +Kk

(

zk − h
(

x̂−
k

))

⊲ Update

16: P+

k ← (I−KkHk)P
−
k (I−KkHk)

T
+

KkMkRkM
T
kK

T
k

17: return
(

x̂+

k ,P
+

k

)

18: end procedure

IV. ALGORITHM VALIDATION

In this section, both simulations and an experimental test

are performed to validate the effectiveness of the proposed

EKF. Algorithm 1 was implemented in Matlab R© with time

steps ∆t = 0.1 [s]. The EKF was evaluated in the estimation

of temperature for real time monitoring and in the prediction

of temperature for contingencies management as follows:

Temperature Estimation: each measurement sample was

processed using the Algorithm 1, where x̂+

k and P+

k are

updated, and used as inputs for the next estimation, as shown

in Fig. 1. Thus, the ability of the EKF to use the information

of previous measurements is used.

Temperature Prediction: it is performed to obtain the

predicted value of temperature at time k +∆tC , where ∆tC
is the assumed duration of a contingency. Thus, a temperature

prediction is performed by means of (1) at time k+∆tC using

the estimated values at time k.

A. Simulation Results

To test the algorithm with simulations, the data for temper-

ature tracking calculation given in [21] was used, assuming a

span with a length of 300 [m], having a horizontal component

of conductor tension of 24.2 [kN] at 20 [◦C]. To simulate

the measurements and the control variables random errors

(vk,w) were added to the assumed Theor. values, as shown in

Fig. 1. Normal distributions of the error with mean zero and

a standard deviation (σzk) considered as the third part of the

accuracy were assumed; therefore, the variances are computed

as var (zk) = σzk
2. A typical accuracy of ±1.5 [K] [7] in

the measurements of conductor temperature was used. Hence,

if a maximum conductor operating temperature of 75 [◦C]
is used, a standard deviation of σTS

= 1.5/3 [K] in tem-

perature measurements is equivalent to σD = 5.5/3 [cm] in

measurements of sag and to σH = 100/3 [N] in measurements

of mechanical tension. Finally, simulations were run with a

∆tC = 15min and direct measurements recorded at time

samples of tk = 1min.

Table I
ATMOSPHERIC CONDITIONS TAKEN FROM CIGRE GUIDE [21]

Time [min] Ta [◦C] ϑ [m/s] δ [◦] S
[
W/m2

]
|ikm| [A]

t ≤ 0 24.0 1.9 55 0 802
0 < t ≤ 10 23.7 1.7 62 0 819
t > 10 23.5 0.8 37 0 856

Table II
CONDUCTORS USED FOR SIMULATIONS AND LABORATORY TEST

Drake 26/7 Linnet unit

Type ACSR 26/7 ACSR 26/7
Standard · · · ASTM B 232

A 486.6 198.38 mm2

d 28.1 18.31 mm
ms 0.5119 0.217 kg/m
ma 1.116 0.472 kg/m
R′

25 ◦C
0.0727 × 10−3 0.2095 × 10−3 Ω/m

βs 1× 10−4 1× 10−4 1/K
βa 3.8× 10−4 3.8× 10−4 1/K
αs 0.8 0.5 1
εs 0.8 0.5 1

α 23 × 10−6 23 × 10−6 1/K
cs 20 ◦C 481 481 J/K kg
ca 20 ◦C 897 897 J/K kg
E 57000 × 106 · · · N/m2

1) Thermal Transient System Description: a thermal tran-

sient with measurements of current intensity and atmospheric

conditions provided every 10min is assumed, as shown in

Table I [21]. The conductor DRAKE ACSR (aluminum (a)

and steel (s)) was used to simulate the span. Its properties are

shown in Table II, where A is the cross-sectional area, d is

the conductor diameter, R′
Tref

is the conductor AC resistance

at temperature Tref , β is the linear temperature resistance

coefficient and α is the coefficient of linear thermal elongation.

2) Temperature estimation and prediction: known exam-

ples were used to assess the performance of the algorithm

assuming direct measurements. For simulating direct measure-

ments, the theoretical temperature (TS-Theor.) during transient

state was computed with the values of Tables I-II by applying

numerical integration (2) to the heat transfer equation (1).

Equivalent values of sag and tension were computed using

the values of TS-Theor. and measurement functions [19].

Then, direct measurements were simulated with the Matlab R©

function randn, adding values of normal random errors with

mean zero and equivalent standard deviation to the sag, tension

and temperature. The simulated temperature measurement

zk=0 was selected to be the value of x̂+

k=0
, and for the

covariance the value P̂+

k=0
= σ2 was assumed. Since in

these simulations the aim is to analyze the performance of

the algorithm provided that direct measurements are available,

the values of atmospheric conditions except for the wind were

assumed without errors, that is w (t) = 0. For the forecast

average effective wind speed an uncertainty of ±0.5 [m/s]
was assumed (σ|ϑ| = 0.5/3 [m/s]).

To test the algorithm, two critical scenarios were modeled.

The first considering a wind speed with the temperature

lower limit |ϑk| = |ϑk|Theor. + 0.5 [m/s] and the second

one using a wind speed with the temperature upper limit

|ϑk| = |ϑk|Theor. − 0.5 [m/s]. Figure 2 shows the values of
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Figure 2. Both theoretical and limits of temperature of the conductor during
transient state, computed with the scenarios: lower limit - |ϑk| = |ϑk|Theor. +
0.5 [m/s] and upper limit - |ϑk | = |ϑk|Theor. − 0.5 [m/s]
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Figure 3. Theoretical wind speed |ϑ| and estimated wind speed

∣∣∣ϑ̂
∣∣∣ using

the proposed EKF for the assumed critical scenarios

temperature during the thermal transient of TS − Theor. and

the ones for the critical scenarios. The shaded area shows the

obtained uncertainty limits. To compute the root-mean-square

error (RMSe), for the lower limit was 4.02 [K], and for the

upper limit of 6.73 [K]. Finally, provided that the effective

wind is modeled discreetly in this example, both

∣

∣

∣
ϑ̂k

∣

∣

∣
= |ϑk|

and P̂k (2, 2) = σ|ϑ|
2 must be reset during the run of the

algorithm at each time k in which the wind changes.

a) Simulations assuming temperature measurements:

for simulation of direct temperature measurements, normal

random errors with mean zero and σ = 1.5/3 [K] were added

to the TS-Theor. Figure 3 shows wind speed estimated for both

critical cases. Figure 4 shows the values of TS-Theor., sim-
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Figure 4. Temperature of the conductor (TS -Theor.), simulations of mea-
surements of conductor temperature (TS Simulated), estimated temperatures(
T̂S

)
and maximum allowable current intensity

(
|ikm|

max

)
at steady state

using the proposed algorithm during the thermal transient

ulations of measured temperature and estimated temperature

using the proposed algorithm with the two critical cases. The

error e is computed with respect to the TS-Theor. The RMSe

for the estimated temperature was 0.34 [K] taking the lower

limit, and 0.54 [K] taking the upper limit. The RMSe using

simulations of direct temperature measurements was 0.6 [K].
Additionally, Fig. 4 shows the maximum allowable current

intensity at steady state for a temperature of 75 [◦C]. The

current intensity was computed with (3) using the conditions

of instant k for each scenario. Figure 5 shows predicted values

both of temperature and of maximum current allowable during

a contingency, obtained a RMSe for the lower limit of 1.6 [K],
and 2.2 [K] for the upper limit.

b) Simulations assuming tension measurements: for sim-

ulating tension measurements, errors were added as done in

the previous simulation using an accuracy of 100 [N]. Figure 6

shows the simulations of measured tension (H), TS-Theor.,

and the estimated temperature with the proposed algorithm.

The RMSe of both estimated and predicted temperature for

the lower limit were 0.18 [K] and 1.5 [K], and for the upper

limit were 0.22 [K] and 2 [K] respectively.

c) Simulations assuming sag measurements: as in the

case of tension measurements, Fig. 7 shows the performance

of the algorithm when sag measurements are available. The

RMSe of both estimated and predicted temperature for the

lower and the upper limits were 0.28 [K] and 1.5 [K], and

0.29 [K] and 1.5 [K] respectively.

Finally, 1000 simulations for each one of the three direct

measurements were performed. To simulate a more realistic
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Figure 5. Temperature of the conductor (TS -Theor.), and predictions 15
min before of temperature and maximum allowable current intensity during a
contingency computed with the proposed algorithm, simulating measurements
of conductor temperature
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Figure 6. Simulation of mechanical tension (H), and estimated temperature(
T̂S

)
using the proposed algorithm simulating measurements of tension on

the conductor

case, errors were added on control variables, since these are

commonly measured or assumed. Thus, normal random errors

with mean zero were added to current intensity (|ikm|) with

σ = 5/3 [A], to ambient temperature (Ta) with σ = 1/3 [K],
and to wind attack angle (δ) with σ = 12.5/3 [◦]. These

standard deviations were taken from [19]. Table III shows

the average RMSe and the average computing time to run

Algorithm 1. As result, the proposed algorithm showed stabil-

ity, convergence and speed, and it reached a smaller error in
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Figure 7. Simulation of sag length (D), and estimated temperature
(
T̂S

)

using the proposed algorithm simulating measurements of sag on the catenary

Table III
COMPARISON PERFORMANCE BETWEEN THE THREE KINDS OF DIRECT

MEASUREMENTS FOR 1000 RANDOM CASES

Measurement Avg. RMSe [K] Avg. Time [s]

Temperature 0.303 0.0593
Tension 0.253 0.0598
Sag 0.328 0.0602

temperature values than in the case of using only records of

direct measurements.

Although the standard deviation for δ was taken using typ-

ical anemometers accuracy, this value is unrealistic, because

of wind turbulence along the stringing section. However, to

estimate the average effective wind speed instead of spot

values, the effect of wind turbulence is considered [12].

B. Experimental Results

A laboratory setup was designed to evaluate the algorithm.

The setup consisted of controllably injecting a current inten-

sity through the OHL conductor Linnet and measuring its

temperature. The properties of the conductor are shown in

Table II. To carry out the validation, an ambient temperature

of Ta = 19 [◦C], and the planned current intensity (|ikm|)
and the wind (|ϑ|) shown in Fig. 8 were assumed as forecast

values throughout the test. An auto-transformer and a fan were

used to control both |ikm| and |ϑ|. As in the simulations,

the two critical cases in the estimation and prediction of the

temperature were used. Additionally, a value of emissivity

ǫs = 0.9 was used as initial parameter for the lower limit

and a value of emissivity ǫs = 0.2 for the upper limit. Thus,

three different cases were analyzed: case 1 using the assumed

planned and forecasted values, case 2 using the upper limits,

and case 3 using the lower limits.

1) Test setup: considering the laboratory atmospheric con-

ditions, the conductor under test theoretically reaches 75 [◦C]
with an |ikm| of almost 500 [A]. Taking the limitations of the

short circuit current of the laboratory into account, a special
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Figure 8. Current intensity planned (|ikm|) and forecasted wind speed (|ϑ|)
used in the test
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Figure 9. Circuit diagram of the experimental test

three-winding three-phase distribution transformer (HV-LV-

LV) with open ends was used to reach this current, as shown

in Fig. 9. The setup used is shown in Fig. 10. To reduce the

influence of loop impedance the leads were located almost

perpendicular to the conductor and the transformer was about

1 [m] away.

2) Test Results: the setup was initially energized with

300 [A], and when the conductor reached the thermal steady

state, the planned conditions (Fig. 8) were controlled and the

variables |ikm|, TS and Ta were measured and recorded every

30 [s] with an accuracy of ±5 [A] and ±1.5 [K]. Measure-

ments are shown in Fig. 11. Since the test was carried out

indoors, the solar radiation was assumed to be S = 0.

Figure 10. Experimental test setup
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Figure 11. Measurements of current intensity (|ikm|), temperature of the
conductor (TS) and ambient temperature (Ta) recorded every 30 [s]
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Figure 12. Comparison of temperature measured and computed with planned
and forecasted conditions, upper limit and lower limit

Figure 12 shows the values of temperature computed using

(2) for the three cases and the temperature measured. The Root

mean square residuals (RMSǫ) obtained were RMSǫ = 2.4 [K]
for case 1, RMSǫ = 5.7 [K] case 2 and RMSǫ = 5.5 [K] for

case 3.

3) Estimation of average Temperature: The values esti-

mated both of effective wind speed and emissivity of the

conductor using the proposed EKF in each case are shown

in Fig. 13. The estimated average conductor temperature

for the case with the highest RMSǫ (case 2) is shown in

Fig. 14. A RMSǫ = 1.5 [K] was obtained with this estimated

temperature.

4) Prediction of Temperature: Taking the case 2, the tem-

perature predicted 15min before is shown in Fig. 15. In this

temperature prediction, a RMSǫ = 2.5 [K] was obtained.

Additionally, Fig. 15 shows the maximum current intensity
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Figure 13. Estimated effective wind speed
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)

and emissivity (ǫ̂s) for

each case
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Figure 14. Comparison of estimated averaged temperature and measured tem-
perature, and comparison of residual of estimated and computed temperature
in each case

allowable until the conductor reaches 75 [◦C]. This current

intensity was predicted 15min before.

V. CONCLUSIONS

This paper presents an algorithm to estimate and predict

thermal transient states in OHL conductors and addresses its

implementation. This algorithm uses an EKF based on the heat

transfer equation, using atmospheric conditions, current inten-

sity, conductor parameters and direct measurements as inputs.

The uncertainty in these values was considered. To simulate

and test the EKF, the algorithm estimated and predicted values

of average conductor temperature, with processing times lower

than the time spent between measurement samples, showing

computational efficiency and stability. The algorithm can be

directly implemented on current DLR systems in a fast and

cost-effective way.

12:00 13:00 14:00 15:00 16:00
10

20

30

40

50

60

0

5

10

15

20

25

12:00 13:00 14:00 15:00 16:00

Time - [h:min]

400

500

600

700

Figure 15. Comparison between the average temperature predicted 15min
before and temperature measured, comparison between residual of predicted
average temperature and temperature computed in each case, and maximum
current intensity allowable until the conductor reaches 75 [◦C]

Average effective wind speed, emissivity and solar absorp-

tivity were chosen as parameters to be estimated, due to

the impact of their uncertainty on heat transfer. Effective

wind speed was assumed constant during a typical time of

contingency. Nevertheless, models of wind behavior for long

time emergency could be included in future studies.

The algorithm assessment showed a reduction in the RMEe

and RMSǫ when thermal estimation and prediction are carried

out by the proposed EKF, allowing to increase the reliability

in the thermal monitoring of OHLs. For instance, despite

using the most critical case, the RMSe obtained using the

algorithm to estimate and predict the average conductor tem-

perature was less than the RMSe obtained in all cases, both

the simulations and the experiment. The algorithm validation

was performed using low wind speeds which is considered

a critical scenario. In the cases of higher wind speeds and

low current intensities where the conductor temperature is

close to the ambient temperature, a field test validation is

necessary. Finally, further analysis should be carried out using

data validation techniques.
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