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Stochastic Unit Commitment & Optimal Allocation
of Reserves: A Hybrid Decomposition Approach

Carlos J. López-Salgado, Osvaldo Añó, and Diego M. Ojeda-Esteybar

Abstract—The Unit Commitment is still a widely studied problem
especially when more renewable energy of stochastic character is
being added to power systems. This paper proposes a model for
weekly planning of systems involving hydro, wind and thermal
energy under a stochastic perspective. The proposed model
follows the endogenous reserve determination criterion to achieve
a simultaneous optimization of energy and reserves considering
wind uncertainty, forced outages of equipment, a DC Flow model
of the network and cascaded head sensitive hydro systems, among
others. The paper also develops a practical solution methodology
based on Outer Approximation and Benders decomposition.
Testing has been conducted over four systems, and computational
results demonstrate that the proposed model and solution are
useful and effective.

Index Terms—reserve allocation, spinning reserves, supplemen-
tary reserves, unit commitment, uncertainty, Benders decompo-
sition, outer approximation

NOMENCLATURE

Indexes/Parameters
t Index of stages running from 1 to T
i Index of thermal plants running from 1 to G
j Index of hydroelectric plant with an associated

reservoir running from 1 to J for short term
reservoirs and from 1 to J S for seasonal reservoirs

k Index of wind farms running from 1 to W
n Index of buses running from 1 to N
m Index of transmission lines running from 1 to M
c Index of contingencies running from 0 to C
e Index of wind realizations running from 1 to E

Sub-sets
Ωn Sub-set of generation units (thermal, hydro and

wind) connected to bus n
Parameters
TUi,TDi Minimum up and down times of thermal plant i

[h]
SUi,SDi Start-up and shut down costs of thermal plant i [$]
ai, bi Coefficients of linear cost function of thermal plant

i
WVj Water value of stored energy in seasonal reser-

voir j valid throughout the short term horizon
[$/MWh] or [$/hm3]

cP
i Cost of spinning reserve of thermal plant i for

primary and secondary regulation [$/MWh]
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cU
i , cD

i Cost of spinning up and spinning down reserve of
thermal plant i for tertiary regulation [$/MWh]

cS
i Cost of non-spinning reserve of thermal plant i

[$/MWh]
VOLL Value of lost load [$/MWh]
Lnt Forecast load at bus n during period t [MW]
RREQt Required fast spinning reserve for primary and

secondary regulation during period t [MW]
Fmax
m Power flow limit of transmission line m [MW]

Pmin
i , Pmax

i Min and max power of thermal plant i [MW]
R

up
i , Rdn

i Ramp-up and ramp-down limits of thermal plant
i [MW/h]

Qmax
j Maximum flow rate of hydroelectric plant j [m3/s]

Vmin
j , Vmax

j Min and max volume of reservoir j
[
hm3

]
Ijt Inflow to reservoir j during period t [m3/s]
Woffer

kt Forecast wind power of farm k for period t, for
scheduling purposes [MW]

WRe
kt Wind power realization of farm k in scenario e

during stage t [MW]
Uc
i Status of thermal plant i for contingency c (1 =

available, 0 = unavailable)
Uc
m Status of transmission line m for contingency c

(1 = available, 0 = unavailable)
σe Probability of wind power realization e
πc Probability of contingency c
pe,c Probability of stochastic realization {e, c} where

pe,c = σe × πc

Variables
uit Commitment of thermal plant i for period t
ait Start-up of thermal plant i at beginning of period

t
zit Shut-down of thermal plant i at beginning of

period t
usit Commitment of thermal plant i for provision of

supplementary reserve during period t
pit Scheduled power of plant i for period t [MW]
hjt Scheduled power of hydroelectric plant j for pe-

riod t [MW]
wkt Scheduled wind power of farm k for period t

[MW]
rpit Scheduled fast (primary & secondary) regulation

reserve for thermal plant i for period t [MW]
ruit Scheduled tertiary regulation up reserve for ther-

mal plant i for period t [MW]
rdit Scheduled tertiary regulation down reserve for

thermal plant i for period t [MW]
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rsit Scheduled supplementary reserve for thermal plant
i for period t [MW]

vjt Volume of reservoir j at the end of period t
[
hm3

]
qjt Discharge flow of reservoir j during period t[

hm3/h
]

sjt Spilled flow of reservoir j during period t
[
hm3/h

]
fmt Power flow through line m during period t [MW]
pe,cit Output power of plant i for stochastic realization

{e, c} during period t [MW]
fe,cmt Power flow through line m for stochastic realiza-

tion {e, c} during period t [MW]
wse,ckt Spilled wind power of farm k for stochastic real-

ization {e, c} during period t [MW]
pde,cnt Energy deficit at bus n for stochastic realization

{e, c} during period t [MW]

I. INTRODUCTION

A. Background and Litarature Review

THIS paper analyzes the Weekly Unit Commitment
(WUC) problem of systems involving a mix of thermal,

hydro and wind power. This is today a very important schedul-
ing phase, especially when power systems go through the
necessity of increasing their reception of renewable resources
of uncertain character; and is a relevant task for Independent
System Operators (ISO) or agents seeking to maximize their
economic benefit. Hydrothermal systems are susceptible to
load interruptions due to the forced outage of equipment or
adverse wind power realizations; therefore, the system oper-
ator must ensure optimal levels of reserves while procuring
the minimal economic harm to users. Nevertheless, since
most works addressing the problem within the weekly horizon
follow deterministic standpoints, the WUC results become
ineffective when the system is later exposed to contingencies.
Documented works in literature are mainly centered on strate-
gies to deal effectively with the integer variables needed to
model the commitment status of plants, the head-sensitive
hydro plants sharing a hydrology connection between them,
the time linked constraints associated to large scale prob-
lems and the consideration of the transmission network to
account for transmission losses or to comply with security
constraints. The optimization problem is therefore described as
a large scale MINLP problem, not easily handled by existing
commercial solvers. Accordingly, [1]-[2] define MILP models
after linearizing the production function of head dependent
reservoirs using integer variables, [3] proposes an elaborated
nonlinear approach, while [4] applies the convex hull algo-
rithm to exogenously deal with the head effect of the hydro
units. As an example of application to a real case, the work
of [5] describes an MIP model applied to the Portuguese
system including wind and pumped-hydro units. The model is
implemented in the UC and Economic Dispatch (ED) phases
and solved using a commercial solver. The Genetic Algorithm
(GA) is employed in [6] and an improved Particle Swarm
Optimization (PSO) in [7], but it is well known that these
strategies are still limited by the problem size [8]. Generalized
Benders Decomposition (GBD) is applied by [9] to solve the
UC problem considering a full AC power flow model, while

[10] improves the convergence profile of the aforementioned
work by proposing the use of strong cuts, which results in a
more effective solution of the master problem. Multi-objective
optimization is proposed in [11] considering non smooth
fuel cost functions of thermal plants and nonlinear hydro
production functions; the problem is solved applying lexico-
graphic optimization. Among the works adopting a stochastic
perspective, [12] deals simultaneously with load, hydrology
and wind uncertainty within a daily context and proposes a
hybrid scheme driven by the Benders decomposition (BD)
algorithm, where the sub-problem is further decomposed and
solved using Outer Approximation (OA). In [13], a network
constrained UC is presented, adopting the form of a two-stage
stochastic programming model; the resulting Mixed Integer
Nonlinear Programming (MINLP) problem is tackled with
BD, after employing a heuristic technique to relax the inter-
temporal constraints imposed by the ramping capabilities of
units. A Robust Optimization (RO) model is given in [14]
considering load uncertainty, handling the stochastic variable
by application of Information Gap Decision Theory (IGDT);
while in [15] the short term strategic bidding problem of a
wind-hydro producer is addressed employing interval opti-
mization within a daily context.
An additional body of related literature involves the energy and
reserve co-optimization problem, most of which is restricted
to purely thermal systems within an hourly or at most daily
time frame and to a single type of reserve. For instance [16]
presents a deterministic model which is solved applying LP.
A second group of works employs the endogenous reserve
determination criterion, and hence a reserve deployment stage
is defined within the formulation. In [17], a LP model is
combined with simulation tools, while [18]-[20] describe the
problems as stochastic MILP models. A two-stage decision
framework is presented in [21]-[22], which extended the above
models to include wind uncertainty (additionally to equipment
failures) and also ended with stochastic LP or NLP models that
are solved directly or by special Lagrangian relaxation.
Finally, two-stage robust optimization models have gain con-
siderable attention due to the fact that these models require
moderate information about the underlying uncertainty, espe-
cially when it is challenging to construct a stochastic model
to capture randomness. For instance [23] considers demand
response and wind uncertainty, and applies a cutting-plane
method to solve the problem. In [24], the net power injected
to nodes is considered as stochastic variable, and a hybrid
decomposition approach based on BD and OA is developed;
while [25] applies BD in the solution of a weekly model,
where water inflow is the only uncertain variable involved.
Since convexity of the second stage problem is a requirement
of robust models, none of the works above consider nonlinear
constraints in their primal formulations.

B. Motivation and Contributions
Regardless of research efforts in these subjects, it has not yet
been found a proposal for the weekly horizon that involves
simultaneously the following elements: i) deployment of the
different types of reserves due to uncertain wind power realiza-
tions along with equipment failures, and ii) an operation policy
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for head-sensitive short-term reservoirs in cascaded hydro
systems. The reservoirs addressed here are small compared
to seasonal reservoirs, i.e., small in terms of the length of
the regulation period, but their MW provision is significant
to the power system. Hydro energy from this type of plants
is very important in Latin America as well as in many other
countries worldwide; however, as seen above, the impact of the
conformation of reserves over these plants is not perceptible
in models with a daily scope. Moreover, although the weekly
schedule will not be used for the daily dispatch, an in advance
consideration of operating reserves and uncertainties will yield
a much more tight management policy for the reservoirs than
one that ignores such factors.
Therefore, this paper proposes a stochastic WUC model where
deployment of reserves, cost of interruptions and uncertain
wind scenarios are quantified so that water in reservoirs is
optimally pre-allocated in the light of expected energy and
reliability costs.
Consistent with the previous discussion, the main contributions
of this paper are listed below:

1) A stochastic WUC model is introduced, including four
types of operating reserves (fast spinning for primary &
secondary regulation; up, down and supplementary for
tertiary regulation), involving head-sensitive hydro plants
linked to short term reservoirs, considering wind power
uncertainty and modeling failure of system components.
To the best of the authors’ knowledge, for the weekly
horizon, a model assembling the elements above has not
been reported in literature.

2) Development and application of a useful hybrid decom-
position method based on OA and BD to cope with the
complex optimization problem that cannot be solved by
directly employing commercial MINLP solvers. Partic-
ularly, the solution of MILP model provides feasible
commitment decisions, while a NLP model provides
energy & reserve allocation among thermal plants and
water release decisions for hydro stations. The nonlinear
and non-convex NLP model is tackled through BD. When
convergence of the BD process is reached the resulting
master and sub problems are LP models, a fact that
satisfies the convergence’s condition of the OA algorithm.
According to the authors’ research, there has not been a
coordinated application of the OA and BD algorithms
affording the conformation presented in this paper. Two
hybrid approaches employing BD and OA are [12] and
[24], but their methods are both driven by BD instead of
OA, as in the present contribution.

3) The UC solution preserves the accuracy of the nonlinear
nature of hydroelectric power; therefore, the obtained
water allocation policy is not left exposed to future
infeasibilities due to exogenous linearization of the hydro
power functions

The rest of the paper is organized as follows. In Section II
the stochastic-WHS model is formulated. In Section III the
solution approach is introduced and the problems that form the
solution architecture are defined. In Section IV the model is
tested in four case studies and the future research is identified.

The paper conclusions are summarized in Section V.

II. PROBLEM FORMULATION

A. Stochastic Framework and Modeling Assumptions

The proposed formulation follows a two-stage stochastic de-
cision framework as portrayed in Fig. 1, recognizing that the
two stages refer to the same temporal instance.

. . .

1st. stage: weekly scheduling decisions

s = 1 s = 2 s = 3 s = 4 s = 5 s = E × C
2nd. stage: uncertain scenarios at real time operation

Fig. 1: The stochastic framework of the proposed formulation

The first stage is identified as the weekly scheduling decisions,
which are adjusted to wind power realizations and equipment
failures at the second stage, where deployment of operating
reserves are represented. In this sense, prior to uncertainty
realizations in the second stage, the system is optimally
prepositioned by means of the scheduling decisions in the first
stage [13].
Three assumptions are needed before presenting the proposed
model:

1) The start-up and shut-down costs of units providing
supplementary reserves are assumed to be embedded in
the reserve provision cost

2) Suppliers of non spinning reserves are able to handle by
themselves the technical aspects of the minimum on and
off times and ramping limits of their plants, so that these
constraints are not binding at the real operation phase

3) The stochastic processes that model wind uncertainty and
forced outages of equipment are exogenous to the op-
timization problem, and statistically independent among
them.

B. Problem Formulation

Objective Function. The objective function of the proposed
model is defined as follows:

Min
T∑

t=1

(
cUC
t + cOPER

t + cBAL
t

)
+ cF

T (1)

where:

cUC
t =

∑
i

(aiuit + SUiait + SDizit) (2)

cOP
t =

∑
i

(
bipit + cP

irpit + cU
i ruit + cD

i rdit + cS
irsit

)
(3)

cBAL
t =

E×C∑
{e,c}

pe,c
(∑

i

[
bi (p

ec
it − pit)

]
+
∑
n

VOLLpdecnt

)
(4)

The objective function penalizes the costs pertaining to a
scheduling phase (the UC costs cUC

t ; the operating and reserve
provision costs, cOP

t ; and the future cost of stored water in
seasonal reservoirs, cF

T ), and the expected correction costs
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incurred in real time operation, cBAL
t . The future cost cF

T of
seasonal reservoirs is a known function obtained from a long
term model, and is associated to the expected water storage
level at the end of the week (period T ).
I) Constraints at scheduling stage.{

uit − ui(t−1) = ait − zit (5)

ait + zit ≤ 1 (6)
uit + usit ≤ 1 (7)

uit, ait, zit, usit ∈ {0, 1}
}

∀ i,∀ t (8)

TUi−1∑
l=0

ui(t+l) ≥ TUi(uit − ui(t−1)) ,∀ i (9)

TDi−1∑
l=0

(1− ui(t+l)) ≥ TDi(ui(t−1) − uit) ,∀ i (10)

{
Pmin
i · uit ≤ pit ≤ Pmax

i · uit (11)

0 ≤ rpit + ruit ≤
(

Pmax
i − Pmin

i

)
uit (12)

pit + rpit + ruit ≤ Pmax
i (13)

pit − rdit ≥ Pmin
i · uit

}
∀ i,∀ t (14)∑

i

rpit ≥ RREQt ,∀t (15)

Pmin
i · usit ≤ rsit ≤ Pmax

i · usit ,∀i,∀t (16){
pit + ruit −

(
pi(t−1) − rdi(t−1)

)
≤ R

up
i (17)

pi(t−1) + rui(t−1) − (pit − rdit) ≤ Rdn
i (18)

pit, rpit, ruit, rdit, rsit ≥ 0
}
∀ i,∀t (19)

−Fmax
m ≤

∑
n

ψnm ·
(
gnt − Lnt

)
≤ Fmax

m ,∀m, ∀t (20)

gnt =
∑
i∈Ωn

pit +
∑
j∈Ωn

hit +
∑
k∈Ωn

wkt ,∀n,∀t (21)∑
i

pit +
∑
j

hjt +
∑
k

wkt =
∑
n

Lnt ,∀t (22)

0 ≤ wkt ≤ Woffer
kt ,∀ k,∀t (23){

vjt = vj(t−1) + CF
(

Ijt−
J+J S∑
j′=1

Tjj′
[
qj′t + sj′t

])
(24)

Qmin
j ≤ qjt ≤ Qmax

j (25)

Vmin
j ≤ vjt ≤ Vmax

j (26)

hjt = c1jqjt + c2jqjtvjt+c3jqjtv2jt + c4jq2jt (27)

hjt, sjt ≥ 0
}
∀ j ∈ J ,∀t (28)

vjT ≥ Vend
j ,∀ j ∈ J (29)

II) Constraints at reserve deployment stage:{
− Fmax

m Uc
m ≤

∑
n

ψc
nm

(
gecnt − Lnt

)
≤ Fmax

m Uc
m ,∀m (30)

gecnt =
∑
i∈Ωn

pecit +
∑
j∈Ωn

hit +
∑
k∈Ωn

(
We

kt − wseckt
)
,∀ n (31)

∑
i

pecit +
∑
j

hjt +
∑
k

(
We

kt − wseckt
)
=
∑
n

(
Lnt − pdecnt

)
(32)

pecit ≤
(
pit + ruit + rsit

)
Uc
i ,∀i (33)

pecit ≥
(
pit − rdit

)
Uc
i ,∀ i (34)

WRe
kt − wseckt ≥ 0 ,∀ k (35)

wseckt ≥ 0 ,∀ k
}
∀ e,∀c,∀t (36)

While constraints (5),(6) and (9)-(10) are common to most UC
models, constraint (7), assures that if a thermal plant is com-
mitted for generation and spinning reserve (uit = 1), it cannot
provide non-spinning reserve (usit = 0). Constraints (11)-(16)
are the limits on active power and the different type of reserves
involved, while (17)-(18) are the ramping constraints, which
are also related to the provision of reserves [26]. The need
for fast spinning reserve is estabished exogenously as a result
of a system security analysis, as expressed by (15), where
if hydroelectric plants are to provide fast regulation, these
plants are known beforehand and therefore their contribution
to fast regulation is not a decision variable in the present
model. Equations (20)-(22) correspond to a DC power flow
representation, where ψnm is the power transfer distribution
factor of bus n to line m, which gives the ratio between the
change of flow on the line and the change of power injection
at the bus, once a reference bus has been established [27].
The term gnt contains the power injection at bus n, and (22)
is the total power balance at period t, which is required to
complement the system of equations given by (20).
Expression (24) is the water balance equation, where CF
is a scalar used to convert m3/s to hm3, and Tjj′ denotes
the hydrology coupling between reservoirs. Tjj′ = 1 for all
j = j′ and Tjj′ = −1 if output flow from reservoir j′ goes
directly to reservoir j; otherwise Tjj′ = 0. The nonlinear
production function of hydro plants is given in (27), where
c1j , c2j , c3j , c4j are scalars. This equation expresses the head
effects on the efficiency of the plant. Although variants to
this expression can be found in literature, the decomposition
scheme with which this function is dealt with can be natu-
rally extended to consider alternative forms. Expression (29)
establishes the minimum volume that must be available at the
end of the week, and this is usually set as a percentage of
the initial volume. This constraint is only applicable to short
term reservoirs, since the use of water from seasonal reservoirs
is determined by their water value for the week under study.
Finally, constraints (33)-(36) bind the scheduling decisions to
real operation. Equation (33) is of key importance in the co-
optimization model, as it expresses the limitation on the total
power that can be used at a particular uncertain realization.

III. PROPOSED SOLUTION

A. Outer Approximation Background

Outer Approximation [29]-[31] is a basic approach for solving
MINLP models based on decomposition, outer-approximation
and relaxation. The strategy consists of solving an alternating
finite sequence of a NLP model (Primal problem) and a
relaxed version of a MILP model (Relaxed Master problem) as
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shown in Figure 2. The fundamental idea of OA is to develop
linear representations of the nonlinear constraints and apply
relaxation.

PRIMAL
PROBLEM

(NLP)

RELAXED
MASTER

PROBLEM
(MILP)

y∗

x(r)

Fig. 2: Basic functioning of the OA algorithm

Consider the problem:
Min

{
cTx + dTy

}
(37)

S.t: g (x) ≤ 0 (38)
Ax + By ≤ d (39)

x ≤ x ≤ x, x ∈ R (40)
y ≤ y ≤ y, y ∈ {0, 1} (41)

where g (x) is assumed to be a convex function. The algorithm
consists in solving (37)-(41) removing constraint (38) and
replacing it by its linearized function in the current solution:

g
(
x(r)

)
+∇g

(
x(r)

)T [
x− x(r)

]
≤ 0 (42)

where x(r) is the optimal solution of the Primal problem,
which is problem (37)-(41) when y is fixed to a feasible
solution, i.e., the previos optimal solution of the Relaxed
Master (RM) problem. The convergence proof of the outer
approximation, as well as other variants of the algorithm can
be found in [30]-[31]. The algorithm either converges to a
locally optimal solution or never finds a feasible solution if
the problem is infeasible.

B. A Hybrid Outer Approximation (OA)/Benders Decomposi-
tion (BD) with Parallelization Approach

The formulation in Section II renders a complex stochastic
MINLP problem. This problem is solved in a sequence of
iterations driven by the OA algorithm, shifting between the
Primal problem, and the RM problem, as explained above.
Although this dynamic provides for an effective solution of
most deterministic MINLP models, uncertainty modeling still
causes the Primal and RM problems to remain characterized
as large scale optimization problems. Therefore, the proposed
solution further decomposes the Primal problem applying
Benders decomposition, as seen in Fig. 3. Finally, a proper
selection of constraints defined within Master and the Sub-
problem of the BD algorithm provides for the parallelization
of the Subproblem in T subproblems, allowing the solution of
smaller stochastic NLP models.

C. The Primal problem

If the binary variables are set to a feasible solution, the Primal
is a stochastic NLP problem with objective function: (1) and
constraints: (11)-(36). The Primal is decomposed in a Master
and a Subproblem (which at the same time is decomposed in
T subproblems), as seen in Fig. 3.

SP3SP2SP1 SPT

MASTER PROBLEM (LP)
ENERGY & RESERVE SCHEDULING

WATER RELEASE DECISIONS

. . .

STOCHASTIC HOURLY SUB-PROBLEMS (NLP)

x∗1

Φ1

x∗2

Φ2

x∗3

Φ3

x∗T

ΦT

STOCHASTIC UC
ENERGY & RESERVE ALLOCATION

Q(r),V(r)

u∗,us∗

PRIMAL PROBLEM (NLP)

RELAXED MASTER PROBLEM (MILP)

Fig. 3: The decomposition & parallelization scheme to solve
the stochastic MINLP problem

1) The BD Master problem within the OA PRIMAL problem:
The Master problem for this part is a LP problem, with the
objective function:

µP
M = Min

∑
t

(
cUC∗
t + cOPER

t + βt

)
+ cF

T (43)

with cUC∗
t already known and cOPER

t as in (3). The term βt is the
approximation of the cost of subproblem t that is iteratively
improved by means of the Benders cut. The objective function
(43) is subject to:
� Constraints (11)-(19)
� Constraints (24)-(26) and (28)
� The Benders cuts for each period:

βt ≥ µP
St+

∑
i

[
λP
it (pit − p∗it) + λRU

it (ruit − ru∗it)

+λRD
it (rdit − rd∗it) + λRS

it (rsit − rs∗it)
]

+
∑
j

[
λQ
jt

(
qjt − q∗jt

)
+ λV

jt

(
vjt − v∗jt

) ]
(44)

where µP
St is the optimal cost of hourly subproblem t;

λP
it, λ

RU
it , λ

RD
it , λ

RS
it , λ

Q
jt and λV

jt, are Lagrange multipliers ob-
tained from the solution of subproblems (the elements of
vector Φt in Fig. 3); and p∗it, ru

∗
it, rd

∗
it, rs

∗
it, q
∗
jt and v∗jt are

the optimal values from the previous solution of the Master
problem (the elements of x∗t in Fig. 3). It can be noticed
that this work uses a Benders cut for each hour as done
in [10], which is quite effective when combined with the
parallelization feature.

2) The BD hourly sub problems within the OA Primal prob-
lem: The T hourly sub problems for this part are NLP models,
and they have the objective function:

µP
St = Min cBAL

t (45)
where cBAL

t is given in (4). The objective function above is
subject to:
� Constraints (20)-(23)
� Equation (27), the hydroelectric power function



0885-8950 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2018.2817639, IEEE
Transactions on Power Systems

6

� Constraints (30)-(36)
� Constraints related to the decision variables determined at
the Master problem:

pit = p∗it : λP
it (46)

ruit = ru∗it : λRU
it (47)

rdit = rd∗it : λRD
it (48)

rsit = rs∗it : λRS
it (49)

qjt = q∗jt : λQ
jt (50)

vjt = v∗jt : λV
jt (51)

The lower bound ZL
B and upper bound ZU

B are as follows:
ZL = µP

M (52)

ZU =
∑
t

µP
St +

(
µP

M −
∑
t

βt

)
(53)

The BD algorithm within the OA Primal problem is summa-
rized next:

1) Initialization. Set counter p = 0.
2) Solve the BD Master problem (first Master problem

solution with no Benders cuts). The solution provides a
feasible solution x∗ and a lower bound ZL

B

3) Using the solution values in x∗, solve the hourly sub
problems. The optimal cost of subproblems allows for
the calculation of the upper bound ZU

B

4) Test for convergence: If ZU − ZL ≤ ε, then STOP, as a
solution has been reached; else, p = p + 1 and GOTO
next step.

5) Using the Lagrange multipliers of constraints (46)-(51)
and the solution vector of the previous iteration x∗(p−1),
solve the Master problem adding new Benders cuts (44)
and obtain an improved lower bound ZL

6) Go to step 3.
Solving the Primal problem provides an upper bound UB
of the process, and feasible solution values for qjt and vjt.
These values are used to linearize the nonlinear constraint (27)
which must be removed from the RM problem and replaced
by linearized cuts.

D. The Relaxed Master problem

The RM is a MILP model which encompass the objective
function (1) and linear constraints (5)-(26) and (28)-(36);
that is, the hydroelectric power function is removed from the
model, and replaced by the linearized cuts:

hjt + kq(r)
jt qjt + kv(r)

jt vjt + k0(r)
jt ≤ 0 (54)

which are added at each iteration r of the OA algorithm. It
can be shown that the coefficients kq(r)jt , kv(r)jt and k0(r)jt are
given by:

kq(r)jt = −
(

c1 + c2v∗jt + c3
(
v∗jt
)2

+ 2c4q∗jt
)

(55)

kv(r)jt = −
(
c2q∗jt + 2c3q∗jtv

∗
jt

)
(56)

k0∗jt = c4
(
q∗jt
)2

+ c2q∗jtv
∗
jt + 2c3q∗jt

(
v∗jt
)2

(57)
where it must be noticed that q∗jt and v∗jt are taken from the
previous execution of the BD algorithm, once it has converged,
i.e., the previous solution of the Primal problem. Notice that
constraint (27) is the only non-linearity considered here. If the

system involves thermal plants with quadratic cost functions,
these can be adequately handled by piecewise linearization,
with a negligible effect. Finally, transmission line losses could
also be included in the model, which would imply defining a
linearized loss cut as in [28].
To solve the RM problem, this work proposes the use of a
large-scale commercial MIP optimizer, taking advantage of
the growing development experienced by this kind of solvers
in recent years. The solution of the RM provides an improved
solution vector of the binary variables uit and usit, which are
included as fixed variables in the next execution of the BD
algorithm that solves the Primal problem.

E. The hybrid OA/BD algorithm and its convergence

The proposed hybrid OA/BD algorithm is depicted in Figure
4. The convergence of the algorithm represents the solution
of overall problem, aiming to solve the UC problem under
uncertainty, and its final product is a set of optimal values
for the on and off status of thermal plants, the configuration
of energy and reserves among these units, an optimal water
release policy for the entire week, and a set of linearized cuts
(54) delimiting the output power of hydro plants.

r → 0
Set lower bound LB = 0.
Provide an initial feasible
solution for uit and usit

Solve the PRIMAL
problem described in
III-C applying BD.

Update upper bound UB

Add a new linearized
cut (54) and solve the

RELAXED MASTER
problem according to III-D.

Update lower bound LB

UB − LB ≤ ε ?

START

END

r → r + 1
Using Q(r)

jt and V (r)
jt from

solution of Primal problem,
obtain coefficients (55)-(57)

NO

YES

Fig. 4: The proposed Hybrid OA/BD solution algorithm

In principle, the convergence of the algorithm relies on the
convexity in x of (38). This constraint is the compact matrix
representation of (27) in the formulation. The hydropower
function is clearly nonlinear and non convex. The OA algo-
rithm requires the continuous Primal problem (resulting from
fixing the binary variables to any feasible values) to be convex;
otherwise, convergence cannot be guaranteed. However, as
stated in [22], local convexity in the neighbourhood of the
optimal solution is sufficient to guarantee convergence in most
practical applications. The proposed strategy deals with this
complication in the Primal problem (NLP model) applying
BD.
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The release and storage variables qjt and vjt are placed in the
Benders master, which is a linear multi period problem, but
the hydropower function is left at the Benders sub problem.
In this way, after solving the master and fixing qjt and vjt
to their optimal solution values q∗jt and v∗jt respectively, the
hydropower function can be expressed as:

hjt ≤ c1jq∗jt + c2jq∗jtv
∗
jt + c3jq∗jt

(
v∗jt
)2

+ c4j
(
q∗jt
)2

(58)
As it can be seen, it becomes a linear constraint, and hence
the Benders sub problems can be addressed employing an LP
solver. When the BD converges, the Benders Subproblem is
expressed as the sum of T linear subproblems, which are linear
and convex in the neighborhood of the optimal solution. Due to
the tolerances established for both the main (OA) and the BD
algorithm, the algorithm’s convergence is to a local optima,
but the quality of the solution is evaluated in terms of the
system overall cost.

IV. CASE STUDIES

The proposed model is illustrated using a modified IEEE-14
bus and further testing is done over three other systems. The
optimization problems have been developed using the AMPL
algebraic modelling language [33], and the parallelization
enhancement relies on the use of the MATLAB’s parfor
function and the AMPL API interface. The cases have been run
using XPRESS and CPLEX for the MILP and LP problems,
and MINOS for the NLP problems, on a 64-bit windows based
server with 64 GB of RAM and 28 Intel Xeon processor at
2.0 GHz. For all cases studies, data is available upon request,
as well as the AMPL models and Matlab scripts.

A. Extended IEEE-14 bus

1) System description: The system presented in [6], corre-
sponding to the Chilean Central Interconnected System, has
been inserted into the the IEEE-14 bus network. It consists
of 10 thermal plants, and 11 hydroelectric units from which
6 have an associated water reservoir. Figure 5 illustrates the
hydraulic coupling of the reservoirs and the hydroelectric units
involved. Additionally to the thermal and hydro plants, two
wind farms are incorporated to the system. To model wind
power uncertainty, three wind scenarios were considered and
to model equipment failures, a credible set of contingencies
was defined. The total number of stochastic realizations is of
3 (wind) × 7 (failures) = 21 scenarios per hour.
2) Extended IEEE 14-bus results: Table I summarizes the
performance of the proposed solution when using a tolerance
of 0.5% for both the main and the BD algorithms. It can
be seen that the process converged in 2 iterations with an
error of 0.31%. According to the time frame considered,
results indicate that it is feasible to attain a solution at a
reasonable time. To provide an initial solution for the binary
variables when solving the RM problem, the solution from the
previous iteration was used, and although the problem involved
more constraints (an additional set of linear cuts), this artifice
improved the solution time in the last iteration, as seen in
Table I.
Figure 6 portrays the total allocation of thermal and hydro

R1

U1

I1

R4 R7

U4 U7U2

U3 U5

U6

U8

I2

I4 I7

I3 I5

R9 R10 R11

I9 I10 I11

U9 U10 U11

Fig. 5: The cascaded hydro system coupled to the IEEE-14
bus network

power and the total system’s load, reflecting the expected
behaviour in the sense that the cheaper thermal generation is
placed at the base of the load curve, and deployment of hydro
power is moderate during off-peak periods while intensive
during on-peak periods. Observe that for the weekend, hydro
generation levels are higher than in working days. This fact
reflects a difference with respect to deterministic models
(where hydroelectric generation follows the load curve in a
more uniform way), which is induced by the incorporation
of operating reserves and uncertain realizations. Since hydro
generation is more conservative during peak periods, greater
accumulation of water may occur in the final stages of the
planning period.
Additionally, Figure 7 displays the total allocation of the three
types of reserves considered in the example, for each period.
The total load has been divided by 4 so that the load profile
can be easily compared to that of the reserves. Notice that in
contrast to most deterministic models, where reserve needs are
established exogenously as a percentage of the total load, the
up reserve allocation (Ru in Fig. 7) does not exhibit this sort of
relationship. Indeed, this association is only observed between
the load and the primary reserve, which is an exogenous
variable in the present model. Another fact worth noting is that
for the whole weekend, the up reserve needs are lower than the
reserves for primary regulation, which for this example was
set at 5% of the total load. This particular result suggests that
following deterministic rules may lead to an over estimation
of spare capacity for the tertiary regulation interval.

TABLE I: Results for extended IEEE-14 bus system

Costs [$] Solution Time [min] Primal
Main iters LB UB Primal RM iters

0 0 48530373 1.11 - 7
1 3165537 3182213 2.16 52.18 16
2 3171440 3180730 2.08 44.17 16

The energy and reserves allocation among thermal plants is
presented in Table II. It is seen that thermal plants GT1 and
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Fig. 7: Reserves allocation in extended IEEE14-bus case

GT2 are only allocated with energy and primary reserve. This
is in part because they both have the lowest production cost
and the highest reserve cost. On the other hand, this units are
among the plants prone to fail in the COPT table, which will
disable them to operate at the post-contingency phase.

TABLE II: Energy & reserve allocation among plants

Plant Energy [MWh] RP [MW · h] RU [MW · h] RD [MW · h]

GT1 45194 18 0 0
GT2 44714 629 0 0
GT3 27800 392 10771 3446
GT4 9701 2311 21588 2719
GT5 7280 7841 2879 2480
GT6 5260 34 12255 580
GT7 3450 9287 223 210

In tables III and IV the performance of the proposed hybrid
method is assessed in relation to other existing strategies.
Table III records the results for a deterministic version of the
formulation applied to the 14-bus case, where deployment of
reserves and the transmission network are neither modeled.
The advantage of the OA driven algorithm is clearly seen,
especially when comparing its results with that of commercial
MINLP solvers, reflecting a cost difference of less than 0.01%
and a significant reduction in computation time.

TABLE III: Asssesment of alternative methods to solve a
deterministic-WUC

Method Solution time Iters Total Cost [$]

Bonmin 1.8.0 154 h - 1,628,587
Knitro 10.0.0 85 h - 1,628,587
BD 03:54 min 36 1,628,681
OA 00:49 min 4 1,628,649

Table IV shows the results when trying to solve the full
stochastic-WUC, proving the difficulty encountered when
including the transmission network and modelling reserves
deployment along with the inherent nonlinear nature of the
system. These results also confirm the effectiveness of the
proposed hybrid method.

TABLE IV: Asssesment of alternative methods to solve the
proposed stochastic-WUC

Method Solution time Iters Remark

Bonmin 1.8.10 > 72 h - No solution after 72 h.
Knitro 10.0.0 > 72 h - No solution after 72 h.
OA - - Unable to solve Primal (large

scale NLP problem)
BD > 36 h - Unable to reach convergence

after 36 h
Hybrid OA/BD 01:42 h 4

To have a rather general idea on the model sensitivity to
wind power realizations, 100 simulations have been run. The
experiment based on the random generation of percentage
values from a uniform distribution. At each simulation, all
values within the initial set of wind scenarios (assumed to
accurately reflect the stochastic process) were allowed to
vary within the range [0.7 1.3]; that is, between -30 % and
+30% of the values used to obtain the results in Table I.
To simplify the simulations, the optimal solution values for
the commitment variables where kept fix, so the simulations
where performed solving the Primal problem only. This
simplification implies that all costs obtained are higher than
those obtained if the complete algorithm were applied.
A histogram for the total cost distribution has been
constructed, and is shown in Figure 8, and the basic statistic
parameters of the process are shown on Table V.

TABLE V: Results for 100 simulations of wind power real-
izations in the 14-bus case

Mean 3,188,171.64 [$]
Standard Error 421.92 [$]
Median 3,188,011.41 [$]
Standard Deviation 4,219.20 [$]
Range 23,438.36 [$]
Minimum 3,176,916.90 [$]
Maximum 3,200,355.26 [$]

Although these numbers should be assessed in the light of the
proportion of wind power contribution to the power system,
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Fig. 8: Cost distribution of simulations in the 14-bus case

they seem to suggest that even with sub-optimal values for the
on and off status of plants, a solid response from the model
could be expected. This is expressed by the general symmetry
of the distribution, the closeness between the Mean and the
Median, and the value of the Range, which is less than 1% of
the Mean.

B. Additional tests

Results in Table I clearly indicate that the RM problem
is the one demanding the major computational effort. The
intention pursued in the following set of tests was to assess
the solution times required when solving linear versions of the
proposed formulation, that is, simulating the solution of the
RM problem. The tests were performed over three systems
of different size: a 9-bus system and modified IEEE 57-
bus and 118-bus systems. For the three cases above, non-
spinning reserve was considered in the problems. Table VI
summarizes the characterization of each problem and the
simulation results, suggesting that for small, medium and
large-scale hydrothermal systems, the MILP model is feasible
to be solved.

TABLE VI: Assesment of model solution for the three cases

Problem Parameters 9-bus IEEE 57-bus IEEE 118-bus

Thermal plants 3 7 54
Hydro plants 1 8 8
Wind farms 2 0 0
Transmission lines 9 78 179
Contingencies 83 18 44
Wind scenarios 5 0 0
Problem Size

Binary variables 2,016 4,701 36,288
Continuous Variables 1,722,644 418,299 2,910,264
Constraints 1,510,346 299,491 2,214,373
Solution time [hh:mm] 00:10 00:02 12:55

Although the aim of these simulations was to show that
solving RM problem is realizable in real systems, some useful
insights are derived from the results. For instance, for the 9-
bus system, Figure 9, compares the volumes trajectories from
a deterministic model (no reserves for tertiary regulation) with
that of the proposed model.
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Fig. 9: Total demand and volume trajectories for deterministic
and proposed models in 9-bus case

The trajectories suggest that from the first day the storage
levels depart from each other. This is clearer in day 1, where
about 333000 additional cubic meters of water are stored
before facing the peak period (occurring in the sixth sub-
interval of the day) and the rest of the week. This difference
in storage levels preceding the peak periods is also evidenced
in days 2 and 3. It is also seen that with the proposed model,
at the peak periods the hydro generation is more intensive, as
seen in days 1-3 and 5. In other words, when uncertainty and
reserves deployment are involved in the model, more water is
expected to be released from the plant during the peak period,
and hence the reservoir could reach a lower volume level than
that obtained in a deterministic dispatch. Again, the causal
reason is that having thermal plants out of service or wind
farms not able to provide the forecast wind power are both
probable events.
Additionally, Figure 10 displays the allocation of energy for
each hour of the week, and Figure 11 depicts the allocation
of the different types of reserves. As seen in Table VI, this
case included two wind farms, so downward reserves must
be scheduled to accommodate excess wind power production
at the real operation. It is also observed that provision of
supplementary reserve is incremented during the weekend,
when the load is lower than in workdays. This is explained by
observing the energy allocation of Figure 10, where thermal
power is reduced at that period (thermal units providing active
power and spinning reserve are shut-down); and because of
this an additional unit is committed for provision supplemen-
tary reserve, whose startup cost at the real operation phase is
not quantified, but is rather assumed to be embedded in the
reserve provision cost.
Figure 12 shows the energy & reserve allocation for the 57-
bus case, which didn’t consider wind power, but included the 8
cascaded reservoirs in [34]. An interesting result of the output
relates to the levels of upward spinning reserves. Notice that
the provision of spinning reserves basically oscillates between
two levels, in some proportion to the provision of active power
from thermal units, instead of the load, as any exogenous rule
for reserve determination would suggest.

C. Identification of future research

In relation to deployment of hydropower when facing adverse
scenarios in the actual operation, it is observed from (32) that
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Fig. 10: Energy allocation in 9-bus case
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Fig. 11: Allocation of reserves in the 9-bus case
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water release decisions remain fix during the actual operation,
i.e. , for tertiary regulation purposes, no more (or less) hydro
power would be used than the amount previously allocated
at the weekly scheduling. In this sense, it is also necessary
to analyze the problem using the dual approach, and to
attain future cost functions that are effective for each sub-
period (hour) within the weekly horizon. This would provide
a mechanism for adjusting the release levels of hydro stations
based on their volume levels.

V. CONCLUSIONS

This work addresses the weekly hydrothermal scheduling
problem in the presence of wind uncertainty and random
failures of plants and transmission lines, laying attention on

the procurement of reserves needed at the real operation
phase (spinning and supplementary). A new hybrid scheme
that relies on both the Outer Approximation and the Benders
decomposition algorithm has been proposed. At the expense
of computational cost, the proposed strategy allows for an
iterative build of linear approximations of the production
function of hydro stations, allowing a comparison of the
accuracy of this estimation in terms of the total system cost.
By means of simulations performed over an extended 14-bus,
a 9-bus and two large scale systems, it has been shown that
the model is feasible to be implemented in real size problems
and that it provides reasonable energy and reserves allocation
guidelines. The proposed solution has proven to be effective
in solving the optimization problem.
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