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Abstract. Power transformer design normally includes an optimization process which involves the assessment of a great number
of design alternatives. This calculation process normally requires a high computation time and its reduction is always a desirable
goal. Circulating currents in parallel connected conductors in transformer windings are a critical design aspect to be analyzed.
This article presents a new methodology for the fast calculation of circulating currents for parallel connected conductors in
power transformers. The formulation for solid conductor modeling has been developed using the same calculation strategy as in
Semianalytic Integral Method (SAIM) [1], which allows a significant reduction of computational effort. A realistic case study of
a 25 MVA transformer was used to validate the proposed methodology. As for the accuracy of the calculations, the comparison
of the results obtained by the proposed methodology and those calculated using the Finite Element Method (FEM) shows an
excellent agreement between both approaches. However, the computational performance of the new approach was found to be
much higher than that of FEM. This makes the proposed method much more efficient for transformer design purposes.
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1. Introduction

Despite the great advances in the field of computing in the last decades, the optimization of power
transformer design remains a challenging task, since account should be taken of dielectric, magnetic,
thermal and constructive aspects [2].

One of the most important aspects of magnetic design is to keep eddy current losses in conductors within
acceptable limits [3]. In order to achieve this, a widely used criterion is to ensure that the dimensions of
the conductors do not significantly exceed the skin depth of the magnetic field 𝛿1.
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1This criterion excludes foil conductor and solid bars with large cross sections, where the dimensions of the conductors can
be considerably greater than 𝛿
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When transformers for large currents are required, there is no other way than to use parallel conductor
arrangements in order to keep current density, ohmic losses and therefore temperature in suitable
operational ranges.

Although the use of parallel conductor arrangements is an effective technique to keep the ohmic and
eddy losses under control, there exist the disadvantage that each conductor belonging to a given turn is
under the influence of different magnetic field values. This effect leads to the fact that induced voltages in
the conductors of the same turn are not necessarily the same, giving rise to circulating currents between
them [4].

In order to solve the problem of circulating currents, transpositions are made with the aim that all
conductors are approximately linked by the same magnetic flux. Although the problem of circulating
currents can be solved theoretically by making the complete transposition of the conductors, from a
practical point of view, transpositions considerably increases the complexity, production times and
consequently the costs of the coils.

Several studies can be found in the literature addressing the problem of the prediction of circulating
currents and transposition optimization. Undoubtedly, the technique that offers the greatest precision for
the calculation of circulating currents is a low-frequency magnetic field-electric circuit cosimulation using
the finite element method (FEM) [5,6].

The calculation of circulating currents using FEM implies that the conductors must be discretized
internally and an electric circuit must be used to define electrical connections between them. Because there
are hundreds or even thousands of conductors and their dimensions are quite small compared to the overall
dimensions of the active part, the simulation of this problem is quite demanding from a computational
point of view, even using a 2D approach. Consequently, the calculation times of circulating currents using
FEM are incompatible and even prohibitive for the design and optimization of transformers.

The methodology presented in this paper uses the same calculation strategy as in the Semianalytic
Integral Method (SAIM), which was published in a previous work [1]. SAIM was used successfully to
determine the current distribution in foil conductor windings considering eddy currents and the magnetic
coupling with the magnetic core.

A new formulation of the magnetic coupling between conductors and the core is presented in this work.
Additionally, circuit equations are introduced in order to model electrical connections between conductors.

A fast and precise methodology for the determination of the current distribution in a power transformer
for an arbitrary electrical connection between conductors is proposed. In order to appreciate explicitly the
effectiveness of the proposed method, an extreme case has been investigated where transpositions have
not been used in the transformer winding.

2. Proposed model

This section introduces the concept of a low frequency equivalent magnetic model of the power
transformer. In addition, the basic laws and principles used to formulate the methodology for the
calculation of circulating currents are presented.

2.1. Transformer equivalent magnetic model

The power transformer has characteristics that make its modeling complex, such as its three-
dimensionality and nonlinearities, so it is necessary to apply simplifications to the model so that the
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solution is simpler, efficient and simultaneously a reasonable precision can be achieved [7]. A constant
magnetic permeability of the core and a two-dimensional axisymmetric geometry are assumed in this
work. The dimensions of the conductors and the electrical connections between them are modeled in
detail.

The transformer modeling strategy used in this paper is based on replacing certain elements such as the
iron core and conductors by magnetically equivalent arrangement of elements.

This novel modeling technique offers two advantages compared to numerical techniques such as FEM.
On the one hand, there is a drastic reduction in the number of elements because only the boundary between
the core and the air/oil is discretized. On the other hand, it is not necessary to discretize the conductors
internally since the current inside them is modeled by a boundary condition related to the magnetic vector
potential.

The core is replaced by an array of disc-shaped and cylinder-shaped elements, for which a boundary
condition based on Ampere’s law [1] is proposed. Figure 2 presents the arrangement of elements that make
up the core. Note that because of space limitations, the detailed core model is not presented in this paper,
since this subject is discussed in detail in [1]. This paper focuses mainly on modeling the conductors and
their magnetic coupling to each other and to the core.

In order to be coherent throughout the article, the following definitions are proposed for the elements
used to model the transformer:

• Core: Arrangement of cylindrical and disc-shaped surface elements having surface currents conceived
as an equivalent of the high permeability ferromagnetic material.

• Conductor: Individual solid wire made of conductive material.
• Turn: Arrangement of one or more conductors electrically connected in parallel.
• Coil: Arrangement of one or more conductors electrically connected in series. This implies that the

current flowing through all conductors belonging to a coil is the same.
• Winding: Arrangement of a certain amount of arbitrarily connected coils. In this article two windings

are considered, the low voltage (LV) winding and the high voltage (HV) winding, both are made up of
coils connected in parallel.

2.2. Equivalent model of a conductor with rectangular cross-section

Apart from the core, the other key element in the magnetic model of the transformer is the conductor.
A schematic representation of a generic conductor is presented in Fig. 1(a), while Fig. 1(b) shows the
equivalent circuit of a rectangular conductor, which has been represented by an impedance. Due to the
resistive and inductive effects of the conductor, there is a voltage drop along it named V dp.

The equivalent magnetic model of a generic conductor is described by the following equation (see
derivation in Appendix A.2).

𝑉𝑑𝑝 = −𝐼𝜙𝑅𝐷𝐶 − j𝜔𝑙𝑚𝐴𝜙 (1)

where I𝜙 is the current through the conductor. RDC is the DC resistance and lm the mean length of the
conductor. The magnetic vector potential at the center of the conductor is represented by A𝜙. The angular
frequency is 𝜔 =2𝜋f where f is the frequency of operation in Hz. Finally j is the imaginary unit.

Equation (1) is of crucial importance, since it relates the voltage drop, the current flowing in the
conductor and the magnetic vector potential, where the latter models the inductive coupling with other
conductors and the core. As will be seen, none of these three parameters V dp, I𝜙 and A𝜙 is usually known
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Fig. 1. (a) Geometric scheme of a solid rectangular conductor. (b) Equivalent circuit of a solid conductor.

in advance, however, it is possible to formulate a system of equations that allows the determination of
these three variables for all transformer conductors.

3. Solution methodology

In this section, the model for the conductor of rectangular cross-section presented in Section 2.2 and
the core boundary equation given in [1] are used to propose a mathematical model to determine both the
current distribution of the core elements and the current in all conductors of the transformer.

3.1. Iron core equations

Figure 2 shows that the core has been represented using an amount of mc surface elements, whose
surface current densities (𝐾[𝑗]

𝜙1
and 𝐾[𝑗]

𝜙2
) are unknown.

In an earlier article the equivalent magnetic model of the core was presented in detail [1]. In [1] is shown
that the following boundary condition is to be satisfied by the tangential component of the magnetic field
strength at each field point of the core elements

𝐻[𝑗]
𝑡 = 𝜅𝑚

2
𝜈[𝑗] (𝐾[𝑗]

𝜙1
+ 𝐾[𝑗]

𝜙2
) (2)

where 𝜅m = (1∕2)(𝜇r2 +1)(𝜇r2 −1) and 𝜈[j] is defined as follows

𝜈[𝑗] = {−1 for 𝑗 = 1 ⋯𝑚𝑦𝑐,
1 for 𝑚𝑦𝑐 + 1 ⋯𝑚𝑐,

(3)

where 𝜇r2 is the relative magnetic permeability of the core material and myc is the number of elements
used to model each yoke. It has been assumed that the number of elements used for the lower yoke and
the upper yoke are the same.

The core is affected by the magnetic field produced by currents flowing in the low and high voltage
windings which are composed of nLV and nHV conductors respectively. The currents in these windings are
also unknown.

There are thus two different types of magnetic field sources. There are mc surface field sources in the
core, which are of the first type. The nrc = nLV + nHV cylindrical field sources with rectangular cross-section
used to model the conductors of the low and high voltage windings belongs to the second type of sources.
Accordingly, the transformer can be represented with a total amount of n = mc + nrc elements.
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Fig. 2. General diagram of the transformer.

The tangential magnetic field component on the j-th core element produced by the i-th element can be
written as

𝐻[𝑗,𝑖]
𝑡 = 𝑘[𝑗,𝑖]𝑡1 𝐾[𝑖]

𝜙1
+ 𝑘[𝑗,𝑖]𝑡2 𝐾[𝑖]

𝜙2
for 𝑖 = 1 ⋯𝑚𝑐 and 𝑗 = 1 ⋯𝑚𝑐 (4)

where 𝑘[𝑗,𝑖]𝑡1 and 𝑘[𝑗,𝑖]𝑡2 are factors that depend exclusively on the dimensions and location of the element and
the coordinate of the field point. Therefore, these factors are called geometry-dependent factors. On the
other hand𝐾[𝑖]

𝜙1
and𝐾[𝑖]

𝜙2
are the surface current densities of the i-th element. The mathematical formulation

to determine the geometry-dependent factors is available in [8] for the case of cylindrical surface elements
and in [9] for the case of disc-shaped surface elements.

Equation (4) mathematically represents the mutual magnetic effect of the core elements. The contri-
bution to the tangential component in the core due to the current flowing in the coil conductors can be
written as follows

𝐻[𝑗,𝑖]
𝑡 = 𝑘[𝑗,𝑖]𝑡 𝐼[𝑖]𝜙 for 𝑖 = 𝑚𝑐 + 1 ⋯𝑛 and 𝑗 = 1 ⋯𝑚𝑐. (5)

The mathematical expressions for determining the coefficients of the cylindrical elements with rect-
angular cross-section 𝑘[𝑗,𝑖]𝑡 are given in Annex A.1. It should be noted that the magnetic field strength
𝐻[𝑗,𝑖]
𝑡 can be associated either with the radial component or with the axial component according to the

orientation of the core element on which the field is computed with respect to the overall coordinate
system. In particular, the tangential field of the yoke is associated with the radial field component, while
in the case of the core leg the tangential field is associated with the axial component of the field [1]. The
tangential field strength in the j-th field point is the superposition of the effects of all elements and can be
written as follows

𝐻[𝑗]
𝑡 =

𝑛
∑
𝑖=1

𝐻[𝑗,𝑖]
𝑡 for 𝑗 = 1 ⋯𝑚𝑐. (6)
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Equation (6) can be rewritten for convenience as follows

𝐻[𝑗]
𝑡 =𝐻[𝑗,𝑗]

𝑡 +
𝑚𝑐

∑
𝑖 = 1
𝑖 ≠ 𝑗

𝐻[𝑗,𝑖]
𝑡 +

𝑛
∑

𝑖=𝑚𝑐+1

𝐻[𝑗,𝑖]
𝑡 . (7)

Substituting (4) and (5) into (7) gives

𝐻[𝑗]
𝑡 = 𝑘[𝑗,𝑗]𝑡1 𝐾[𝑗]

𝜙1
+ 𝑘[𝑗,𝑗]𝑡2 𝐾[𝑗]

𝜙2
+

𝑚𝑐

∑
𝑖 = 1
𝑖 ≠ 𝑗

(𝑘[𝑗,𝑖]𝑡1 𝐾[𝑖]
𝜙1
+ 𝑘[𝑗,𝑖]𝑡2 𝐾[𝑖]

𝜙2
)

+
𝑛
∑

𝑖=𝑚𝑐+1

(𝑘[𝑗,𝑖]𝑡 𝐼[𝑖]𝜙 ) for 𝑗 = 1 ⋯𝑚𝑐. (8)

Substituting the core boundary condition (2) into (8) and rearranging gives the following expression

(𝜅𝑚
2
𝜈[𝑗] − 𝑘[𝑗,𝑗]𝑡1 ) 𝐾[𝑗]

𝜙1
+ (𝜅𝑚

2
𝜈[𝑗] − 𝑘[𝑗,𝑗]𝑡2 ) 𝐾[𝑗]

𝜙2
−

𝑚𝑐

∑
𝑖 = 1
𝑖 ≠ 𝑗

(𝑘[𝑗,𝑖]𝑡1 𝐾[𝑖]
𝜙1
+ 𝑘[𝑗,𝑖]𝑡2 𝐾[𝑖]

𝜙2
)

−
𝑛
∑

𝑖=𝑚𝑐+1

(𝑘[𝑗,𝑖]𝑡 𝐼[𝑖]𝜙 ) = 0 for 𝑗 = 1 ⋯𝑚𝑐. (9)

Equation (9) represents a system of mc equations with 2mc + nrc unknowns. The unknowns in this
equation correspond to the current densities of the core elements K𝜙1, K𝜙2 (2mc) and to the currents I𝜙
(nrc) in each of the conductors of the transformer. It should be noted that all coefficients 𝑘[𝑗,𝑗]𝑡1 , 𝑘[𝑗,𝑗]𝑡2 and
𝑘[𝑗,𝑖]𝑡 are known because they depend solely on transformer geometry.

3.2. Conductor equations

Figure 2 shows the general layout of the transformer. The LV and HV windings are schematically
represented by a blue and a green box respectively. The conductor arrangement of the LV winding is
shown in detail in Fig. 3. The arrangement of HV conductors is also shown in Fig. 4.

Note that the corresponding index is shown beside each conductor. It can also be seen that there is a
blue x symbol at the geometric center of each element which denotes the field point where the magnetic
vector potential will be calculated.

The inductive coupling between the core and each of the conductors is considered by means of the
magnetic vector potential. Accordingly, the magnetic vector potential on the j -th element at an arbitrary
conductor due to the i-th core element is given by

𝐴[𝑗,𝑖]
𝜙 = 𝑘[𝑗,𝑖]𝜙1 𝐾[𝑖]

𝜙1
+ 𝑘[𝑗,𝑖]𝜙2 𝐾[𝑖]

𝜙2
for 𝑖 = 1 ⋯𝑚𝑐 and 𝑗 = 𝑚𝑐 + 1 ⋯𝑛. (10)

It should be noted that (10) represents the contribution of magnetic vector potential of each iron core
element on every conductor. The contribution of the magnetic vector potential on a given conductor due
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Fig. 3. Low voltage winding diagram.

Fig. 4. High voltage winding diagram.

to other conductor including the conductor itself can be written as follows

𝐴[𝑗,𝑖]
𝜙 = 𝑘[𝑗,𝑖]𝜙 𝐼[𝑖]𝜙 for 𝑖 = 𝑚𝑐 + 1 ⋯𝑛 and 𝑗 = 𝑚𝑐 + 1 ⋯𝑛. (11)

Writing (1) for the case of the j-th element gives

𝑉[𝑗]
𝑑𝑝 = −𝐼[𝑗]𝜙 𝑅[𝑗]𝐷𝐶 − j𝜔𝑙[𝑗]𝑚 𝐴[𝑗]

𝜙 (12)

where 𝐴[𝑗]
𝜙 is the total magnetic vector potential present at the field point of the j-th element as a

consequence of the contribution of all elements including the given element itself.

𝐴[𝑗]
𝜙 =

𝑚𝑐

∑
𝑖=1

𝐴[𝑗,𝑖]
𝜙 +

𝑛
∑

𝑖=𝑚𝑐+1

𝐴[𝑗,𝑖]
𝜙 . (13)
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Substituting (10), (11) and (13) into (12) and after performing some algebraic manipulations yields

j𝜔𝑙[𝑗]𝑚

𝑚𝑐

∑
𝑖=1

(𝑘[𝑗,𝑖]𝜙1 𝐾[𝑖]
𝜙1
+ 𝑘[𝑗,𝑖]𝜙2 𝐾[𝑖]

𝜙2
) + 𝐼[𝑗]𝜙 (𝑅[𝑗]𝐷𝐶 + j𝜔𝑙[𝑗]𝑚 𝑘[𝑗,𝑗]𝜙 )

+ j𝜔𝑙[𝑗]𝑚

𝑛
∑

𝑖 =𝑚𝑐 + 1
𝑖 ≠ 𝑗

(𝑘[𝑗,𝑖]𝜙 𝐼[𝑖]𝜙 ) + 𝑉[𝑗]
𝑑𝑝 = 0 for 𝑗 = 𝑚𝑐 + 1 ⋯𝑛. (14)

Note that (14) represents a system of nrc equations, however nrc unknowns associated with the voltage
drop 𝑉[𝑗]

𝑑𝑝 of each conductor have also been added to the equation system. According to the above, (9) and
(14) represent a system of n equations with 2mc + 2nrc unknowns, so mc + nrc equations are needed to
obtain a complete system.

3.3. Equations linking surface elements

A conclusion drawn in the previous section was that additional equations related to the core are required.
As seen in Fig. 2, the surface current density at the end of an element coincides with the current density
of the next element. Taking advantage of this situation, the following set of equations can be posed

𝐾[𝑗]
𝜙1
− 𝐾[𝑗+1]

𝜙2
= 0 for 𝑗 = 1 ⋯𝑚𝑦𝑐 − 1

𝐾[𝑗]
𝜙1
− 𝐾[𝑗+1]

𝜙1
= 0 for 𝑗 = 𝑚𝑦𝑐

𝐾[𝑗]
𝜙2
− 𝐾[𝑗+1]

𝜙1
= 0 for 𝑗 = 𝑚𝑦𝑐 + 1 ⋯𝑚𝑐 − 1

𝐾[1]
𝜙2
− 𝐾[𝑚𝑐]

𝜙2
= 0.

(15)

Equation set (15), not only provides mc additional equations, but also allows the surface current density
to be distributed smoothly and continuously along the yokes and the core leg.

3.4. Circuit equations for conductor elements

In addition to the relationships between core surface elements it is also necessary to model the circuit
connections between conductors of each winding.

Because these electrical connections are specific for each transformer, and in order to make a clear
presentation of this subject, the corresponding equations are presented in Section 4.2.2 for the particular
case study of a 25 MVA transformer.

4. Implementation of the proposed methodology

4.1. Case study description

Table 1 shows general information of the transformer core. Table 2 and Table 3 give geometric
information of the high and low voltage windings respectively.
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Table 1
General parameters of the transformer

Parameter Value

General information
Rated power 25 MVA

Connection group Dyn1
Nominal frequency 50 Hz

Nominal primary voltage 69 000 Vrms
Taps (OLTC) + ∕ −8 × 1.25%

Rated secondary voltage 24 000 Vrms
Iron core
Core type Stacked-Laminated

Window height 1086 mm
Window width 658 mm
Leg diameter 544 mm

Relative magnetic permeability 10 000

Table 2
Construction data of the case study LV winding

Parameter Value

Winding type Layers
Conductor material Copper

Bare conductor radial dimension 3.4 mm
Bare conductor axial dimension 13.6 mm

Inner winding radius 285 mm
Winding radial dimension 94.9 mm
Winding axial dimension 923.6 mm

Distance to the lower yoke 76 mm
Number of layers 16

Number of turns per layer 11
Number of turns 176

Number of parallel axial conductors 6

The case study is a three-phase 25 MVA - 69 kV transformer. The LV winding is the innermost winding,
layer-type, star connected. A single turn of the LV winding consist of 6 axial parallel conductors. On the
other hand, the HV winding is the outermost one, disk-type, delta connected. A single turn of the HV
winding consist of 3 radial parallel conductors. Figure 9 shows the uppermost part of the core window with
the physical layout of the conductors. For the sake of simplicity, it has been assumed that the conductor
arrangement is uniform along the winding cross-section.

It is also important to note that this transformer has an on-load tap-changer (OLTC) connected to a
third independent winding. Because the simulation is done for the rated tap and the turn distribution of
the tap winding is symmetrical, this winding is not connected in this condition and was not included in
the simulations.

The actual transformer design considers a transposition at the central part of the high voltage winding
so that the average lengths of the three conductors forming a turn are approximately the same. Since the
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Table 3
Construction data of the case study HV winding

Parameter Value

Winding type Disks
Conductor material Copper

Bare conductor radial dimension 2.4 mm
Bare conductor axial dimension 9 mm

Inner winding radius 405 mm
Winding radial dimension 130.9 mm
Winding axial dimension 952.9 mm

Distance to the lower yoke 61 mm
Number of disks 73

Number of turns per disc 12
Number of turns 876

Number of parallel radial conductors 3

purpose of this work is to evaluate the performance of a new calculation method for the case of circulating
currents between conductors connected in parallel, the radial transposition has been intentionally ignored
to intensify the effect of circulating currents and to be able to appreciate the phenomenon more explicitly.

Despite the fact that the transpositions have been ignored in the case study, it will be seen that the
proposed methodology is flexible enough to consider arbitrary circuit connections between conductors.
This makes it possible to model transpositions, turns which are switched off by the tap changer, or faults
due to short-circuits between conductors.

4.2. Simulation using SAIM

This section provides an overview of the most important considerations for the modeling of the case
study transformer using SAIM. The modeling of the core is performed using the equivalent magnetic
model presented in Fig. 2. A total amount of mc = 101 elements has been used for the core, of which myc
= 23 belong to the lower and upper yokes.

In the case of winding conductors, nLV = 1056 solid cylindrical elements have been used for the LV
winding and nHV = 2628 elements for the HV winding. The total number of solid cylindrical elements
is nrc = nLV + nHV = 3684. Each of these solid cylindrical elements represents the magnetic effect of the
corresponding transformer conductor. The total number of elements (laminar + solid) used in the model
is n = mc + nrc = 3785.

As a starting point, SAIM requires the exact location of all core and conductor elements as input data.
This information is used to determine all geometry-dependent factors. Further information is also required
on the circuit connections between conductors and on at least one current or voltage source.

4.2.1. Conductor identification and electrical connections

The rules used to assign indices to the conductor elements of the windings are presented in this section.
Figure 5(a) shows a sketch of the low voltage winding. As can be seen, the identification number (ID) of
the innermost and lowermost conductor of the winding is 102. This is because each element has a unique
number, and since the core has 101 elements, the index of the first conductor is the next integer.
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Fig. 5. (a) Identification of LV winding conductors. (b) Identification of HV winding conductors.

Fig. 6. (a) Coil connections for the LV winding. (b) Coil connections for the HV winding.

Because the LV winding is a layer winding and each turn has 6 axial conductors connected in parallel,
the conductor with the next index is the conductor which is in series with the element number 102, which
corresponds to the lowest conductor of the second turn. Note that in Fig. 5 the lowest conductors of each
turn have a white background. Since the LV winding has 176 turns, the index of the lowest conductor of
the last turn is 277.

The conductors connected in series have been represented using the same background color in Fig. 5,
and using a gradated color scale from white to dark blue. Note that the index of the uppermost LV
conductor of the last turn (176) is indexed 1157, which is consistent considering that the sum of the
total number of conductors and the total number of core elements is 101 + 176 × 6 = 1157.

Just as for the LV winding, Fig. 5(b) shows the ID of the HV winding elements. As can be seen, the
next ID number corresponds to the innermost and lowermost conductor of the HV winding, whose index
is 1158. The conductors connected in series have been represented using the same background color, this
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time using a gradated color scale from white to dark green. The ID of the last HV conductor is 3785 which
is equal to n, as expected.

Figure 6(a) shows a circuit representing the electrical connections of the coils of the LV winding.
The LV winding has 6 coils connected in parallel and connected on both sides to the reference potential.

This connection represents the short circuit test, where the terminals of the LV winding are short-circuited.
On the other hand, Fig. 5(b) depicts the connections of the coils of the HV winding. There are three

parallel coils connected to a current source Is. In this case, the current feeding the circuit is the rated
single-phase peak current of the HV winding, that is, 𝐼𝑠 =√2 ⋅ 120.8 A. This value is the current to be
used in the transformer short-circuit test. It should be noted from Fig. 6 that the current flowing in the
coils is 𝐼[𝑐]𝑐𝑙 , whereas the electric potential for each of them is denoted 𝑉[𝑐]

𝑐𝑙 where c =1⋯9. Note that each
coil is composed of a arrangement of series connected conductors, which is described in detail in the next
section.

4.2.2. Equations of electrical connections between conductors

The mc additional equations related to the core have been given in Section 3.3. However, nrc additional
equations are still required to obtain a complete system. In this section, the missing equations representing
the electrical connections between conductors will be presented.

Figure 7 depicts the detailed electrical connection between conductors of the LV coils is schematically
shown. The color has been consistently chosen according to the definition of the coils and the identification
of the conductors.

A set of nLV =1056 additional equations linking the current in the conductors to the currents in the LV
coils is given in (16).

𝐼[102]
𝜙 = 𝐼[1]𝑐𝑙 , 𝐼

[103]
𝜙 = 𝐼[1]𝑐𝑙 , … , 𝐼[277]

𝜙 = 𝐼[1]𝑐𝑙
𝐼[278]
𝜙 = 𝐼[2]𝑐𝑙 , 𝐼

[279]
𝜙 = 𝐼[2]𝑐𝑙 , … , 𝐼[453]

𝜙 = 𝐼[2]𝑐𝑙
𝐼[454]
𝜙 = 𝐼[3]𝑐𝑙 , 𝐼

[455]
𝜙 = 𝐼[3]𝑐𝑙 , … , 𝐼[629]

𝜙 = 𝐼[3]𝑐𝑙
𝐼[630]
𝜙 = 𝐼[4]𝑐𝑙 , 𝐼

[631]
𝜙 = 𝐼[4]𝑐𝑙 , … , 𝐼[805]

𝜙 = 𝐼[4]𝑐𝑙
𝐼[806]
𝜙 = 𝐼[5]𝑐𝑙 , 𝐼

[807]
𝜙 = 𝐼[5]𝑐𝑙 , … , 𝐼[981]

𝜙 = 𝐼[5]𝑐𝑙
𝐼[982]
𝜙 = 𝐼[6]𝑐𝑙 , 𝐼

[983]
𝜙 = 𝐼[6]𝑐𝑙 , … , 𝐼[1157]

𝜙 = 𝐼[6]𝑐𝑙 .

(16)

Similarly, Fig. 8 shows the electrical connections between HV conductors, whereas the corresponding
set of equations is presented in (17), which provides nHV = 2628 additional equations.

𝐼[1158]
𝜙 = 𝐼[7]𝑐𝑙 , 𝐼

[1159]
𝜙 = 𝐼[7]𝑐𝑙 , … , 𝐼[2033]

𝜙 = 𝐼[7]𝑐𝑙
𝐼[2034]
𝜙 = 𝐼[8]𝑐𝑙 , 𝐼

[2035]
𝜙 = 𝐼[8]𝑐𝑙 , … , 𝐼[2909]

𝜙 = 𝐼[8]𝑐𝑙
𝐼[2910]
𝜙 = 𝐼[9]𝑐𝑙 , 𝐼

[2911]
𝜙 = 𝐼[9]𝑐𝑙 , … , 𝐼[3785]

𝜙 = 𝐼[9]𝑐𝑙 .

(17)

It should be noted that (16) and (17) provide an amount of nLV + nHV additional equations. However,
9 additional unknowns 𝐼[𝑐]𝑐𝑙 (with c =1⋯9) related to the coil currents have been added to the problem.
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Fig. 7. Electrical connections between LV elements.

Fig. 8. Electrical connections between HV elements.

In order to obtain a complete system, it is necessary to propose additional equations. It can be seen from
Fig. 6(b) that the sum of the currents of the three coils must be equal to the current of the source Is, so
that

𝐼[7]𝑐𝑙 + 𝐼[8]𝑐𝑙 + 𝐼[9]𝑐𝑙 = 𝐼𝑠. (18)

On the other hand, the equations of the coil voltages of the LV winding can be presented as follows

𝑉[102]
𝑑𝑝 + 𝑉[103]

𝑑𝑝 +⋯+𝑉[277]
𝑑𝑝 = 𝑉[1]

𝑐𝑙

𝑉[278]
𝑑𝑝 + 𝑉[279]

𝑑𝑝 +⋯+𝑉[453]
𝑑𝑝 = 𝑉[2]

𝑐𝑙

𝑉[454]
𝑑𝑝 + 𝑉[455]

𝑑𝑝 +⋯+𝑉[629]
𝑑𝑝 = 𝑉[3]

𝑐𝑙

𝑉[630]
𝑑𝑝 + 𝑉[631]

𝑑𝑝 +⋯+𝑉[805]
𝑑𝑝 = 𝑉[4]

𝑐𝑙

𝑉[806]
𝑑𝑝 + 𝑉[807]

𝑑𝑝 +⋯+𝑉[981]
𝑑𝑝 = 𝑉[5]

𝑐𝑙

𝑉[982]
𝑑𝑝 + 𝑉[983]

𝑑𝑝 +⋯+𝑉[1157]
𝑑𝑝 = 𝑉[6]

𝑐𝑙 .

(19)
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Fig. 9. Final mesh at the upper part of the core window (Ansys Maxwell).

Similarly, the expressions for the voltages of the coils of the HV winding can be set up as follows

𝑉[1158]
𝑑𝑝 + 𝑉[1159]

𝑑𝑝 +⋯+𝑉[2033]
𝑑𝑝 = 𝑉[7]

𝑐𝑙

𝑉[2034]
𝑑𝑝 + 𝑉[2035]

𝑑𝑝 +⋯+𝑉[2909]
𝑑𝑝 = 𝑉[8]

𝑐𝑙

𝑉[2910]
𝑑𝑝 + 𝑉[2911]

𝑑𝑝 +⋯+𝑉[3785]
𝑑𝑝 = 𝑉[9]

𝑐𝑙 .
(20)

The following expressions model the parallel connection of the LV coils and the connection to the
reference voltage.

𝑉[1]
𝑐𝑙 = 0, 𝑉[2]

𝑐𝑙 = 𝑉[1]
𝑐𝑙 , 𝑉

[3]
𝑐𝑙 = 𝑉[2]

𝑐𝑙

𝑉[4]
𝑐𝑙 = 𝑉[3]

𝑐𝑙 , 𝑉
[5]
𝑐𝑙 = 𝑉[4]

𝑐𝑙 , 𝑉
[6]
𝑐𝑙 = 𝑉[5]

𝑐𝑙 .
(21)

Finally, the equation for the parallel connection of the HV winding coils is

𝑉[8]
𝑐𝑙 = 𝑉[7]

𝑐𝑙 , 𝑉
[9]
𝑐𝑙 = 𝑉[8]

𝑐𝑙 . (22)

In summary, the final set of equations to be solved consists of the following set of equations: (9), (14),
(15), and (16) to (22). These equations represent a system with a total amount of 7588 equations with 7588
unknowns. Table 4 summarizes the equations that compose the final system to be solved numerically. This
table also shows the number of unknowns and equations added to the system so that a complete system is
finally obtained.

It is relatively simple to set up a system of equations in matrix form as M ⋅ x = b which can be efficiently
solved using Matlab or Octave. The solution has been computed using Matlab, and no conditioning
problems have been found, so the system can be solved reliably by the LU factorization method. The
equivalent current distribution in the core, the currents and voltage drops in the conductors and the currents
and voltages of the coils can be obtained directly from the solution of the equation system.
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Table 4
Summary of the equations solved using SAIM

Equation Added Added Description
number equations unknowns

(9) 101 (mc) 3886 (2mc + nrc ) Magnetic effects on
K𝜙1,K 𝜙2 , I 𝜙 all core elements.

(14) 3684 (nrc) 3684 (nrc ) Magnetic effects of
V dp all elements on the conductors.

(15) 101 (mc) 0 Linking equations
- between core elements.

(16) 1056 (nLV ) 6 Relationships between
Icl conductor currents of LV coils.

(17) 2628 (nHV ) 3 Relationships between
Icl conductor currents of HV coils.

(18) 1 0 Current source
- at HV coils.

(19) 6 6 Relationships between
V cl conductor voltages of LV coils.

(20) 3 3 Relationships between
V cl conductor voltages of HV coils.

(21) 6 0 Parallel connections
- of LV coils.

(22) 2 0 Parallel connections
- of HV coils.

7588 7588 Total amount of
equations and unknowns.

4.3. Simulation using FEM

The case study was modeled in detail using FEM by means of Ansys Maxwell 17.1.0 software on
a PC Core i7 2.8 GHz, 16 GB RAM. A 2D axisymmetric model has been used representing the core
and the LV and HV conductors. Using a Python script, the Net List file containing information about
the electrical connections of the transformer conductors was created. The Magnetic Eddy Current low-
frequency harmonic solver has been used for the simulation of the case study.

Figure 9 shows the final mesh generated by Ansys Maxwell. Note that because the conductors are
modeled as solid elements, the program generates mesh inside the conductors to be able to determine
the solution of the current distribution, which appreciably affects the performance of the solution using
FEM.

4.4. Comparison of results given by FEM and SAIM

Table 5 presents a general summary of FEM simulations. Note that it is easy to calculate power losses
in the conductors because the solution of the current distribution of both the core and the conductors
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Table 5
Summary of simulations using FEM and SAIM

Parameter FEM SAIM

Single-phase total losses LV + HV (kW) 58.18 58.61
Short-circuit voltage (kVrms) 9.13 8.93

Total number of elements 76 841 3 785
Total number of degrees of freedom 314 776 7 588

Total time 9 min, 42 s 37.2 s

Fig. 10. Currents in the LV coils 1, 2 and 3.

is known [3]. On the other hand, the calculated coil voltages 𝑉[7]
𝑐𝑙 ⋯𝑉[9]

𝑐𝑙 directly gives the short circuit
voltage of the short circuit test, which is also given in Table 5.

It is important to highlight that the total simulation time using FEM is close to 10 minutes, and the
total simulation time using the proposed methodology is 37.2 seconds. This last computation time is quite
adequate for transformer design purposes considering the complexity of the case study, which is composed
of an arrangement of 3 684 conductors each interconnected in a circuit network. The time taken to create
the geometry, to establish the sources and boundary conditions, and to calculate the solution has been
considered in both cases.

It can be seen from Figs 10 and 11 that the currents of the coils of the LV winding are not the same.
Differences close to 30 A are observed in the peak values of currents. This indicates the existence of
circulating currents in the LV conductors. It is interesting to note that the existence of these circulating
currents in LV is not explained by the different resistance of the conductors, since in the case of a layer
winding all conductors have exactly the same length.

The only explanation for these currents is a difference in the average flux linkage of the conductors,
which is a consequence of the asymmetry of the windings with respect to the core window.

Furthermore, Fig. 12 shows the current distribution of the HV winding coils. There are marked
differences not only in the amplitudes but also in the phase angles of the currents. Finally, it is important
to point out that the solution of the currents of the LV winding coils are totally coherent with the physical
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Fig. 11. Currents of the LV coils 4, 5 and 6.

Fig. 12. Currents of the HV coils 7, 8 and 9.

behavior of a transformer, that is, when adding the currents 𝐼[1]𝑐𝑙 +⋯+ 𝐼[6]𝑐𝑙 the rated phase current of the
LV winding is obtained. The interesting fact is that this value arises from the simulation and has not been
explicitly specified as input data of the problem.

5. Conclusion

This work presents a novel method to determine the distribution of circulating currents in transformers
windings. Whereas the accuracy of the proposed approach is comparable to that of FEM, the computa-
tional effort by using the first method is considerably lower. This is a remarkable advantage for applications
like the optimization stage of transformer design process.
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Fig. 13. Cylinder with rectangular cross-section.

The proposed method is based on equivalent magnetic models of both the core and the conductors,
which do not involve a discretization of the inner part of them. This leads to a considerably reduction
of the size of the problem compared to traditional techniques such as FEM. An important stage of the
development was to set up equations for the different components of the model and also equations to link
them each other.

The approach presented has been successfully validated using a case study of a power transformer
having two windings (LV and HV); nevertheless, it can be applied to an arbitrary number of windings, and
arbitrary connections can be established between them. This is very useful for the analysis of extreme cases
such as the detailed modeling of connections between a tap winding and the main winding of transformers
having an OLTC, or as in the case autotransformers.

Appendix

A.1. Geometry-dependent factors for a cylinder with rectangular cross-section

The purpose of this section is to present the equations for determining geometry-dependent factors of a
cylinder with rectangular cross-section of arbitrary dimensions for an arbitrary evaluation point. Consider
a general cylinder like the one shown in Fig. 13.

The magnetic field produced by the cylinder at certain field point can be written as the product of the
current I𝜙 by a factor that depends only on the cylinder geometry and the coordinates of the field point
(k𝜙, kr and kz). According to the above, the magnetic vector potential and the radial and axial components
of the magnetic field strength can be written as follows

𝐴𝜙 = 𝑘𝜙𝐼𝜙, 𝐻𝑟 = 𝑘𝑟𝐼𝜙, 𝐻𝑧 = 𝑘𝑧𝐼𝜙. (A.1)
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The geometry-dependent factors can be written as follows

𝑘𝜙 =
𝜇0

2𝜋𝑠𝑐
∫

𝜋

0

(𝜁1
|||
𝑧′=𝑧2

𝑧′=𝑧1

|||
𝑟′=𝑟2

𝑟′=𝑟1

) d𝜙′ (A.2)

𝑘𝑟 = − 1
2𝜋𝑠𝑐

∫
𝜋

0

(𝜁2
|||
𝑧′=𝑧2

𝑧′=𝑧1

|||
𝑟′=𝑟2

𝑟′=𝑟1

) d𝜙′ (A.3)

𝑘𝑧 =
1

2𝜋𝑠𝑐
∫

𝜋

0

(𝜁3
|||
𝑧′=𝑧2

𝑧′=𝑧1

|||
𝑟′=𝑟2

𝑟′=𝑟1

) d𝜙′ (A.4)

where sc is the cross-sectional of the cylinder.

𝜁1 =
1
2

cos(𝜙′)𝜉2

𝜁2 = −𝜉1 cos(𝜙′) − 𝑟 cos(𝜙′)2 log(𝑟′ + 𝜉1 − 𝑟 cos(𝜙′))
𝜁3 = (𝑧 − 𝑧′)𝜉3

𝜉1 = √𝑟2 + 𝑟′2 + (𝑧 − 𝑧′)2 − 2𝑟𝑟′ cos(𝜙′)
𝜉2 = −𝜉1𝑧 + 𝜉1𝑧′ + (𝑟2 cos(2𝜙′) − 𝑟′2) log(𝜉1 + 𝑧 − 𝑧′)

+ 2𝑟 cos(𝜙′) ((𝑧′ − 𝑧) log(𝑟′ + 𝜉1 − 𝑟 cos 𝜙′) − 𝑧′)

− 𝑟2 sin(2𝜙′) tan−1 ((𝑧 − 𝑧′)(𝑟 cos(𝜙′) − 𝑟′) csc(𝜙′)
𝑟𝜉1

) + 𝑟2 sin(2𝜙′) tan−1 (𝑟 sin(𝜙′)
𝑧 − 𝑧′ )

𝜉3 = − log(𝑟′ + 𝜉1 − 𝑟 cos(𝜙′)) + 𝑟 sin(𝜙′) [
tan−1 ( |𝑧−𝑧

′|(𝑟′−𝑟 cos(𝜙′)) csc(𝜙′)
𝑟𝜉1

)
|𝑧 − 𝑧′| ]

+ 𝑟 sin(𝜙′) [ 𝑟𝑟′ sin(𝜙′)
𝜉1 (𝑟2 + 𝑟′2 − 2𝑟𝑟′ cos(𝜙′))] .

Although references [10] and [11] present the mathematical expressions for the magnetic field produced
by a current carrying conductor with rectangular cross section, the expressions presented above are more
convenient due to their simplicity and to the fact that the geometry-dependent component has been
factorized.

A.2. Derivation of the boundary equation for the conductor with rectangular cross-section

Assume a solid conductor with a rectangular cross-section through which a sinusoidal current I𝜙2 flows
in the direction of the azimuth angle ̂𝝓. The conductor has conductivity 𝜎 and a cross-section sc. The
conductor is assumed to be located parallel to the x-y plane, and that its axis coincides with the z-axis. A
cross-section of the conductor is shown in Fig. 1(a).

The magnetic vector potential 𝑨⃗ in the conductor is a consequence of the superposition of the magnetic
effects of the currents flowing in all conductors, including the given conductor, and the magnetizing
currents in the core.

2The line below the variable name indicates its sinusoidal nature denoted as a phasor.
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It is assumed in this paper that all currents are sinusoidal with frequency 𝜔. Since this is a sinusoidal
steady state problem, the current density ⃗𝑱 in the conductor of Fig. 1(a) can be represented as the
superposition of the eddy current component ⃗𝑱𝑒𝑑𝑑𝑦 and the source voltage component ⃗𝑱𝑠𝑟𝑐 as follows

⃗𝑱 = ⃗𝑱𝑒𝑑𝑑𝑦 + ⃗𝑱𝑠𝑟𝑐. (A.5)

Similarly, the current can be decomposed into two components as follows [12]

𝐼𝜙 = 𝐼𝑒𝑑𝑑𝑦 + 𝐼𝑠𝑟𝑐. (A.6)

The magnetic vector potential is related to the eddy current density as follows

⃗𝑱𝑒𝑑𝑑𝑦 = −j𝜎𝜔𝑨⃗ (A.7)

where the magnetic vector potential 𝑨⃗ in the given conductor corresponds to the total field produced by
all conductors (including the conductor itself) and the iron core. Furthermore, the source current density
associated with the electric potential is given by

⃗𝑱𝑠𝑟𝑐 = −𝜎∇𝑉 (A.8)

where V is a scalar field representing the electric potential distribution along the conductor. On the other
hand, the eddy current can be calculated by means of the following surface integral

𝐼𝑒𝑑𝑑𝑦 =∫
S′

⃗𝑱𝑒𝑑𝑑𝑦 ⋅ d ⃗s. (A.9)

Substitution of (A.7) into (A.9) yields

𝐼𝑒𝑑𝑑𝑦 = −j𝜎𝜔∫
S′
𝑨⃗ ⋅ d ⃗s. (A.10)

As the problem axisymmetric, the equation 𝑨⃗ = 𝐴𝜙
̂𝝓 holds, where ̂𝝓 is the azimuthal unit vector. On

the other hand, the differential of surface is d ⃗s = d𝑟d𝑧 ̂𝝓. Consequently,

𝐼𝑒𝑑𝑑𝑦 = −j𝜎𝜔∫
S′
𝐴𝜙d𝑟d𝑧. (A.11)

It is also assumed that the dimensions of the conductor are at most of the same order of magnitude as
𝛿, whereby only small variations of the magnetic vector potential along the surface of the conductor are
to be expected. Thus, by factoring A𝜙 out from the integral, the following equation can be obtained

𝐼𝑒𝑑𝑑𝑦 = −j𝜎𝜔𝐴𝜙 ∫
S′

d𝑟d𝑧. (A.12)

It should be noted that the magnetic vector potential actually presents variations along the window
of the transformer core, and also from one conductor to the adjacent one. However, simulations confirm
that the variations of the magnetic vector potential within a conductor are very small compared to global
variations when the conductors are of the same order of magnitude or smaller compared to 𝛿.

On the other hand, the assumption that conductors have dimensions of the same order magnitude as 𝛿 is
reasonable since the manufacturers use this criterion to keep eddy current losses under control. However,
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care must be taken in using the methodology proposed in this work for conductors such as rods, bars or
plates whose dimensions are in general much larger than 𝛿.

Recalling that S′ defines the cross-sectional area of the conductor, the surface integral is the conductor
cross-section sc, so that

𝐼𝑒𝑑𝑑𝑦 = −j𝜎𝜔𝑠𝑐𝐴𝜙. (A.13)

It is emphasized that in this work the magnetic vector potential has not been merely used as a
mathematical tool to reduce the dimensionality of the problem. In fact it has been given to the magnetic
vector potential a true physical meaning. As it can be seen in Eq. (A.13), the magnetic vector potential
has a direct relation with eddy currents in conductors. The physical effects of magnetic vector potential
are experimentally evidenced in [13].

It can be shown from Eq. (A.8) that for a conductor which mean radius is r, the source current density
Jsrc is related to the voltage drop V dp as follows [12]

𝐽𝑠𝑟𝑐 = −
𝜎𝑉𝑑𝑝
2𝜋𝑟 . (A.14)

By solving for the voltage drop in the conductor, the following expression can be obtained

𝑉𝑑𝑝 = −2𝜋𝑟
𝜎 𝐽𝑠𝑟𝑐. (A.15)

As in the case of the eddy current density, it is assumed that the source current density variation on the
surface of the conductor is considerably small, which leads to the following equation

𝐽𝑠𝑟𝑐 =
𝐼𝑠𝑟𝑐
𝑠𝑐

. (A.16)

Solving for Isrc in (A.6) results in,

𝐼𝑠𝑟𝑐 = 𝐼𝜙 − 𝐼𝑒𝑑𝑑𝑦. (A.17)

Substituting (A.17) into (A.16) yields,

𝐽𝑠𝑟𝑐 =
𝐼𝜙 − 𝐼𝑒𝑑𝑑𝑦

𝑠𝑐
. (A.18)

Substituting (A.13) into (A.18) gives,

𝐽𝑠𝑟𝑐 =
𝐼𝜙 + j𝜎𝜔𝑠𝑐𝐴𝜙

𝑠𝑐
. (A.19)

Substituting (A.19) into (A.15) gives the following expression for the voltage drop,

𝑉𝑑𝑝 = −2𝜋𝑟
𝜎𝑠𝑐

(𝐼𝜙 + j𝜎𝜔𝑠𝑐𝐴𝜙) . (A.20)

Rearranging,

𝑉𝑑𝑝 = −𝐼𝜙 ⋅
2𝜋𝑟
𝜎𝑠𝑐

− j2𝜋𝑟𝜔𝐴𝜙. (A.21)
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The mean length of the conductor can be defined as lm = 2𝜋r from Eq. (A.21), and hence the DC
resistance of the conductor is

𝑅𝐷𝐶 =
𝑙𝑚
𝜎𝑠𝑐

. (A.22)

Substituting the resistance and the mean length in Eq. (A.21) gives

𝑉𝑑𝑝 = −𝐼𝜙𝑅𝐷𝐶 − j𝜔𝑙𝑚𝐴𝜙. (A.23)
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