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a b s t r a c t

Discrete-timemodels of non-uniformly sampled nonlinear systems under zero-order hold relate the next
state sample to the current state sample, (constant) input value, and sampling interval. The exact discrete-
time model, that is, the discrete-time model whose state matches that of the continuous-time nonlinear
systemat the sampling instantsmay be difficult or even impossible to obtain. In this context, one approach
to the analysis of stability is based on the use of an approximate discrete-time model and a bound on
the mismatch between the exact and approximate models. This approach requires three conceptually
different tasks: (i) ensure the stability of the (approximate) discrete-time model, (ii) ensure that the
stability of the approximate model carries over to the exact model, (iii) if necessary, bound intersample
behaviour. Existing conditions for ensuring the stability of a discrete-timemodel as per task (i) have some
or all of the following drawbacks: are only sufficient but not necessary; do not allow for varying sampling
rate; cannot be applied in the presence of state-measurement or actuation errors. In this paper, we
overcome these drawbacks by providing characterizations of, i.e. necessary and sufficient conditions for,
two stability properties: semiglobal asymptotic stability, robustly with respect to bounded disturbances,
and semiglobal input-to-state stability, where the (disturbance) input may successfully represent state-
measurement or actuation errors. Our results can be applied when sampling is not necessarily uniform.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Most of the existing stability results for non-uniformly sampled
systems deal with linear systems [1–3]. Some results applicable to
different classes of nonlinear systems were given in [4–7]. In [4],
stabilization of homogeneous nonlinear systems with sampled-
data inputs is analysed in by means of an emulation approach. In
[5,6], multi-rate sampled-data stabilization via immersion and in-
variance for nonlinear systems in feedback formwasdeveloped. [7]
presents sufficient conditions for uniform input-to-output and
input-to-state stability for closed-loop systems with zero-order
hold.

Strategies where sampling is inherently non-uniform and
which have application to nonlinear systems are those of event-
and self-triggered control. In an event-triggered control strategy,
the control action is computed based on the continuous-time sys-
tem model (with the aid of a Lyapunov function, e.g.) and current
state or output measurements, applied to the plant, and held
constant until a condition that triggers the control action update
becomes true [8,9]. The triggering condition requires continuous
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monitoring of some system variables, and thus this type of event-
triggered control does not exactly constitute a sampled-data strat-
egy. Other event-triggered strategies that verify the condition only
periodically have been developed for linear systems [10,11]. Self-
triggered control [9,12,13], in addition to computing the current
control action based on the continuous-timemodel, also computes
the time instant at which the next control update will occur
requiring only sampled measurements.

Some approaches to stability analysis and control design for
nonlinear systems under sampling and hold are based on the use of
a discrete-time model for the sampled system. These approaches
are referred to as Discrete-Time Design (DTD), or Sampled-Data
Design (SDD) if, in addition, inter-sample behaviour is taken into
account [14,15]. As opposed to the linear-system case, the differen-
tial equations that describe a continuous-time nonlinear system’s
dynamics may be difficult or impossible to solve in closed form,
and hence a discrete-time model exactly matching the state of
the continuous-time system at the sampling instants is usually
unavailable. If the continuous-time system is input-affine then the
exact discrete-time model can be approximated to desired accu-
racy via the procedure in [16,17]. Thus, DTD or SDD for nonlinear
systems are usually based on an approximate discrete-time model.

Interesting work on DTD for nonlinear systems under uniform
sampling appears in [14,18]. The results of [14,18] are of the
following conceptual form: given a specific bound on themismatch
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between the exact and approximate discrete-time models (which
can be known without having to compute the exact model) then
some stability property on the approximate closed-loop model
will carry over (in a practical sense) to the exact model for all
sufficiently small sampling periods. These results have been ex-
tended to provide input-to-state and integral-input-to-state sta-
bility results [19,20], to observer design [21], and to networked
control systems [22]. All of these results are specifically suited to
the case when sampling is uniform during operation or, in the
case of [22], when a nominal sampling period can be defined.
Some extensions to the non-uniform sampling case were given in
[23–25] that are also basedon an approximate discrete-timemodel.
Specifically, [23] gives preliminary results to ensure the practi-
cal asymptotic stability of the exact discrete-time model under
non-uniform sampling, [25] gives a sufficient condition for the
semiglobal practical input-to-state stability of the exact discrete-
time model with respect to state-measurement errors, and [24]
shows that a global stability property under uniform sampling,
namely (β,Rn)-stability, is equivalent to the analogous property
under non-uniform sampling.

The aforementioned DTD approach requires two conceptu-
ally different tasks: (i) ensure the stability of the (approximate)
discrete-time model, and (ii) ensure that the stability of the ap-
proximate model carries over to the exact model. For the SDD ap-
proach, the following task should be added: (iii) bound intersample
behaviour. The existing conditions for ensuring the stability of a
discrete-timemodel as per task (i) have some or all of the following
drawbacks: are only sufficient but not necessary; do not allow for
varying sampling rate; cannot be applied in the presence of state-
measurement or actuation errors.

This paper addresses stability analysis for discrete-timemodels
of sampled-data nonlinear systems under the aforementionedDTD
approach.We characterize, i.e. give necessary and sufficient condi-
tions for, two stability properties: semiglobal asymptotic stability,
robustly with respect to bounded disturbances, and semiglobal
input-to-state stability, where the (disturbance) input may suc-
cessfully represent state-measurement or actuation errors, both
specifically suited to non-uniform sampling. In this context, the
contribution of the current paper is to overcome all of the draw-
backs relating to task (i) andmentioned in the previous paragraph.
Our results thus apply to a discrete-time model of a sampled
nonlinear system, irrespective of how accurate this model may be.
If the discrete-timemodel is only approximate, then our results can
be used in conjunction with the results in [25] in order to conclude
about the (practical) stability of the (unknown) exact model, as per
task (ii).

The organization of this paper is as follows. This section ends
with a brief summary of the notation employed. In Section 2 we
state the problem and the required definitions and properties.
Our main results are given in Section 3. An illustrative example
is provided in Section 4 and concluding remarks are presented
in Section 5. The Appendix contains the proofs of some of the
presented results.

Notation. R, R≥0, N and N0 denote the sets of real, nonnegative
real, natural and nonnegative integer numbers, respectively. We
write α ∈ K if α : R≥0 → R≥0 is strictly increasing, continuous
and α(0) = 0. We write α ∈ K∞ if α ∈ K and α is unbounded.
We write β ∈ KL if β : R≥0 × R≥0 → R≥0, β(·, t) ∈ K for all
t ≥ 0, and β(s, ·) is strictly decreasing asymptotically to 0 for every
s. We denote the Euclidean norm of a vector x ∈ Rn by |x|. We
denote an infinite sequence as {Ti} := {Ti}∞i=0. For any sequences
{Ti} ⊂ R≥0 and {ei} ⊂ Rm, and any γ ∈ K, we take the following
conventions:

∑
−1
i=0 Ti = 0 and γ (sup0≤i≤−1 |ei|) = 0. Given a real

number T > 0 we denote by 8(T ) := {{Ti} : {Ti} is such that Ti ∈

(0, T ) for all i ∈ N0} the set of all sequences of real numbers in
the open interval (0, T ). For a given sequence we denote the norm
∥{xi}∥ := supi≥0 |xi|.

2. Preliminaries

2.1. Problem statement

We consider discrete-time systems that arise when modelling
non-uniformly sampled continuous-time nonlinear systems of the
form

ẋ = f (x, u), x(0) = x0, (1)

under zero-order hold, where x(t) ∈ Rn, u(t) ∈ Rm are the state
and control vectors respectively. We consider that the sampling
instants tk, k ∈ N0, satisfy t0 = 0 and tk+1 = tk + Tk, where {Tk}∞k=0
is the sequence of corresponding sampling periods. As opposed
to the uniform sampling case where Tk = T for all k ∈ N0,
we consider that the sampling periods may vary; we refer to this
situation as Varying Sampling Rate (VSR). In addition, we assume
that the current sampling period Tk is known or determined at
the current sampling instant tk. This situation arises when the
controller determines the next sampling instant according to a
certain control strategy, such as in self-triggered control; we refer
to this scheme as controller-driven sampling. Due to zero-order
hold, the continuous-time control signal u is piecewise constant
such that u(t) = u(tk) =: uk for all t ∈ [tk, tk+1). The class of
discrete-time systems that arisewhenmodelling (1) in this scheme
is thus of the form

xk+1 = F (xk, uk, Tk). (2)

Our results apply to this class of systems irrespective of whether
the system model accurately describes the behaviour of some
continuous-time system at the sampling instants or not. If the
discrete-timemodel employedwere the exact discrete-timemodel
for some continuous-time system, then stability of themodel could
give some indication on the stability of the continuous-time sys-
tem. Since regrettably the exact discrete-time model is in general
impossible to obtain, then approximate models should be used.

Given that the current sampling period Tk is known or deter-
mined at the current sampling instant tk, then the current control
action uk may depend not only on the current state sample xk but
also on Tk. If, in addition, state-measurement or actuation errors
exist ek ∈ Rq, where the dimension q depends on the type of error
(i.e., q = n for state-measurement additive error or q = m for
actuation additive error), then the true control action applied will
also be affected by such errors

uk = U(xk, ek, Tk). (3)

Under (3), the closed-loop model becomes

xk+1 = F (xk,U(xk, ek, Tk), Tk) =: F̄ (xk, ek, Tk) (4)

which is once again on the form (2). We stress that a control action
uk = Ū(xk, ek) is also of the form (3) and hence also covered by
our results. Sufficient conditions for some stability properties to
carry over from an approximate discrete-time model to the exact
model were given in [18] under uniform sampling and in [25] for
the controller-driven sampling case here considered. These con-
ditions are based on bounds on the mismatch between the exact
and approximate models and can be computed without having to
compute the exact model.

We will characterize two stability properties for discrete-time
models of the form (4): robust semiglobal stability and semiglobal
input-to-state stability. For the sake of clarity of the proofs we
will use dk ∈ Rp instead of ek to represent bounded disturbances
that do not destroy asymptotic stability. Given D > 0, we define
D :=

{
{di} ⊂ Rp

: |di| ≤ D, ∀i ∈ N0
}
, the set of all disturbance

sequences whose norm is not greater than D. Thus, for our robust
stability results, wewill consider a discrete-timemodel of the form

xk+1 = F̄ (xk, dk, Tk), {di} ∈ D. (5)
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2.2. Stability properties for varying sampling rate

The next definitions are extensions of stability properties in
[14,19,26–28]. The first one can be seen as a robust and semiglobal
(with respect to initial states) version of (β,Rn)-stability of [14],
suitable for the non-uniform sampling case. The second definition
presents the discrete-time global, semiglobal and semiglobal prac-
tical versions of the input-to-state stability (ISS) for non-uniform
sampling.

Definition 2.1. The system (5) is said to be Robustly Semiglobally
(Asymptotically) Stable under Varying Sampling Rate (RSS-VSR) if
there exists a function β ∈ KL such that for every M ≥ 0 there
exists T▲

= T▲(M) > 0 such that the solutions of (5) satisfy

|xk| ≤ β

(
|x0|,

k−1∑
i=0

Ti

)
(6)

for all1 k ∈ N0, {Ti} ∈ 8(T▲), |x0| ≤ M and {di} ∈ D.

Remark 2.2. Without loss of generality, the function T▲(·) in
Definition 2.1 can be taken nonincreasing.

The RSS-VSR property is semiglobal because the bound T▲ on
the sampling periods may depend on how far from the origin the
initial conditions may be (as quantified by M). If there exists β ∈

KL and T▲ > 0 such that (6) holds for all k ∈ N0, {Ti} ∈ 8(T▲)
and x0 ∈ Rn, then the system is said to be globally Robustly Stable
under VSR (RS-VSR). When disturbances are not present (D = {0},
i.e. D = 0), the RS-VSR property becomes (β,Rn)-stability under
VSR [24]. If in addition to lack of disturbances, uniform sampling
is imposed (Tk = T for all k ∈ N0), then RS-VSR becomes (β,Rn)-
stability [14]. In [24], it was shown that existence of β ∈ KL such
that a system is (β,Rn)-stable is equivalent to existence of β̃ ∈ KL
such that it is (β̃,Rn)-stable under VSR.

Definition 2.3. The system (4) is said to be

1. Semiglobally ISS-VSR (S-ISS-VSR) if there exist β ∈ KL and
γ ∈ K∞ such that for all M ≥ 0 and E ≥ 0 there exists
T ⋆

= T ⋆(M, E) > 0 such that the solutions of (4) satisfy

|xk| ≤ β

(
|x0|,

k−1∑
i=0

Ti

)
+ γ

(
sup

0≤i≤k−1
|ei|
)

, (7)

for all k ∈ N0, {Ti} ∈ 8(T ⋆), |x0| ≤ M and ∥{ei}∥ ≤ E.
2. Semiglobally Practically ISS-VSR (SP-ISS-VSR) if there exist

β ∈ KL and γ ∈ K∞ such that for every M ≥ 0, E ≥ 0
and R > 0 there exists T ⋆

= T ⋆(M, E, R) > 0 such that the
solutions of (4) satisfy

|xk| ≤ β

(
|x0|,

k−1∑
i=0

Ti

)
+ γ

(
sup

0≤i≤k−1
|ei|
)

+ R, (8)

for all k ∈ N0, {Ti} ∈ 8(T ⋆), |x0| ≤ M and ∥{ei}∥ ≤ E.

Note that S-ISS-VSR ⇒ SP-ISS-VSR.

3. Main results

In this section, we present characterizations of the RSS-VSR
and S-ISS-VSR properties defined in Section 2.2. In Lemma 3.1,
ϵ–δ and Lyapunov-type characterizations are given for the RSS-VSR
property. A partial proof of this lemma is given in Appendix. For
the complete proof see [29].

1 As explained under ‘‘Notation’’ in Section 1, for k = 0we interpret
∑

−1
i=0 Ti = 0

and γ (sup0≤i≤−1 |ei|) = 0.

Lemma 3.1. The following statements are equivalent:

1. The system (5) is RSS-VSR.
2. For every M ≥ 0 there exists T▲

= T▲(M) > 0 so that

(i) for all ϵ > 0, there exists δ = δ(ϵ) > 0 (δ is
independent of M) such that the solutions of (5) with
|x0| ≤ min{δ,M}, {Ti} ∈ 8(T▲) and {di} ∈ D satisfy
|xk| ≤ ϵ for all k ∈ N0,

(ii) for all L ≥ 0, there exists C = C(M, L) ≥ 0 such that
the solutions of (5) with |x0| ≤ M, {Ti} ∈ 8(T▲) and
{di} ∈ D satisfy |xk| ≤ C, for all k ∈ N0 for which∑k−1

i=0 Ti ≤ L, and
(iii) for all ϵ > 0, there exists T = T (M, ϵ) ≥ 0 such that

the solutions of (5) with |x0| ≤ M, {Ti} ∈ 8(T▲) and
{di} ∈ D satisfy |xk| ≤ ϵ, for all k ∈ N0 for which∑k−1

i=0 Ti ≥ T .

3. There exist α1, α2, α3 ∈ K∞ such that for every M ≥ 0 there
exist T ∗

= T ∗(M) > 0 and VM : Rn
→ R≥0 ∪ {∞} such that

α1(|x|) ≤ VM (x), ∀x ∈ Rn, (9a)

VM (x) ≤ α2(|x|), ∀|x| ≤ M, (9b)

and

VM (F̄ (x, d, T )) − VM (x) ≤ −Tα3(|x|) (10)

for all |x| ≤ M, |d| ≤ D and T ∈ (0, T ∗).

The ϵ–δ characterization in item 2 of Lemma 3.1 contains
all the ingredients of an ϵ–δ characterization of uniform global
asymptotic stability for a continuous-time system [30] but in
semiglobal form and for a discrete-time model. These ingredi-
ents are: semiglobal uniform stability in 2(i), semiglobal uni-
form boundedness in 2(ii), and semiglobal uniform attractivity in
2(iii). The Lyapunov conditions in item 3. have several differences
with respect to the Lyapunov-type conditions ensuring (β,Rn)-
stability [14] or (β,Rn)-stability under VSR [24]. First, note that the
Lyapunov-type function VM may be not the same for each upper
bound M on the norm of the state. Second, the functions VM may
take infinite values and it is not required that they satisfy any
Lipschitz-type condition. Third, the upper bound given byα2 ∈ K∞

should only hold for states whose norm is upper bounded byM .
Theorem 3.2 gives necessary and sufficient conditions for a

discrete-time model of the form (4) to be S-ISS-VSR. These condi-
tions consist of specific boundedness and continuity requirements
and a Lyapunov-type condition. The characterizations given in
Lemma 3.1 are used in the proof of Theorem 3.2.

Theorem 3.2. The following statements are equivalent:

1. The system (4) is S-ISS-VSR.
2. (i) There exists T̊ > 0 so that F̄ (0, 0, T ) = 0 for all T ∈

(0, T̊ ).
(ii) There exists T̂ > 0 such that for every ϵ > 0 there exists

δ = δ(ϵ) > 0 such that |F̄ (x, e, T )| < ϵ whenever
|x| ≤ δ, |e| ≤ δ and T ∈ (0, T̂ ).

(iii) For every M ≥ 0 and E ≥ 0, there exist C = C(M, E) >

0 and Ť = Ť (M, E) > 0, with C(·, ·) nondecreasing in
each variable and Ť (·, ·) nonincreasing in each variable,
such that |F̄ (x, e, T )| ≤ C for all |x| ≤ M, |e| ≤ E and
T ∈ (0, Ť ).

(iv) There exist α1, α2, α3 ∈ K∞ and ρ ∈ K such that for
every M ≥ 0 and E ≥ 0 there exist T̃ = T̃ (M, E) > 0
and V = VM,E : Rn

→ R≥0 ∪ {∞} such that

α1(|x|) ≤ V (x), ∀x ∈ Rn, (11a)

V (x) ≤ α2(|x|), ∀|x| ≤ M, (11b)
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and

V (F̄ (x, e, T )) − V (x) ≤ −Tα3(|x|) (12)

for all ρ(|e|) ≤ |x| ≤ M, |e| ≤ E and T ∈ (0, T̃ ).

Proof of Theorem 3.2. (1 ⇒ 2) Let β0 ∈ KL, γ0 ∈ K∞ and T ⋆(·, ·)
characterize the S-ISS-VSR property.

(1) ⇒ 2(i) Define T̊ := T ⋆(0, 0). From (4) and (7), we have

|F̄ (0, 0, T )| ≤ β0(0, T ) + γ0(0) = 0

for all T ∈ (0, T̊ ).
(1) ⇒ 2(ii) Define β̂, η ∈ K∞ via β̂(s) := β0(s, 0) + s and

η(s) := min{β̂−1(s/2), γ −1
0 (s/2)}. Define T̂ := T ⋆(η(1), η(1)). Let

ϵ > 0. Choose δ = η(min{ϵ, 1}) > 0. Note that T ⋆(δ, δ) ≥ T̂
because δ ≤ η(1) and T ⋆ is nonincreasing in each variable. Then,
using (4) and (7), it follows that for all |x| ≤ δ, |e| ≤ δ and T ∈ (0, T̂ )
we have

|F̄ (x, e, T )| ≤ β0(δ, T ) + γ0(δ) < β̂(δ) + γ0(δ) ≤ ϵ. (13)

(1) ⇒ 2(iii) Let Ť = T ⋆ and C(M, E) = β0(M, 0) + γ0(E). Then,
Ť is nonincreasing in each variable and C is increasing (and hence
nondecreasing) in each variable. Let M, E ≥ 0. Then, from (4) and
(7), for all |x| ≤ M , |e| ≤ E and T ∈ (0, Ť (M, E)) we have that
|F̄ (x, e, T )| ≤ β0 (M, 0) + γ0 (E) = C(M, E).

(1)⇒ 2(iv) Define β(s, t) := 2β0(s, t) and γ (s) := 2γ0(s). Define
α ∈ K∞ via α(s) := β(s, 0) and σ ∈ K∞ via σ (s) := γ −1( 12α

−1(s)).
Consider the following system:

xk+1 = F̄ (xk, σ (|xk|)dk, Tk), ∥{di}∥ ≤ 1, (14)

with dk ∈ Rq for all k ∈ N0.

Claim 1. For every M ≥ 0 there exists T̄ = T̄ (M) > 0, with T̄ (·)
nonincreasing, such that the solutions of (14) satisfy

|xk| ≤ max

{
β

(
|x0|,

k∑
i=0

Ti

)
,
1
2
|x0|

}
≤ α(|x0|) (15)

for all k ∈ N0, whenever |x0| ≤ M and {Ti} ∈ 8(T̄ ).

Proof of Claim 1. Given M ≥ 0, take T̄ (M) = T ⋆(M, γ −1(M/2)) >

0. Note that T̄ is nonincreasing because γ −1
∈ K∞ and T ⋆ is non-

increasing in each variable. We establish the result by induction.
For k = 0, we have |x0| ≤ β0(|x0|, 0) = α(|x0|). Suppose that
|xi| ≤ α(|x0|) for all 0 ≤ i ≤ k. Then, |σ (|xi|)di| ≤ σ (|xi|) ≤

σ (α(|x0|)) = γ −1(|x0|/2) ≤ γ −1(M/2) for all 0 ≤ i ≤ k. Then,
for all {Ti} ∈ 8(T̄ (M)), we have

|xk+1| ≤ β0

(
|x0|,

k∑
i=0

Ti

)
+ γ0

(
sup
0≤i≤k

⏐⏐σ (|xi|)di
⏐⏐) (16)

≤ max

{
β

(
|x0|,

k∑
i=0

Ti

)
, γ

(
sup
0≤i≤k

|σ (|xi|)di|
)}

≤ max

{
β

(
|x0|,

k∑
i=0

Ti

)
,
1
2
|x0|

}
≤ α(|x0|), (17)

where in the last inequality we have used the fact that 2s ≤

2β0(s, 0) = α(s). By induction, then |xk| ≤ α(|x0|) for all k ∈ N0. □

We next show that (14) is RSS-VSR by means of Lemma 3.1.
GivenM ≥ 0, take T▲(M) = T̄ (M).

Condition 2(i) of Lemma 3.1: Let ϵ > 0 and take δ = α−1(ϵ).
Then, if |x0| ≤ min{δ,M} and {Ti} ∈ 8(T▲(M)), by Claim 1 it
follows that |xk| ≤ α(|x0|) ≤ ϵ for all k ∈ N0.

Condition 2(ii) of Lemma 3.1: Define C(M, L) = α(M). Then,
if |x0| ≤ M and {Ti} ∈ 8(T▲(M)), by Claim 1 it follows that
|xk| ≤ α(|x0|) ≤ C for all k ∈ N0.

Condition 2(iii) of Lemma 3.1: For every j ∈ N0, defineMj :=
M
2j
,

tj = tj(M) > 0 via β
(
Mj, tj

)
=

1
2Mj and τj = τj(M) via τj(M) :=

jT▲(M) +
∑j

i=0 ti(M).

Claim 2. Consider |x0| ≤ M and {Ti} ∈ 8(T▲(M)). For all j, k ∈ N0
for which

∑k−1
i=0 Ti ≥ τj, it happens that

|xk| ≤ Mj+1.

Proof of Claim 2. By induction on j. If
∑k−1

i=0 Ti ≥ τ0 = t0, then from
(15) in Claim 1 and sinceM0 = M , we have that

|xk| ≤ max{β(M0, t0),M0/2} = M1.

Hence, our induction hypothesis holds for j = 0. Next, suppose
that for some j ∈ N0 and for all k ∈ N0 for which

∑k−1
i=0 Ti ≥ τj it

happens that |xk| ≤ Mj+1. Let k∗
= min{k ∈ N0 :

∑k−1
i=0 Ti ≥ τj}.

Then,
∑k∗−1

i=0 Ti < τj + T▲ and |xk∗ | ≤ Mj+1 ≤ M0 = M . If∑k−1
i=0 Ti ≥ τj+1 = τj + T▲

+ tj+1, then necessarily
∑k−1

i=k∗ Ti ≥ tj+1.
Note that 8(T▲(M0)) ⊂ 8(T▲(Mj)) for all j ∈ N0. By Claim 1 and
time invariance, it follows that, for all {Ti} ∈ 8(T▲(M0)) and all k
for which

∑k−1
i=0 Ti ≥ τj+1, then

|xk| ≤ max

{
β

(
|xk∗ | ,

k−1∑
i=k∗

Ti

)
,
1
2

|xk∗ |

}

≤ max
{
β
(
Mj+1, tj+1

)
,
1
2
Mj+1

}
= Mj+2.

Therefore, our induction hypothesis holds for j + 1. □

Given ϵ > 0 define p = p(M, ϵ) ∈ N and T (M, ϵ) as p(M, ϵ) :=

min{j ∈ N0 : Mj < 2ϵ} and T (M, ϵ) := τp(M). By Claim 2, it follows
that for all |x0| ≤ M , all {Ti} ∈ 8(T▲(M)) and all k ∈ N0 for which∑k−1

i=0 ≥ T (M, ϵ), then |xk| ≤ Mp+1 < ϵ. Therefore, by Lemma 3.1,
the system (14) is RSS-VSR and there exist α1, α2, α3 ∈ K∞ such
that for every M ≥ 0 there exist T ∗

= T ∗(M) > 0 and VM : Rn
→

R≥0 ∪ {∞} such that (9) holds. Consider E ≥ 0 given and define
T̃ (M, E) := T ∗(M), then (11) holds. Also

VM (F̄ (x, σ (|x|)d, T )) − VM (x) ≤ −Tα3(|x|), (18)

holds for all |x| ≤ M , all |d| ≤ 1 and all T ∈ (0, T̃ ). Select
ρ(s) := σ−1(s). Then, for all |e| ≤ E such that ρ(|e|) ≤ |x| we
have |e| ≤ σ (|x|). Therefore all e such that ρ(|e|) ≤ |x| can always
be written as e = σ (|x|)d for some d ∈ Rq with |d| ≤ 1. Then, from
(18), we have that (12) holds.

(2 ⇒ 1) We aim to prove that there exist β ∈ KL and γ ∈ K∞

such that for all M0 ≥ 0, E0 ≥ 0 there exists T ⋆(M0, E0) > 0 such
that the solutions of (4) satisfy

|xk| ≤ β

(
|x0|,

k−1∑
i=0

Ti

)
+ γ

(
sup

0≤i≤k−1
|ei|
)

(19)

for all k ∈ N0, all {Ti} ∈ 8(T ⋆), all |x0| ≤ M0, and all ∥{ei}∥ ≤ E0.
Consider ρ ∈ K from 2(iv). Define, ∀s ≥ 0,

X1(s) := {x ∈ Rn
: |x| ≤ ρ(s)} (20)

E(s) := {e ∈ Rq
: |e| ≤ s} (21)

T̄ (s) := min
{
T̊ , T̂ , Ť (ρ(s), s)

}
(22)

S(s) := X1(s) × E(s) × (0, T̄ (s)) (23)

σ (s) := sup
(x,e,T )∈S(s)

|F̄ (x, e, T )|. (24)
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Claim 3. There exists ζ ∈ K∞ such that ζ ≥ σ .

Proof of Claim 3. From (20)–(21), we haveX1(0) = {0} and E(0) =

{0}. From 2(i)–2(iii), then T̄ (0) > 0 and σ (0) = 0. We next prove
that σ is right-continuous at zero. Let ϵ > 0 and take δ = δ(ϵ)
according to 2(ii). Define δ̂ := min

{
δ, ρ−1(δ)

}
(if δ /∈ dom ρ−1,

just take δ̂ = δ). Then for all x ∈ X1(δ̂) and e ∈ E(δ̂) the inequalities
|x| ≤ δ and |e| ≤ δ hold. Consequently, by 2(ii), we have σ (s) ≤ ϵ

for all 0 ≤ s ≤ δ̂. This shows that lims→0+ σ (s) = σ (0) = 0.
From 2(iii), it follows that |F̄ (x, e, T )| ≤ C(M, E) for all |x| ≤ M ,

|e| ≤ E and T ∈ (0, Ť (M, E)). From (20)–(24) and the fact thatC(·, ·)
is nondecreasing in each variable, it follows that σ (s) ≤ C(ρ(s), s)
for all s ≥ 0. Then, we have σ : R≥0 → R≥0, σ (0) = 0, σ is
right-continuous at zero andboundedby anondecreasing function.
By [31, Lemma 2.5], there exists a function ζ ∈ K∞ such that
ζ ≥ σ . □

Define η ∈ K∞ via

η(s) := max{ζ (s), ρ(s)} ∀s ≥ 0. (25)

ConsiderM0 ≥ 0 and E0 ≥ 0 given and α1, α2, α3 ∈ K∞ from 2(iv).
Select E := E0 and

M := α−1
1 ◦ α2 (max{M0, η(E0)}) . (26)

Let 2(iv) generate T̃ = T̃ (M, E) > 0 and VM,E : Rn
→ R≥0 ∪ {∞}

such that (11) and (12) hold. Note that M ≥ max{M0, η(E0)}
and that T̃ (M, E) ≤ T̃ (M0, E0) because T̃ is nonincreasing in each
variable. Define T ⋆

= min{T̃ , T̄ (E)} and

X2(s) := {x : VM,E(x) ≤ α2(η(s))}. (27)

Consider that 0 ≤ s ≤ η−1(M). Let x ∈ X1(s), by (20) and (25), we
have |x| ≤ ρ(s) ≤ η(s) ≤ M for all 0 ≤ s ≤ η−1(M). Then, by (11b),
VM,E(x) ≤ α2(|x|) ≤ α2(η(s)) for all 0 ≤ s ≤ η−1(M). Therefore,
X1(s) ⊆ X2(s) for all 0 ≤ s ≤ η−1(M). Let xk := x(k, x0, {ei}, {Ti})
denote the solution to (4) corresponding to |x0| ≤ M0, ∥{ei}∥ ≤ E0
and {Ti} ∈ 8(T ⋆). From (11b) if xk satisfies |xk| ≤ M we have
α−1
2 (VM,E(xk)) ≤ |xk|; using this in (12) then

VM,E(xk+1) − VM,E(xk) ≤ −Tkα3(|xk|) ≤ −Tkα(VM,E(xk))

if ρ(|ek|) ≤ |xk| ≤ M (28)

where α := α3 ◦ α−1
2 .

Claim 4. If |x0| ≤ M0 then |xk| ≤ M for all k ∈ N0.

Proof of Claim 4. See [29]. □

Claim 5. Consider ∥{ei}∥ ≤ E0. If xℓ ∈ X2(∥{ei}∥) for some ℓ ∈ N0
then xk remains in X2(∥{ei}∥) for all k ≥ ℓ.

Proof of Claim 5. See [29]. □

Let |x0| ≤ M0 and tk =
∑k−1

i=0 Ti for every k ∈ N0. Consider the
function

y(t) := VM,E(xk)+
t − tk
Tk

[
VM,E(xk+1) − VM,E(xk)

]
if t ∈ [tk, tk+1) ,

(29)

which depends on the initial condition x0, on the sampling period
sequence {Ti}, on the disturbance sequence {ei} and on the given
constants M, E (through the fact that V depends on the latter
constants) and satisfies y(0) = VM,E(x0) ≥ 0. From (29) we have
that

ẏ(t) =
V (xk+1) − V (xk)

Tk
∀t ∈ (tk, tk+1) , ∀k ∈ N0 (30)

and

y(t) ≤ VM,E(xk), ∀t ∈ [tk, tk+1) . (31)

By Claim 4 and (27), we have that (28) holds for all xk /∈ X2(∥{ei}∥)
for all k ∈ N0. Using (28) and (30), for all xk /∈ X2(∥{ei}∥), we have

ẏ(t) ≤ −α(VM,E(xk)) ≤ −α(y(t)). (32)

Hence (32) holds for almost all t ∈ [0, tk∗ ) with tk∗ = inf{tk :

xk ∈ X2(∥{ei}∥)}. Note that the function α = α3 ◦ α−1
2 does not

depend on any of the following quantities: x0, {Ti}, {ei}, M0 or E0.
Using Lemma 4.4 of [32], there exists β1 ∈ KL such that, for all
t ∈ [0, tk∗ ) we have

y(t) ≤ β1 (y(0), t) . (33)

From (29), y(tk) = VM,E(xk) for all k ∈ N0. Evaluating (33) at t = tk,
then

VM,E(xk) ≤ β1

(
VM,E(x0),

k−1∑
i=0

Ti

)
, k = 0, 1, . . . , k∗

− 1. (34)

From Claim 5 and (27) if xk ∈ X2(∥{ei}∥) then VM,E(xk) ≤

α2 ◦ η(∥{ei}∥). Combining the latter with (34), then

VM,E(xk) ≤ β1

(
VM,E(x0),

k−1∑
i=0

Ti

)
+ α2 (η(∥{ei}∥)) , ∀k ∈ N0.

Define β ∈ KL via β(s, τ ) := α−1
1 (2β1(α2(s), τ )), and γ ∈ K∞ via

γ (s) := α−1
1 (2α2(η(s))). Using the fact thatχ (a+b) ≤ χ (2a)+χ (2b)

for every χ ∈ K and (11) it follows that

|xk| ≤ β

(
|x0|,

k−1∑
i=0

Ti

)
+ γ (∥{ei}∥) (35)

for all |x0| ≤ M0, all ∥ei∥ ≤ E0 and {Ti} ∈ 8(T ⋆). We have thus
established that (4) is S-ISS-VSR. ■

Theorem 3.2 shows that there is no loss of generality in the
search of a Lyapunov function for a S-ISS-VSR discrete-time model
since its existence is a necessary condition. The fact that S-ISS-
VSR implies SP-ISS-VSR then shows that Theorem 3.2 also pro-
vides sufficient, although not necessary, conditions for SP-ISS-VSR.
In [25, Theorem 3.2] we provided checkable sufficient conditions
for a discrete-time model of the form (2) and (4) to be SP-ISS-
VSR. The conditions in items (i), (ii) and (iii) for [25, Theorem 3.2]
and Theorem 3.2 are identical. The main difference between these
theorems reside in the Lyapunov-type condition: the quantity R >
0 that defines the practical nature of the SP-ISS-VSR property does
not exist here and the Lyapunov function of the current theorem
is only upper bounded in a compact set defined by M ≥ 0. The
existence of necessary and sufficient conditions of the kind of
Theorem3.2 for the SP-ISS-VSRproperty remains an openproblem.

4. Example

Consider the Euler (approximate) discrete-time model of the
Example A of [25]:

xk+1 = xk + Tk(x3k + uk) =: F (xk, uk, Tk). (36)

This open-loop Euler model was fed back with the control law
uk = U(x̂k, Tk) = −x̂k−3x̂3k and additive state-measurement errors
ek were considered, so that x̂k = xk+ek. The resulting approximate
closed-loop model F̄ (x, e, T ) = F (x,U(x + e, T ), T ) is

F̄ (x, e, T ) = x − T [2x3 + 9ex2 + (9e2 + 1)x + 3e3 + e]. (37)

In Example A of [25] we established that (37) is SP-ISS-VSR with
respect to input e. We will prove that (37) is not only SP-ISS-
VSR but also S-ISS-VSR. We make use of Theorem 3.2). The con-
tinuity and boundedness assumptions 2(i), 2(ii) and 2(iii) of The-
orem 3.2) are easy to verify for (37). To prove assumption 2(iv)



A.J. Vallarella, H. Haimovich / Systems & Control Letters 122 (2018) 60–66 65

define α1, α2, α3, ρ ∈ K∞ via α1(s) = α2(s) = s2, α3(s) = 3s4 + s2
and ρ(s) = s/K with K > 0 to be selected. LetM ≥ 0 and E ≥ 0 be
given and define V (x) = x2. Then (11) is satisfied. We have

V (F̄ (x, e, T )) − V (x) = [h(x, e) + g(x, e)T ] T , (38)

h(x, e) = −2x[2x3 + 9ex2 + (9e2 + 1)x + (3e3 + e)], (39)

g(x, e) = [2x3 + 9ex2 + (9e2 + 1)x + (3e3 + e)]2. (40)

Expanding g(x, e), taking absolute values on sign indefinite terms
and noting that whenever ρ(|e|) ≤ |x| we have |e| ≤ K |x| we can
bound g(x, e) as

g(x, e) ≤ a(K )x6 + b(K )x4 + c(K )x2, if |e| ≤ K |x|,

where a(K ) = 9K 6
+ 135K 4

+ 174K 3
+ 117K 2

+ 90K + 4,
b(K ) = 6K 4

+ 24K 3
+ 36K 2

+ 22K + 4 and c(K ) = K 2
+ 2K + 1.

Expanding h(x, e), taking absolute values on sign indefinite terms
and bounding |e| ≤ K |x|, it follows that

h(x, e) ≤ −4x4 − 2x2 + 18Kx4 + (6K 3
|x|3 + 2K |x|)|x|

≤ −4x4 − 2x2 + d(K )x4 + 2Kx2

where d(K ) = (6K 2
+ 18)K . Select K = 0.025 and T̃ =

min
{

1
2b(K ) ,

1
2(a(K )M4+c(K ))

}
. Then, for all |e|

K ≤ |x| ≤ M , we can
bound (38) as

h(x, e) + g(x, e)T ≤ −4x4 − 2x2 + d(K )x4 + 2Kx2

+ (a(K )x6 + b(K )x4 + c(K )x2)T

= −3x4 − x2

+ x2
(
(b(K )T + d(K ) − 1)x2 + a(K )x4T + c(K )T + 2K − 1

)
≤ −α3(|x|)

+ x2
(
(b(K )T̃ + d(K ) − 1)x2 + (a(K )M4

+ c(K ))T̃ + 2K − 1
)

≤ −α3(|x|).

The last inequality holds because, for the chosen values of K and
T̃ , the expression between parentheses is less than zero. Thus,
assumption 2(iv) of Theorem 3.2 is satisfied and the system (37)
is S-ISS-VSR.

5. Conclusions

We have given necessary and sufficient conditions for two sta-
bility properties especially suited to discrete-time models of non-
linear systems under non-uniform sampling. We have given ϵ–δ
and Lyapunov-based characterizations of robust semiglobal stabil-
ity (RSS-VSR) and a Lyapunov-type characterization of semiglobal
input-to-state stability (S-ISS-VSR), both under non-uniform sam-
pling.Wehave illustrated the application of the results on anumer-
ical example for an approximate closed-loop discrete-time model
with additive state measurement disturbances. The provided re-
sults can be combined with previous results to ensure stability
properties for closed-loop systems whose control law has been
designed based on an approximate model.

Appendix. Sketch of the proof of Lemma 3.1

Due to space limitations, we prove 2.⇒1.⇒3. See [29] for the
full proof.

(2.⇒1.) Let M ≥ 0 and T▲(M) > 0 be such that 2(i)–2(iii) hold.
Let δ̄(ϵ) := sup{δ : δ corresponds toϵ as in 2(i)}, the supremum
of all applicable δ. Then δ̄(ϵ) ≤ ϵ for all ϵ > 0, and δ̄ : R>0 →

R>0 is positive and non-decreasing. Let 0 < c < 1. Then, there
exists α ∈ K such that α(s) ≤ cδ̄(s). Define c1 = lims→∞ α(s),
then α−1

: [0, c1) → R≥0. From 2(i), we know that |x0| ≤

α(ϵ) ≤ min{cδ̄(ϵ),M} < δ̄(ϵ) ⇒ |xk| ≤ ϵ, for all k ∈ N0, all

{Ti} ∈ 8(T▲(M)) and all {di} ∈ D. Choosing ϵ = α−1(|x0|) when
|x0| < c1, it follows that whenever |x0| < c1 and |x0| ≤ M , k ∈ N0,
{Ti} ∈ 8(T▲(M)) and {di} ∈ D, then

|xk| ≤ α−1(|x0|). (A.1)

Next, define

C(M, L) := inf{C : C corresponds toM, L as in 2(ii)},
T (M, ϵ) := inf{T : T corresponds toM, ϵ as in 2(iii)},

the infima over all applicable C and T from conditions 2(ii) and
2(iii), respectively. Then, C is nonnegative and nondecreasing in
each variable, and T (M, ϵ) is nonnegative, nondecreasing in M for
every fixed ϵ > 0, and nonincreasing in ϵ for every fixed M > 0.
Given s > 0, consider T (s, 1/s) and C(s, T (s, 1/s)). If xk is a solution
to (5) corresponding to an initial condition satisfying |x0| ≤ s,
{Ti} ∈ 8(T▲(s)) and {di} ∈ D, then

|xk| ≤

{
C(s, T (s, 1/s)), whenever

∑k−1
i=0 Ti < T (s, 1/s),

1
s , otherwise.

(A.2)

Define Ĉ : R>0 → R>0 via Ĉ(s) := max{C(s, T (s, 1/s)), 1/s}. By
the monotonicity properties of C , T and 1/s, there exists p > 0
such that Ĉ decreases over (0, p) and is nondecreasing over (p, ∞).
Therefore there exists ᾱ ∈ K∞ such that

ᾱ(s) ≥

{
α−1(s), if 0 ≤ s <

c1
2 ,

Ĉ(s), if c1
2 ≤ s.

(A.3)

Then, if {Ti} ∈ 8(T▲(|x0|)) and {di} ∈ D, by (A.1)–(A.3), we have
|xk| ≤ ᾱ(|x0|) for all k ∈ N0. Consequently, if {Ti} ∈ 8(T▲(M)) and
{di} ∈ D

ᾱ(M) ≤ ϵ and |x0| ≤ M ⇒ |xk| ≤ ϵ, ∀k ∈ N0, (A.4)

and, by 2(iii),
k−1∑
i=0

Ti > T (M, ϵ) and |x0| ≤ M ⇒ |xk| ≤ ϵ. (A.5)

Define β̃ : R≥0 × R≥0 → R≥0 via

β̃(r, t) := inf{ϵ : T (r, ϵ) ≤ t}. (A.6)

Claim 6. There exists β ∈ KL such that β ≥ β̃ .

Proof of Claim 6. See [29]. □

From (A.5) and (A.6) then if |x0| ≤ M we have, for all k ∈ N0
such that

∑k−1
i=0 Ti ≥ t with {Ti} ∈ 8(T▲(M)) and {di} ∈ D, that

|xk| ≤ β̃(M, t) ≤ β(M, t). Consequently, |xk| ≤ β

(
|x0|,

∑k−1
i=0 Ti

)
,

for all k ∈ N0, all {Ti} ∈ 8(T▲(M)), all |x0| ≤ M and all {di} ∈ D,
which establishes that the system (5) is RSS-VSR.

(1.⇒3.) Let β ∈ KL and T▲(·) be given by the RSS-VSR property.
Without loss of generality, suppose that T▲ is nonincreasing (recall
Remark 2.2). It follows from [33, Lemma7] that there existα1, α2 ∈

K∞ such that

α1(β(s, t)) ≤ α2(s)e−3t , ∀s ≥ 0, t ≥ 0. (A.7)

Define α3 := α1, let T̄ > 0 be such that

T ≤ 1 − e−2T , ∀T ∈ (0, T̄ ), (A.8)

and define T ∗
: R>0 → R>0 via T ∗(s) := min{T▲(β(s, 0)), T̄ }. Since

s ≤ β(s, 0) for all s ≥ 0 and T▲ is nonincreasing, it follows that
T ∗(s) ≤ T▲(s), and hence 8(T ∗(s)) ⊂ 8(T▲(s)), for all s > 0.
Let x(k, ξ , {di}, {Ti}) denote the solution of (5) at instant k ∈ N0
that corresponds to a sampling period sequence {Ti}, the distur-
bance sequence {di} and satisfies x(0, ξ , {di}, {Ti}) = ξ . Note that
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x(k, ξ , {di}, {Ti}) may be not defined for arbitrary (k, ξ , {di}, {Ti}).
ForM ≥ 0 and ξ ∈ Rn, define

S(M, ξ ) :=
{
(k, {di}, {Ti}) ∈ N0 × D × 8(T ∗(M)) :

x(k, ξ , {di}, {Ti}), is defined
}
, (A.9)

and the function VM : Rn
→ R≥0 ∪ {∞} via

VM (ξ ) := sup
(k,{di},{Ti})∈S(M,ξ )

α1(|x(k, ξ , {di}, {Ti})|)e2
∑k−1

i=0 Ti . (A.10)

Note that if {di} ∈ D and {Ti} ∈ 8(T ∗(M)), then (0, {di}, {Ti}) ∈

S(M, ξ ) for all ξ ∈ Rn because x(0, ξ , {di}, {Ti}) = ξ is defined.
Hence, S(M, ξ ) ̸= ∅ for all M ≥ 0 and ξ ∈ Rn. We next show that
item (3) is satisfied with α1, α2, α3, T ∗ and VM as defined.

From (A.10), it follows that

VM (ξ ) ≥ α1(|x(0, ξ , {di}, {Ti})|) = α1(|ξ |), (A.11)

holds for all ξ ∈ Rn. Then (9a) follows. ConsiderM ≥ 0. For |ξ | ≤ M
and (k, {di}, {Ti}) ∈ S(M, ξ ), it follows that {Ti} ∈ 8(T ∗(M)) ⊂

8(T▲(M)). Therefore, |ξ | ≤ M and (k, {di}, {Ti}) ∈ S(M, ξ ) imply
that (6) is satisfied. Using (6) and (A.7) in (A.10) then, for all |ξ | ≤ M
we have

VM (ξ ) ≤ sup
(k,{di},{Ti})∈S(M,ξ )

α1

[
β

(
|ξ |,

k−1∑
i=0

Ti

)]
e2
∑k−1

i=0 Ti

≤ sup
(k,{di},{Ti})∈S(M,ξ )

α2(|ξ |)e−
∑k−1

i=0 Ti = α2(|ξ |), (A.12)

whence (9b) is established. LetM ≥ 0 and define M̃ := β(M, 0). By
the definition of RSS-VSR and the fact that 8(T ∗(M)) ⊂ 8(T▲(M̃))
⊂ 8(T▲(M)), it follows that |x(j, ξ , {di}, {T̄i})| ≤ M̃ for all j ∈ N0
whenever |ξ | ≤ M , {di} ∈ D and {T̄i} ∈ 8(T ∗(M)). Therefore,
S(M, x(j, ξ , {di}, {T̄i})) = N0×D×8(T ∗(M)) for all j ∈ N0 whenever
|ξ | ≤ M , {di} ∈ D and {T̄i} ∈ 8(T ∗(M)). Thus, for all |ξ | ≤ M ,
all |d| ≤ D and all T ∈ (0, T ∗(M)), we have S(M, F̄ (ξ, d, T )) =

N0 × D × 8(T ∗(M)), and

VM (F̄ (ξ, d, T )) =

= sup
(k,{di},{Ti})∈N0×D×8(T∗(M))

α1

(⏐⏐x(k,F̄ (ξ,d,T ),{di},{Ti}
)⏐⏐) e2∑k−1

i=0 Ti

= sup
(ℓ,{di},{Ti})∈N×D×8(T∗(M))

α1

(⏐⏐x(ℓ,ξ,

{
d,{di}

}
,

{
T ,{Ti}

})⏐⏐) e2∑ℓ−2
i=0 Ti

≤ e−2T sup
(ℓ,{di},{Ti})∈N0×D×8(T∗(M))

α1(|x(ℓ, ξ, {di}, {Ti})|)e2
∑ℓ−1

i=0 Ti

≤ VM (ξ )e−2T (A.13)

where we have used the facts that e2
∑l−1

i=0 Ti = e2(T+
∑l−1

i=0 Ti)e−2T ,{
d, {di}

}
∈ D and

{
T , {Ti}

}
∈ 8(T ∗(M)). From (A.8), (A.13), and

the fact that T ∈ (0, T ∗(M)) ⊂ (0, T̄ ), then for |ξ | ≤ M ,

VM (F̄ (ξ, d, T )) ≤ VM (ξ ) − VM (ξ )(1 − e−2T ), hence

VM (F̄ (ξ, d, T )) − VM (ξ ) ≤ −TVM (ξ ) ≤ −Tα3(|ξ |),

where we have used (A.11). Then (10) follows and (1.⇒3.) is
established. ■
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