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ARTICLE INFO ABSTRACT

Keywords: Temporal stability of the relationship between a potential proxy climate record and the climate record itself is
Divergence the foundation of palaeoproxy reconstructions of past climate variability. Dendroclimatologists have spent
Temporally unstable relationships considerable effort exploring the issue of temporal instability of temperature records at high-latitude and
Dendrochronology — altitude Northern Hemisphere sites. Much of this work has focused on the Divergence Problem in which the
Ezgjzggiz?gzmgy modern ends of tree-ring chronologies exhibit pronounced departures from the climate-proxy relationships of

preceding decades. However, there has been little scrutiny of how different methods might influence determi-
nations of temporal instability at either the local scale or across broader spatial domains. Here we use four sets of
Southern Hemisphere (SH) chronologies and three sets of synthetic data with known interventions to compare
four methodologies that have been widely used to assess the temporal stability of relationships between tree-ring
series and climate. Our analyses demonstrate that a determination of temporal instability may be partially
dependent on method used to examine data, that some methods are more sensitive to standardisation choice
than others, and that all methods are better at detecting high- rather than low-frequency instability. In all cases,
the relatively modest strength of the relationships between the selected SH ring-width chronologies and tem-
perature is likely to be an issue, especially if changes in trends are of interest. We recommend that robust
assessment of temporal instability between tree-ring chronologies and observational climate data should use a
range of methods and that unstable temporal relationships across space be carefully considered in the context of
large climate field reconstructions.

1. Introduction

Uniformitarianism is one of the bedrock principles of palaeoclima-
tology. It states that relationships between the climate and climate-re-
cording proxies are stable over time. Temporal instability in proxy-
climate relationships would undermine long-term extrapolation of cli-
mate from proxy records to pre-observation periods. This applies not
only to the proxy-climate relationships at the local level, but also to
broader regional reconstructions. It is, therefore, a concern that in re-
cent years a number of tree-ring studies have reported temporal in-
stability in the relationship between tree growth and temperature.
Some of this reported instability has been short-lived and occurred
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early in the 20th Century (e.g., Schneider et al., 2014). However, the
overwhelming majority of these studies indicate an apparent diver-
gence between climate records and tree-ring chronologies in recent
decades at high-altitude or high-latitude locations. This ‘modern-end’
phenomenon has largely become encapsulated in the “Divergence
Problem” (DP) debate (e.g., Jacoby and D’Arrigo, 1995; Briffa et al.,
2004; Wilson and Luckman, 2002; Carrer and Urbinati, 2006; Frank
et al., 2007; Wilson et al., 2007; D’Arrigo et al., 2008; Esper and Frank,
2009; Esper et al., 2010; Biintgen et al., 2012). In particular, these
studies have commonly shown that observed temperatures appear to be
increasing faster than changes in measured tree-ring parameters (i.e.,
ring width or density). Two types of divergence have been described in
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the literature. A sufficiently large and significant divergence in trend
(i.e., low frequency divergence) in the calibration period can result in a
reconstruction model that either under- or over-estimates the re-
lationship between the climate target and the climate proxy outside the
calibration period. Less discussed in the literature is divergence at the
interannual scale (i.e., high-frequency divergence), which may prevent
verification of a calibrated model (D’Arrigo et al., 2008). Many studies
of the DP do not explicitly identify whether any observed occurrence of
divergence is low or high frequency in nature, although low-frequency
is often implied (Appendix A).

Decoupling between a chronology and climate was first discussed in
relation to forest decline in North America in the 1970s and 80s
(Visser, 1986; Cook et al., 1987, Downing and McLaughlin, 1987; Cook
and Johnson, 1989; Van Deusen, 1990). However, subsequent concerns
about its impact on temperature reconstructions initiated extensive
interrogation of key millennial-length tree-ring chronologies in the
Northern Hemisphere (NH) with strong temperature signals (often
based on maximum density rather than ring-width chronologies) for its
occurrence (e.g., Briffa et al., 2004; Wilson et al., 2007; Esper et al.,
2010; Anchukaitis et al., 2013). Discussions of the potential drivers of
temporal instability have focussed on the modern end phenomenon.
Proposed explanations have included inappropriate standardisation,
global dimming, changes in growth-limiting factors, differential re-
sponses to maximum and minimum temperature when mean tempera-
ture is the target, local pollution, and changes in ozone concentration
(D’Arrigo et al., 2008 and references therein). Changes in limiting
factors (e.g., from temperature to precipitation or drought stress) or
threshold effects have been widely suggested as the primary reason for
recent divergence (Appendix A). Another possibility, and one that is not
necessarily limited to the modern end of series, lies with problems in
the climate data such as sparse coverage, fewer stations and poorer
quality data back in time, or station inhomogeneities (Biintgen et al.,
20064, ; Allen et al., 2014).

Numerous studies have also pointed to the role of inappropriate
standardisation of tree-ring chronologies as an important contributing
factor to the DP (Esper and Frank, 2009; Esper et al., 2010; Biintgen
et al., 2008; Linderholm et al., 2010; Andreu-Hayles et al., 2011a;
Anchukaitis et al., 2013; Briffa et al., 2013). While a variety of stan-
dardisation approaches have been used in studies that identified di-
vergence as an issue, few have explored the role of the standardisation
choice on the presence divergence (Appendix A). Of these studies, three
have specifically undertaken rigorous examination of how different
standardisation methods may bias chronologies. Anchukaitis et al.
(2013) implemented different standardisation choices on a set of
pseudo-proxy data and both Briffa and Melvin (2011) and Briffa et al.
(2013) examined the impact of different applications of regional curve
standardisation on resultant chronologies. All three studies found im-
portant differences in resultant chronologies due to standardisation.
Despite the attention given to standardisation choice, both Frank et al.
(2007) and Esper et al. (2010) remarked that this alone could not fully
account for the presence of the DP. Other methodological choices such
as different standardisation of sample subgroups (Esper and Frank
2009, Briffa et al., 2013), the influence of using pith offset (or not), or
power transformation of residuals together with standardisation
methodology have also been considered (e.g., Biintgen et al., 2012).
Signal-free standardisation methodology has further reduced end-ef-
fects that can occur with more traditional standardisation approaches
(see Melvin et al., 2007; Melvin and Briffa, 2008; Briffa et al., 2013;
Melvin et al., 2013), although it may also introduce some biases into
chronologies (Anchukaitis et al., 2013).

Detection of divergence has entailed a variety of approaches, al-
though many studies have used a single approach (some important
recent exceptions include Alvarez et al.,, 2015; Galvan et al., 2015;
Lavergne et al., 2015; see also Appendix A). Commonly used methods
include: 1) visual comparison of tree-ring chronologies and climate
target on the same plot (e.g., Jacoby and D’Arrigo, 1995; D’Arrigo et al.,
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2009; Appendix A); 2) comparison of response/correlation functions for
two or more separate periods (e.g., Leal et al., 2008; D’Arrigo et al.,
2009; Andreu-Hayles et al., 2011a); 3) moving correlations (e.g.,
Biintgen et al., 2006a,b; Naulier et al., 2015; Lavergne et al., 2015); 4)
process-based modelling of tree-ring growth (e.g., the Vaganov-
Shashkin-Lite model; Tolwinski-Ward et al., 2011; Lavergne et al.,
2015; Sanchez-Salguero Camarero et al., 2017; Tumajer et al., 2017);
and 5) application of the Kalman Filter (KF) to estimate regression
models with time-varying coefficients (Visser and Molenaar, 1988;
Jacoby and D’Arrigo, 1995; Wilson et al., 2013; Cook et al., 2013).
Different approaches, however, may impact conclusions regarding the
presence or absence of divergence (or temporal instability more gen-
erally) and each will have its own strengths and weaknesses. They may
also be differentially sensitive to standardisation method used and some
may be more suitable than others for the detection of low or high fre-
quency instability—neither of these issues has previously been ex-
amined.

To date, there has also been a greater emphasis on checking
chronology-climate relationships for stability using single climate re-
cords nearest the field site or composites of local records, rather than
across a gridded data set (e.g., Biintgen et al., 2008; Tardif et al., 2003;
Wilson et al., 2007; Grudd, 2008; Zhang et al., 2009; Allen et al., 2014).
However, climate field reconstructions (CFR) implicitly assume that
relationships across an often pre-defined spatial field are sufficiently
stable over time, as do reconstructions relying on broadscale compo-
sites of temperature. With a growing interest in spatial field re-
constructions of Southern Hemisphere (SH) temperature and pre-
cipitation using gridded climate data (e.g., Neukom et al., 2011;
Neukom et al., 2013), and a rapidly increasing pool of available pre-
dictors, it will be increasingly important to scrutinise temporal stability
of relationships across various spatial scales and domains. Although the
underlying causes for temporal instability at broad scales may differ
from those operating on local site reconstructions, instability in re-
lationships across broad scales may have ramifications for our under-
standing of regional and global temperature dynamics.

In this study, we compare several simple and commonly used pre-
reconstruction techniques to examine data series for temporal in-
stability at both the local and broader regional levels in four long SH
tree-ring chronologies. Our primary question is whether any of these
techniques are more effective than others in detecting temporal in-
stability. A secondary question is whether some methodologies for de-
tecting divergence appear more sensitive to standardisation choice than
others. We also extend two of the methods to examine temporal sta-
bility over broader spatial domains. Critically, three of the four SH
chronologies used here, like many of the SH ring-width chronologies
thus far developed, contain only a moderately strong relationship with
temperature (typically ~ 0.35 < |r| < 0.5;e.g., Villalba, 1990; Allen
et al,, 2011; Anon (2014); Lavergne et al., 2015; Lavergne et al., in
press) which is likely to make detection of an actual change in the re-
lationship with climate more challenging (Esper and Frank, 2009).
These weaker relationships may in turn have implications for the ef-
fectiveness of different methods used to detect instability at both local
and regional scales. Due to the scarcity of highly resolved multi-century
proxies in the SH (e.g., Fig. 1a PAGES2k Consortium, 2017), exclusion
of SH ring-width chronologies with only moderate correlations with
climate from multi-proxy reconstructions would effectively prohibit
inclusion of a large number of SH tree-ring chronologies.

This study is not intended as an exhaustive review of the SH
chronologies for temporally unstable relationships with temperature.
Although we do briefly consider impacts of different standardisation
methodologies on the results, our focus is on the methods used for
detecting temporal instability, particularly in situations where the re-
lationship between chronologies and climate is of moderate strength
only. We also examine the relationships between synthetic temperature
and tree-ring series that have had known interventions. In what follows,
we use the term temporal instability to refer to a separation in trend or
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Fig. 1. Location of each of the four chronology suites used in this study. Red diamonds indicate the location of ring-width chronologies, blue indicates location of the cell wall thickness
chronology. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

to dissonance in the interannual relationship between two series that is
sufficiently strong — or exists for a sufficiently long period of time - to
be identifiable by a particular method. We do not, therefore, apply a
lower threshold on the amount of time any stability must exist. Also, to
be consistent with the DP literature, we use the term ‘divergence’ to
describe modern end decoupling.

2. Data and methods

We use several common methods to check for temporal instability in
two sets of data. The first of these is the selected tree-ring chronologies
and relevant climate data described in Sections 2.1-2.3, and the second
includes synthetic ring width and climate series, as described in Section
2.4. In Section 2.5 we outline the methods used to check for temporal
instability at the local and broader spatial scales.

2.1. The chronologies

Tree-ring width chronologies were developed for one site from each
of Argentina, Australia and New Zealand and cell-wall thickness
chronologies developed for a single Australian site (Fig. 1; Table 1). The
chronology sets include: Borland (BOR; Nothofagus menziesii; New
Zealand) extending from 1389 to 2007 CE; Rio Alerce (RAL; Fitzroya
cupressoides; Argentina) extending from 836-2011 CE and Mt Read
(MRD; Lagarostrobos franklinii; Australia) that extends from 2145 BCE to
2009 CE (Table 1). The set of cell wall thickness chronologies from
Mickey Creek (MCK; Athrotaxis cupressoides, Australia) extends from
1354 to 2009 CE. RAL and MRD were selected because both chron-
ologies exceed 1000 years in length and have previously been used in
temperature reconstructions (Villalba, 1990; Lara and Villalba, 1993;
Salinger et al., 1994; Cook et al., 2000; Lavergne et al., in press). Of the
New Zealand sites that extend beyond 1980, BOR has one of the
strongest relationships with mean temperature, exceeds 500 years in
length, and is located close to the southern limit of the species dis-
tribution. The MCK mean cell wall thickness chronology has one of the
strongest correlations with mean temperature in Australasia and also
exceeds 500 years in length. Although these chronologies can be con-
sidered only moderately sensitive to temperature (RAL r ~ —0.4 prior
December-March, Villalba 1990, Lavergne et al., in press; MRD ~ 0.6
November—April Cook et al., 1991; BOR January-April; r ~ 0.4; MCK
r ~ —0.6 January), they are amongst the longest and most tempera-
ture-sensitive ring-width chronologies in the SH mid-latitudes. Most of
the long NH maximum density chronologies investigated for divergence
are correlated with temperature at r = 0.6, and often r = 0.7 (e.g.,
north of 50°N, Briffa et al., 2004; Sweden, Grudd, 2008; Polar Urals,
Briffa et al., 2013; northern Canada, D’Arrigo et al., 2009). The mid-
latitude location of our four sites, and the lack of high elevation
mountains in Tasmania are partly responsible for modest temperature

54

signals in many ring-width chronologies from this region. The reason
for negative correlations at MCK is unclear, but strongly negative re-
lationships have also been found for several other Tasmanian wood-
properties chronologies (Allen et al., 2013; Drew et al., 2013). The
moderate and negative relationship between RAL and temperature is
observed for the prior growing season.

2.2. The standardisation methods

We used four different standardisation methods for all chronologies.
A 67% cubic smoothing spline (67%nSpl) was used to help to retain
lower frequency variation in the data (dependent on length of sample)
while still removing much non-climatically related variance (Cook,
1985). The median series length spline (MedSpl) was used as a com-
promise between the 67%nSpl and less flexible methods. Median series
lengths at the different sites were: 444 years (RAL), 225 years (BOR),
470 years (MRD) and 213 years (MCK). The extent of resolvable low
frequency variance from BOR and MCK in particular will therefore be
limited. We also used the deterministic negative exponential curve or
regression line (any slope; Nex/reg) that is commonly used in an effort
to preserve as much low frequency variance as possible. Finally, we
employed an age dependent smoothing spline (ADspl; Melvin et al.,
2007) which retains a large proportion of low frequency variance. The
flexibility of the curve is greatest when trees are young and decreases
with increasing tree age (Melvin et al., 2007). Although Regional Curve
Standardisation (RCS) is often used to preserve low frequency varia-
bility (Briffa and Melvin, 2011), we have not used it here due to rela-
tively low sample depth in both BOR and MCK. Our use of a number of
more flexible detrending methods is also directly linked to the mesic
forest environment of our sites in which non-synchronous endogenous
disturbances are known to occur.

Both signal-free standardisation and the calculation of chronologies
based on residuals (i.e. absolute differences from the standardisation
curve) have been shown to reduce end biases in many chronologies
(Cook and Peters 1997; Melvin and Briffa 2008). We compare chron-
ologies standardised and computed using signal-free methodology
(Melvin and Briffa, 2008) and those that have simply been standar-
dised. For the purposes of this study we focus on residual chronologies,
although the results for chronologies based on ratios are similar and are
provided in the Supplementary material.

2.3. Climate data

The type of data used to represent local temperatures differed across
the three continents. The longest available temperature series for the
New Zealand site is the Climate Research Unit (CRU) data starting in
1901 (Mitchell and Jones 2005). There are nine climate stations within
the 1200 km decay distance used to compile the CRU data (Mitchell and
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data. We produced two sets of tree-ring series from this. To the first we
added a normally distributed random error term with relatively low
variability (final chronologies correlated with temperature at r ~ 0.8),
but for the second, we allowed the error term greater variability (final
chronologies correlated with temperature at r ~0.42; cf. our actual
tree-ring series) to result in series strongly (strong) and moderately
(moderate) coupled with temperature, respectively. Each set of syn-
thetic tree-ring series were then perturbed to produce a set of series in
which the interannual relationship at time 80 (‘1980¢) decoupled and a
set of series in which the trend from time 80 decreased relative to the
original series. This produced six different sets of synthetic data: the
two original series, the two series (strong and moderate) including the
interannual intervention and the two series (strong and moderate)
containing the trend intervention. Each set of series was then subjected
to the same standardisation choices as the actual data.

2.5. Checking for temporal instability

We used a variety of approaches (described below) to check for
temporal instability at the local scale, while at the broader spatial scale
we applied two-period comparisons of correlations and the Kalman
Filter.

2.6. Visual comparison

Chronologies and temperature were compared on the same plot
(e.g., Jacoby and D’Arrigo, 1995; D’Arrigo et al., 2009). In these cases,
temporal instability was subjectively identified as a substantial de-
parture of trends or interannual variations in the tree-ring series and
temperature.

2.6.1. Running Pearson correlation coefficients

Running correlations were generated for successive 30-year win-
dows (e.g., Biintgen et al., 2006a,b; Naulier et al., 2015) and significant
(p £ 0.05) low frequency modulation was tested for using the g test
function in R package Treeclim (Zang and Biondi, 2013, 2015). This test
is a multivariate extension of the test originally proposed by Gershunov
et al. (2001) that has been applied elsewhere (e.g., Franceshini et al.,
2012). It produces 1000 sets of simulated climate data that are Gaussian
noise and a simulated proxy based on the original correlation function
that includes an error component. The variance of this error component
is the same as the variance not explained by climate in the real data. For
each window, the correlations between the actual chronology and cli-
mate predictor are compared to the distribution of bootstrapped stan-
dard deviations of the simulated data to identify if higher or lower than
expected low-frequency modulation occurs.

2.6.2. A two-period comparison of correlations

We compared the relationship between each chronology and mean
temperature for ‘early’ and ‘late’ periods at both the local (e.g., Andreu-
Hayles et al., 2011a) and regional (e.g., D’Arrigo et al., 2009) scales.
Each ‘early’ and ‘late’ period contained half of the available overlap
between temperature and chronology series. Although this two-period
scheme is only one (and a relatively naive one perhaps) of several that
could be used (e.g., > 2 periods, periods of different length), we have
used a 50/50 split because this is a common procedure for validating
the quality of climatic reconstructions. Clearly, however, the use of
alternative periods or a greater number of periods could influence re-
sults. The following early and late periods were used for the ‘local’
results: BOR: 1901-1953 and 1954-2007; RAL 1915-1962 and
1963-2010; MRD and MCK 1926-1967 and 1968-2009. With the ex-
ception of RAL (1954-1981 and 1982-2010), the same periods were
used for the spatial analyses. The significance of the difference between
the early and late period r-values was assessed after stabilising the
variance and transforming the r scores to z-values using Fisher’s
transformation (Fisher, 1915).
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2.6.3. The Kalman filter (KF)

The Kalman Filter (KF) estimates the dynamic relationship between
two variables over time (Visser and Molenaar, 1988; Jacoby and
D’Arrigo, 1995; Cook et al., 2013) and compares it with a linear model.
Here, the linear (constant) model can simply be described as an ob-
servation equation:

Ve =z + & (€8}

where y; is the tree-ring series, z; is the temperature series, and & are
the randomly distributed error terms. The dynamic model in which the
a, are allowed to vary over time as a random walk can be described as:

(2
3

Eq. (3) is known as the transition equation. Both & and n, are as-
sumed to be normally distributed and independent (&, ~ iid N(0,0%) and
ne ~ iid N(0,0%Q); see Visser and Molenaar, 1988 or Harvey, 1989 for a
fuller treatment). The best model—either (1) or (2)—is selected using
the bias-corrected Akaike Information Criteria (Van Deusen, 1990; AIC,
for dynamic model and AIC. for the constant coefficient model). The
model with the lower AIC is considered a better fit to the data if
AIC. — AIC; < —2 (the penalty on the AIC to account for the inclusion
of additional parameters). In addition to using this AIC comparison, we
also consider the 95% intervals around the estimate (point esti-
mate =+ 2s), based on the Q estimates (variance associated with the
error term in the transition equation). If there is no variation in the
relationship over time, then the Q values will be 0. If the entire interval
lies above (below) zero, there is a significant positive (negative) re-
lationship between the chronology and temperature series. In applying
the KF here, only those dynamical relationships in which the
AIC. — AIC; - —2 and a change of sign in the relationship occurred
were noted as ‘significant’, and thus considered to indicate temporal
instability in the relationship (not necessarily just at the modern ends of
series). A change in the sign of the coefficient interval from positive
(negative) to negative (positive) or from positive/negative (indistinct
from zero) to indistinct from zero (positive/negative) is likely to be
more problematic for climate reconstruction than a relationship in
which the sign does not change. Our criteria for identifying temporal
instability are therefore conservative.

Ve =z + &

Qr = 0.1 + Nt

3. Results

Below, we firstly report the results for the synthetic data (Figs. 2-4)
and then the results for the different sites (Figs. 5-11). For the site
results, a single figure is used to present results based on a particular
technique across all sites. The information presented in each figure is as
follows: Fig. 5, the smoothed chronologies standardised in different
ways; Fig. 6, a visual comparison of the chronology sets against mean
temperature; Fig. 7, running correlations; Fig. 8, comparison of two-
period correlations; Fig. 9, Kalman Filter site results. Fig. 10 shows the
comparison of two-period spatial correlations across a broader spatial
scale and results of the spatial application of the Kalman Filter are
shown in Fig. 11. In the Kalman Filter results, a solid horizontal line
indicates a constant relationship. If the 95% interval, shown by the
dotted lines, is entirely above (below) the zero line, then the relation-
ship between the chronology and temperature is significantly positive
(negative). A non-horizontal line indicates a non-constant relationship.
Where the 95% interval changes from positive (negative) to negative
(positive), or from positive/negative (no different from zero) or vice
versa, this indicates a change of sign in the relationship. The same
criteria (see Methods) were used to define instability for the local- and
regional-scale, but for the regional-scale results, shading on Fig. 11
shows the decade in which the instability began, or indicates instances
of multiple sign changes. Only results for the residual chronologies
(local data) are shown in the main body of this study. Results for
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B Fig. 2. Synthetic temperature (black) and tree-ring
data. A. Synthetic data that is strongly associated with
& 5 temperature (r ~ 0.8); B. Synthetic data that is only
moderately associated with associated with tempera-
N O ture (r ~ 0.42). Note that in each panel, each differ-
o o ently standardised chronology will be identical before
§ § the interventions at time 80. Multiple different lines
‘?o ulao of one colour reflect the different standardisations
N N applied. Red series are unperturbed, blue series have
& i a decreasing trend relative to the temperature series
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chronologies based on ratios are shown and briefly discussed in the
Supplementary Material. Similarly, we present spatial results only for
one standardisation option (Spl67%n) in the case of two-period com-
parisons, presenting the rest in the Supplementary Material (residual
chronology results only).

3.1. Synthetic data

Visually, the change in trend is more apparent for the strongly
(Fig. 2a) associated series (strong) than the moderately associated series
(moderate; Fig. 2c). The changed relationship due to the interannual
perturbation from time 80 (‘1980¢) is apparent for both the strong and

moderate series (Fig. 2b, d). Only small differences due to standardi-
sation occur, but are largest at the series’ modern ends.

Running correlations (Fig. 3a-b) were effective in detecting the
interannual intervention from time 80 (‘1980¢) for both the strong and
moderate series, and the g test indicates that low frequency modulation
is significant (Table 2) in all cases. The visually apparent change in
trend (Fig. 2) was significant for both the moderate and strong series
(Table 2). More unexpected was significant low frequency modulation
in the unperturbed strong series (Table 2). Pertinently, differences due
to standardisation method are relatively small in the running correla-
tion results, but are clearer for the trend than the interannual inter-
vention (Fig. 3a-b).

A B Fig. 3. Top: Running correlations between synthetic
tree-ring data (residual chronologies only) and tem-
S_’- g = perature. A Synthetic data that are strongly associated
s/ W, . /w with temperature. B Synthetic data that are moder-
c© C; o AR AR " ately associated with temperature. Bottom: Two
o° Oa period correlations for synthetic data. C. Strongly
E Ed B associated chronologies, D. moderately associated
gg gq chronologies. Red series are unperturbed, blue series
8 80 represent the chronologies with a trend intervention
g - from time 80 and green series have an interannual
[ N ) perturbation added from time 80. (For interpretation
cli — of the references to colour in this figure legend, the
L 1 1 1 | L 1 1 1 | reader is referred to the web version of this article.)
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E The two period correlations for the synthetic data suggest their ef-
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Fig. 4. Kalman Filter traces for the synthetic data. Black is for strongly associated data, and red for moderately associated data. Where AIC. — AIC, is the same (> —2 or < —2), for both
sets of results only one value is added to plot. Top row is for unperturbed synthetic data, second row shows synthetic data with trend intervention and third row shows results for synthetic
data with the interannual intervention. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

g test relies on normally distributed data, which was not the case for
several instances of the chronology, making the results of the test un-
reliable (Table 2). Based on Fig. 6, it appears that the modern-end de-
coupling is low frequency in nature and Figs. 7 & S3 also indicate
weaker correlations towards the start of the temperature record. Cor-
relation between temperature and the chronology for the early period is
considerably stronger (r < —0.5) than for the later period
(—0.43 <r =< —0.15) in all cases (Figs. 8; S4). However, only the
difference for (ADspl) is statistically significant (p < 0.05). The local
KF results (Figs. 9, S5) show a significantly temporally unstable re-
lationship for some standardisation options (e.g., Nex/reg, ADspl (ssf)
and ADspl (std, ssf), Medspl(ssf), 67%nSpl (std, ssf)), but not others.
The two-period comparisons for the broader spatial region show
dramatic changes (Figs. 10; S6-S8), but the very short periods used (28
years), as well as the timing of the split at 1982 exert important effects
here. Note that the two periods used for the spatial comparison differ
from those used for the local comparison (local meteorological station)
and so the two sets of results are not directly comparable. Strongest
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correlations occur in the central part of the domain in the early period.
The greatest extent of significant changes in correlation varies by
standardisation method, but generally occurs for the eastern and
southern parts of the domain. Similarly, the areal extent of multiple
changes in sign - as diagnosed by the KF — differs depending on stan-
dardisation method used (Fig. 11), with greatest extent occurring for
Medspl and Spl67%n. Overall, results point to temporal instability of
the relationship between RAL and temperature that most likely began
around 1980.

3.2.4. MRD

Standardisation and chronology construction methods also im-
pacted the modern end of MRD (Figs. 5; S1). Signal-free standardisation
has led to a greater difference between temperature and most residual
chronologies for MRD at their modern ends compared to the non-signal-
free chronologies (exception of Nex/reg; Figs. 6 & S2). The largest in-
crease due to signal-free standardisation occurred for Spl67%n and
Medspl (Fig. 5), suggesting that these standardisation methods resulted
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Fig. 5. The four smoothed Southern Hemisphere residual chronologies standardised in four different ways (see text). Only portions of chronologies for which EPS > 0.85 andn > 5 have
been included. Note that although MRD is shown only since 1000CE, EPS > 0.85 back to 400BCE. Sample depth (log scale) of each chronology is shown on the right axis. Grey is Nex/
reg, green is ADspl, blue is Medspl and red is 67%nSpl. Std indicates non-signal-free chronologies while ssf indicates series have been standardised within the signal-free framework.
Time-scale shown on x-axes differs across sites. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

in greater bias at the modern ends of series. The modern ends of the
Medspl and Spl76%n chronologies were more similar to the ADspl after
being processed via the signal-free framework. However, the signal-free
Nex/reg standardisation option has resulted in the modern ends (since
~1900) of many series being pulled downwards while earlier sections
have been pushed higher (see Fig. 5), thus influencing the shape of the
final chronology. The signal-free standardisation has emphasised what
appear to be common characteristics across many series in the chron-
ology, but are instead a product of Nex/reg standardisation. This de-
monstrates that application of signal-free standardisation alone is not a
“silver bullet” (Melvin and Briffa, 2008; Briffa et al., 2013) to resolving
issues that may occur due to standardisation method.

Running correlations for MRD are generally statistically significant,
excepting the periods prior to ~1940 (some standardisations) and
~1970 (p < 0.05; Figs. 7, S3), but in no case do the g test results
support the presence of significant low frequency modulation (Table 2).
There is little difference between correlations in the early and late
periods for any standardisation (Figs. Fig. 8; S4). The local KF results
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indicate a weakening mid-century relationship, but it remains positive
despite AIC.-AIC; - — 2 in three cases (Figs. 9; S5). Although the spatial
extent of strong correlations is greater in the later period (Figs. 10;
S6-S8), significant difference between the two periods occurs only over
the central north and far northeast of the domain. The spatial appli-
cation of the KF suggests that issues may exist over much of the domain
for which significant relationships with temperature exist (Fig. 11). The
extent of the area for which there are multiple changes in the sign of the
relationship varies depending on the standardisation approach used.
For example, the Nex/reg chronology suggests growth at Mt Read has
accelerated relative to temperature since the 1990s across much of the
northwestern part of the domain whereas multiple changes in the sign
of the relationship across much of the region is indicated for the ADspl
chronology. Overall, the results for MRD suggest that, while local scale
results are not problematic, relationships across the broader domain
may be.



K.J. Allen et al.

Z—-score

I ] T
1960 1980 2000
Year

T T T
1901 1920 1940

Z—-score

T T
1980 2000

T
1960
Year

T T
1920 1940

Z—-score

I T I I
1940 1960 1980 2000

Year
1
o 2
(@] 1
2 07 !
| 1
N _, | :
T = T T
1940 1960 1980 2000
Year

Dendrochronologia 48 (2018) 52-73

1
o 27 ;
3
@ 07
| 1
N _, :
T | I II T I
1901 1920 1940 1960 1980 2000
Year
I
o
e
(&)
?
N
1

I I I
1960 1980 2000

Year

T T
1920 1940

Z—-Sscore

I I I
1960 1980 2000

T
1940

Year
1
o 41 :
8 *1
I 0n !
N 1
-2 1 1
T = T T
1940 1960 1980 2000
Year

Fig. 6. Comparison of interannual temperatures and residual chronologies. For each plot, the thick black line is the temperature series and the remaining thin lines show the variously
detrended chronologies. Grey is Nex/reg, green is ADspl, blue is Medspl and red is 67%nSpl. Note that the RAL and MCK chronologies have been inverted for clarity — the relationships
are actually negative. Std indicates non-signal-free chronologies while ssf indicates series have been standardised within the signal-free framework. Time-scale shown on x-axes differs
across sites. Dashed lines on plots show breakpoints identified by homogeneity tests on the climate data (breakpoints occur at BOR: 1954/5; RAL 1978/9; MRD 1969/70; MCK 1959/60).
Only that for MCK was not considered significant (see Table S1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

3.2.5. MCK

Although standardisation option had relatively little impact on the
MCK chronology, there are small differences, mainly at the modern end
of the chronology (Fig. 5, but see S2). The relatively low variability in
raw measurements, compared to the ring width chronologies, may be
responsible for this. Visual comparison with temperature and two-
period local correlations (ADspl and Medspl) both suggest local-level
issues with MCK (Figs. 6; S2). Running correlations also show a
weakening of the association with temperature at the modern end of the
non-signal-free chronologies, although the correlation does remain
significantly negative (Figs. 7; S3) and there is no significant low fre-
quency modulation (Table 2). O’Donnell et al. (2016) also noted an
issue with the last half decade of the density chronology from this same
site and found that excluding these years from the model improved the
reconstruction. The pattern of difference between early and late period
correlations is the same across different standardisations but only dif-
ferences for ADspl and Medspl are significant (Figs. 8, S4). The KF re-
sults show a weakening of the relationship over time, and the length of
time for which non-significant coefficients occurred varies by standar-
disation method (cf. Nex/reg and 67%nSpl).
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Spatial correlations (Figs. 10, S6-S8) indicate significant changes
(p < 0.05) in the relationship over Tasmania and to the far west of the
domain. The spatial KF results suggest multiple changes in the sign of
the relationship since 1926 over much of western Tasmania and the
southern Australian mainland in two cases (Fig. 11; ADspl, Medspl), but
the 67%n and Nex/reg series indicate a significant change in relation-
ship sign towards the modern end of the series for parts of the same
area. Most of the results for MCK point to a change in the relationship
with temperature that likely occurred at the modern end of the series.

4. Discussion
4.1. Is there a ‘best’ method to detect temporal instability?

Ideally, any method used to test temporal stability of the relation-
ship between two series would identify known issues between two
series. Additionally, given overwhelming evidence (e.g., Biintgen et al.,
2008; Esper et al., 2010) that standardisation is a critical aspect of
temporal instability at the modern ends of series (i.e., the DP), any
method used should be sensitive to standardisation method. A summary
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signal-free chronology. Correlations have not been adjusted for serial correlation. Analyses suggested adjustments would differ across sites and standardisations, but in general would be
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of the results for each method by site (Table 3) illustrates that no one
method is consistently sensitive to standardisation — at least for the data
used here. Visually, different standardisations made little difference to
the resultant series for the synthetic data (Fig. 2), but for the longer
series from actual sites, there are clear differences amongst series,
particularly at the modern ends (Fig. 6; Table 3). Notably, running
correlations appear relatively insensitive to standardisation for both the
synthetic and the actual site data although some differences at the
modern end were apparent for RAL and the synthetic series (trend in-
tervention; Figs. 3a&b, 7). Overall, it also appears that two-period
correlations are not particularly sensitive to standardisation choice
(Figs. 3c&d, 8, S5), although this apparent insensitivity may partially
reflect the limited options examined here. In contrast, the KF results for
the site data suggest some sensitivity to standardisation method used,
including whether standardisation was performed within the signal-free
framework or not (e.g., Fig. 9, Table 3: RAL Nex/reg, Medspl, MRD
Nex/reg, Medspl, BOR Nex/reg and Fig. S5:RAL Medspl, 67%nSpl, MRD
ADspl, Medspl, 67%nSpl).

Essentially, all methods used here identified changed relationships
due to a high frequency, or interannual, intervention (Figs. 2-4;
Table 3) in the synthetic data, but results for the trend intervention
were more ambiguous, depending both on method and whether the
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data were strongly or moderately associated (Figs. 2-4; Table 3). The
KF, for example, was highly sensitive to the interannual intervention
but failed in all but one case (Nex/reg, strong) to detect the trend in-
tervention. A priori, one would expect correlation-based techniques to
be more sensitive to changes in the high- rather than the low-frequency
relationship (cf. Esper et al., 2010) that is more likely to be attributable
to different standardisation approaches. The results for the synthetic
data, however, indicate that either running correlations or a compar-
ison of two-period correlations may identify changes in either the low
or high frequency relationship between two series (Figs. 3 and 7,
Table 3). The correlation techniques were somewhat effective in iden-
tifying some change in the low-frequency relationship (Figs. 6, S2)
between temperature and actual chronologies (MRD, RAL and MCK),
although standardisation method influenced the extent of the change,
and hence whether it was significant or not (p < 0.05; Figs. 6, S2).
Most methods used detected some instability for RAL and MCK
(Table 3; Figs. 6-9).

The trend intervention was more readily detected in the strongly,
rather than the moderately associated, synthetic series (Figs. 2-4;
Table 3). This is consistent with one of the pitfalls discussed in Esper
and Frank (2009), namely that reliable detection of a changed re-
lationship between two moderately related series will be relatively
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Fig. 8. Two period correlations for chronologies computed using residuals.
Periods used were: RAL 1915-1962CE and 1963-2011CE; MRD
1926-1967CE and 1968-2009; BOR 1901-1955CE and 1956-2010CE;
MCK 1926-1967CE and 1968-2009CE. Top panel is for non-signal free
chronologies, and bottom panel shows signal-free chronologies. Grey re-
presents Nex/reg, green is ADSpl, blue Medspl and red 67%nSpl.
Significant differences (p < 0.05) between early and late correlations are
shown as * under early period correlations. See Figure S4 for ratio chron-
ology results. Correlations have not been adjusted for serial correlation.
Analyses suggested adjustments would differ slightly across standardisa-
tions for any one site, but in general these would be minimal (data not
shown). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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challenging. However, the low-frequency modulation found in corre-
lations for the unperturbed strongly associated synthetic series (Fig. 2)
suggests the need for some caution in interpreting results of the g test
(Table 2). It is similarly possible that some of the apparent sensitivity of
the KF to changes in relationships for moderately associated series
(Fig. 9; Table 3) may reflect its vulnerability to noisy relationships
when those relationships are not strongly coupled (c.f. Esper and Frank,
2009).

While visual assessment of series is highly subjective, it does serve
as a means of analytical triage—a first step in identifying whether
temporal instability may exist in the relationship between a tree-ring
chronology and climate variable (e.g., RAL, MRD, MCK; Fig. 6; Table 3).
It may also help identify whether any potential instability is high- or
low-frequency (Figs. 2 and 5); however, it does not provide information
on the significance or otherwise of any instability. Running correlations
offer the potential to identify when a change in the relationship has
occurred. Critically, testing for greater (lower) than expected low-fre-
quency modulation is an important part of their application because an
apparent instability, especially in moderately associated series, may
simply imply a loss of signal for a short period, rather than temporal
instability (Gershunov et al., 2001). As applied here, two-period com-
parisons are inherently constrained by the periods chosen for compar-
ison, making it difficult to detect the timing of any change, or whether
multiple changes in the relationship have occurred. Further, the use of
very short periods, due to, for example, short instrumental records, may
also result in large differences in correlations between two periods. Our
results would almost certainly differ if alternative periods were used, all
the more so if break points were aligned with any visually apparent
changes in relationships. In contrast, an attractive feature of the KF is
the simple coefficient traces and a comparison of AIC. and AIC;, that can
highlight what changes occurred in relationships and when they oc-
curred (Figs. 9, S5) without the researcher subjectively imposing
breakpoints. These simple traces can also help avoid the ‘unequal at-
tention’ pitfall (Esper and Frank, 2009), in which attention is only fo-
cussed on detecting decoupling at the modern end of series.

The limitations of methods used in this study are amplified by the
moderate relationships between the SH tree-ring series and
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temperature, pointing to the need to carefully consider the limitations
of different methods, their ability to distinguish between high and low
frequency instability, and the need to apply more than a single ap-
proach when investigating many of the SH chronologies. We recognise
that our results and conclusions will be constrained by a focus on
commonly used approaches to detection of decoupling that does not
include methods such as assessment of residuals for autocorrelation in a
regression context (e.g., Wilson et al., 2007), process-based modelling
(Vaganov et al., 2006), or consideration of changes in coherence over
time (e.g., Prisarc et al., 2007). Our approach also focussed on pre-
reconstruction methods that examine one chronology at a time. Based
on our relatively simple pre-reconstruction approach, it is difficult to
determine the likely impact of any apparent decoupling (regardless of
whether it is due to standardisation or other factors) on a multi-proxy
temperature reconstruction, even if specific corrections are applied to
tree-ring data to remove non-climatic trends (see Lavergne et al., in
press). This issue, however, is beyond the scope of this paper. At a very
general level, most of our methods suggest a decoupling in the RAL
chronology (Figs. 6, 8 and 9; Table 3). Therefore, solely using this
chronology to reconstruct temperature would likely result in under-
estimation of past temperatures in a model based on a modern cali-
bration period. Its impact on a multiproxy reconstruction would be
mediated by the reconstruction method used and the number of other
proxies included.

4.2. Temperature data issues

Detecting changed relationships between climate proxies and tar-
gets is crucial, but it is equally important to consider why such changes
might occur. For the SH with generally short, and in many regions,
quite sparse meteorological station coverage, the climate data may be
partially responsible for an identified problem (c.f. Esper et al., 2010;
Table 3). We used four measures to test for inhomogeneity in the ‘local’
temperature data (package iki.dataclim; Orlowsky, 2015). These mea-
sures included Pettitt’s non-parametric test based on ranks (Pettitt,
1979); the standard normal homogeneity test based on ratios that is
particularly sensitive to changes near the start and end of series
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Fig. 9. Kalman Filter traces for the standardised and signal-free SH residual chronologies standardised in different ways. Solid line is KF trace of optimal model and dotted lines are the 2s
limits. Red lines and text relate to non-signal-free chronologies and black lines and text relate to signal-free chronologies. Note that x-axes differ across sites. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

(Alexandersson, 1986); the Buishand Range test based on the distance
between the mean and each value (Buishand, 1982); and the von
Neumann ratio test that examines the ratio of the successive mean
square and the variance (Von Neumann, 1941). Both the Buishand and
von Neumann tests assume data normality. Taken together, these tests
indicated that climate data for three of the four sites were suspect
(Table S1). Only the series for MCK was considered ‘useful’.

Reasons for these inhomogeneities are likely to vary. Approximately
21% of the 157 Tasmanian temperature stations sites began operation
in the 1960s and ~17% finished operating in the 1990s. The large
increase in the number of stations operating in the 1960s may be linked
to the breakpoint identified for MCK in 1958 and MRD in 1968 (Figs. 6,
$2): note, however that only the MRD series is deemed suspect. It is also
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possible that the cessation of a relatively large proportion of stations in
the 1990s may have had an impact (but not always a significant one) on
the modern end of MCK (Figs. 6 and 8).

The breakpoint identified for Bariloche temperatures in 1977 co-
incides with an abrupt temperature increase from 1976 at many tem-
perature stations in southern South America. Villalba et al. (2003) at-
tributed this abrupt increase to the change from a negative to positive
state of the Pacific Decadal Oscillation and also noted anomalously high
growth at some high elevation sites of N. pumilio since 1976 (see also
Lavergne et al., 2015). Notably, the divergence between temperature
and the RAL chronology begins to become visually apparent from this
point (Figs. 6 and 7). It is also possible that the anomalously high
growth at the Mt Read site in most of the different versions of the



K.J. Allen et al.

Dendrochronologia 48 (2018) 52-73

BOR early

BOR late

BOR sig change

\ \
under 0.2 under 0.2 p<0.1
05-04 05-04 PO
0.4-05 04-05 m p<0.01
W 05-06 m 05-06
m 06-0.7 m 06-07
m over 0.7 W over0.7
B B BT
RAL early RAL late RAL sig change
M under -0.7 M under -0.7 p<0.1
= Z06- 05 = 0605 P05
m -0.5--04 | -0.5--0.4 W p<0.01
-0.4--03 -0.4--0.3
-0.3--0.2 -0.3--0.2
over -0.2 over -0.2

MRD sig

under 0.2
02-0.3

under 0.2
02-0.3

change
- — —

03-0.4 . 0.3-0.4 n
04-05 0.4-05 1
= 05-06 = 05-06 |
= 06-07 m 06-07
| over 0.7 [ over 0.7
MCK early MCK late

under -0.7

Ll @ under -0.7
W -0.7--0.6 m -0.7--06
m -0.6--05 m -0.6--0.5
W -0.5--04 = -0.5--04
-0.4--0.3 -0.4--03
-0.3--0.2 -0.3--0.2
over -0.2 over —0.2

Fig. 10. Spatial correlations between 67%nSpl chronologies and CRU temperature for two periods. Left panel: early period, middle panel: late period correlations. Right panel shows
significant differences in correlation between temperature and chronologies over the two periods. For periods used, see text. White indicates area for which no significant correlations
were found. The RColorBrewer package (Neuwirth 2014) was used to create the colour schemes. Note that the actual values at which correlations are significant differ for the different
sites due to differing length of periods used. Correlations are significant (p < 0.05) at |r| = 0.254 (MRD and MCK); |r| = 0.231 (BOR); |r| = 0.367 RAL. Also, significance of correlations
(left-hand middle columns) has not been adjusted for serial correlation. Results for local data suggested adjustments would be minimal (data not shown).

chronology from ~1980 is associated with related climatic changes
(Allen et al., 2014). The sink inhibition hypothesis discussed by Korner
(1998) was invoked by Salzer et al. (2009) to explain accelerated
growth in Bristlecone Pine at tree line relative to increasing tempera-
tures. This hypothesis would also be consistent with the visible changes
in the relationships for RAL and MRD. The visually apparent change in
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relationship for MCK might also be a direct response to temperature
changes. According to the Australian Bureau of Meteorology (http://
www.bom.gov.au/climate/change) mean summer temperatures have
been = 0.3° above average almost every summer since ~2000. If in-
deed increased temperatures have been responsible for the apparent
changes in relationships, then selecting a standardisation method



K.J. Allen et al.

Dendrochronologia 48 (2018) 52-73

Nex/reg ADspl 67%nSpl
multiple multiple multiple i
= +1950-59 = +1950-59 = +195%~59 ng"é‘é'fsg
+1960-69 +1960-69 +1960-69 +1960-69
+1970-79 +1970-79 +1970-79 +1970-79
= +1980-89 +1980-89 +1980-89 +1980-89
+1990-99 = +1990-99 = 41990-99 = +1990-99

BOR = 4+2000-09 = +2000-09 = +2000-09 = +2000-09

-1950-59 -1950-59 -1950-59 -1950-59
= -1960-69 = -1960-69 = -1960-69 = -1960-69
-1970-79 -1970-79 -1970-79 -1970-79
= -1980-89 = _1980-89 = -1980-89 = -1980-89
= -1990-99 = -1990-99 = -1990-99 = -1990-99
= -2000-09 = _2000-09 = -2000-09 = _2000-09
multiple multiple multiple futtiple
5 +1950-59 = +1950-59 % +1950-59 4 +1950-59
+1960-69 +1960-69 +1960-69 1 ggg'gg
+1970-79 +1970-79 +1970-79 #1970~
RAL +1980-89 +1980-89 +1980-89 +1950-69
= 1+1990-99 = +1990-99 = 41990-99 = +1990-99
= 42000-09 = 42000-09 W +2000-09 W -+2000-09
-1950-59 -1950-59 ~1950-59 '} ggg:gg
= -1960-69 = -1960-69 = -1960-69 -
-1970-79 -1970-79 -1970-79 =1970-79
= -1980-89 = -1980-89 = -1980-89 = -1980-89 4
= -1990-99 = -1990-99 = -1990-99 4 | =1990-99
= -2000-09 = -2000-09 = -2000-09 W :2000-09
i multiple . i multiple
MRD = | +1950-59 il % +1950-50
+1960-69 ™ :+1950-09 1960-69
+1960-69 +1960-69 b
+1970-79 #1970-79 197079 +1970-79
108089 +1980-89 1980489 +1980-89
B 11890-99 = 41990-99 =gk e = +1990-99
= +2000-09 = +2000-09 ® +2000-09 = +2000-09
i -1950-59 sastiss -1950-59
= -1960-69 = -1960-69 = -1960-69 W -1960-69
187079 -1970-79 197079 -1970-79
= _1980-89 = -1980-89 = -1980-89 = -1980-89
= -1990-99 = -1990-99 = -1990-99
=_-2000-09 =_-2000-09 =_-2000-09
.'bh. .
MCK multiple =22 multiple multiple multiple
+1950-59 " +1950-59 W +1950-59 +1950-59
+1960-69 +1960-69 +1960-69 +1960-69
+1970-79 +1970-79 +1970-79 +1970-79
+1980-89 +1980-89 +1950-89 +1980-89
= 1+1990-99 = +1990-99 = +1990-99 = +1990-99
 42000-09 B $2000-00 = 42000-09 = +2000-09

~1950-59 Z1950-59 -1950-59 ~1950-59
= -1960-69 ™ -1960-69 = -1960-69 = -1960-69

-1970-79 _1970-79 -1970-79 -1970-79
= -1980-89 = —1980-89 = -1980-89 = _1980-89
= -1990-99 = -1990-99 = -1990-99 = -1990-99
= _-2000-09 = _2000-09 m_-2000-09 - 000-09

Fig. 11. Application of KF to relationships between gridded (0.5° x 0.5°) CRU3.22 mean temperature data and chronologies. Only grid squares for which relationships had
AIC. — AIC; - —2 AND asignificant (p < 0.05) change in sign are shaded. Both positive (coefficient of the relationship increases) and negative (coefficient of the relationship decreases)
decoupling is shown. Different colours relate to whether decoupling is positive or negative and its timing. Instances of multiple changes in the sign of the relationship are shown in grey. A
small black cross indicates that there is a significant linear relationship between temperature and the tree ring chronology over their common period for that grid square. A black cross on
a white background indicates a significant linear relationship that did not change over the period examined.

purely on the basis that it minimises any apparent divergence would be

inappropriate.

Possible causes of the 1953 inhomogeneity in the New Zealand data
are less clear, especially because the process used to generate the CRU

Table 3

dataset incorporated inhomogeneity tests. Interestingly, the decrease in
running correlations for BOR that begins in the 30-year window starting
in 1940 and ending ~ 1960 appears connected to a few years with
relatively high temperatures around 1960.

Summary of results for individual sites by technique used. A * indicates decoupling issues common across the chronology suite; end (mid-series) indicates issue at modern end (mid-series)
of period in common between temperature data and chronology, and standardisation means issues were identified for some standardisations. Note that no spatial analyses were

undertaken for the synthetic data.

Detection method Visual Running correlation traces Two period correlations KF spatial 2 period spatial KF
BOR * (mid-series)

RAL * (end) * * (standardisation) * (standardisation) * *
MRD * (end) *
MCK * (end) * (standardisation) * (standardisation) * *
Synthetic strong (no change) * NA NA
Synthetic strong (trend perturbation) * * (standardisation) NA NA
Synthetic strong (interann perturbation) * * * * NA NA
Synthetic moderate (no change) * * NA NA
Synthetic moderate (trend perturbation) * * NA NA
Synthetic moderate (interann perturbation) * * * * NA NA
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4.3. Spatial domain instability

Temporal instability across space is also suggested for three of our
four sites. While spatio-temporal instability of relationships between
climate and climate proxies is not the same thing as the DP, it is just as
relevant an issue to consider before embarking on a broadscale climate
field reconstruction. The spatial extent of a stable relationship should
help define the domain over which it is most appropriate to use a
particular proxy in a reconstruction. In the context of our study, there
are several reasons why spatio-temporal instability may arise. The
moderate strength of the relationship with temperature means that the
apparent instability (RAL, MRD, MCK) or stability (BOR) for some grid
cells is likely to be a statistical artefact. Somewhat related to this is the
problem of testing the same hypothesis across many grid cells si-
multaneously. The number of false positives will be proportional to the
significance level being used (10, 5 and 1% for the two-period com-
parisons, and 10% for the KF). Correlation of two series should also be
adjusted for the level of serial correlation in the two series. Appropriate
adjustment made minimal differences in ‘local level’ results (see Figs. 7
and 8) but had a greater impact on the spatial results, particularly for
MRD (data not shown).

The drop-off in the number of meteorological records back in time
means gridded products are likely to be less reliable in their early
portions. This is especially relevant to topographically diverse regions
such as western Tasmania, New Zealand and southern/western South
America. Further, the use of the two halves of the short 1954-2010
period for southern South America meant that the second period began
in 1982, just five years after a change in the climate regime of the re-
gion (Villalba et al., 2003), almost guaranteeing a large change across
the two periods. Lastly, the climate in each of these regions is subject to
multiple ocean-atmosphere processes (e.g., the SAM, subtropical ridge,
ENSO, the Interdecadal Pacific Oscillation) that interact in a complex
and nonstationary manner (Risbey et al., 2009; Gallant et al., 2013) and
will affect parts of the domains shown in Figs. 10 and 11 and S6-8
differentially and intermittently. Disentangling these possible sources of
spatio-temporal instability will be a complex task, particularly when
correlations between a tree-ring chronology and climate are moderate
at best. Admittedly, the relative lack of long-term (pre-1950), high-
quality climate data for much of the SH makes this task even more
challenging. Twentieth century reanalysis products may offer some
potential to address this apparent impasse, however (Compo et al.,
2011).
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5. Conclusions

Our review of methods commonly used to detect temporal in-
stability in relationships between climate and tree-ring chronologies is
certainly not exhaustive and is, to some degree, conditional on the
particular data being examined. Our analyses identify the relative dif-
ficulty in identifying changing relationships in trends between series
that are modestly associated with one another—as is typical of many of
the multicentennial SH tree-ring chronologies. They also highlight that
commonly used methods are generally more effective in detecting
changes in interannual relationships between series than changes in
trend. This is particularly relevant when it has primarily been the
changed relationship between trends in the tree-ring and climate series
that has been of interest and points to the need for careful consideration
of methods used to examine these relationships for instability. Each of
the methods we examined has its limitations, with the KF and running
correlations better able to identify when changes occurred and provide
an indication of the significance of these changes. In general, the cor-
relative methods were relatively insensitive to standardisation ap-
proach, but the Kalman filter may be overly sensitive to noise in
moderately correlated series. Given the variation in results across
methods for some sites (BOR, MRD, MCK), it would be unwise to rely on
the results of a single method to identify the presence or absence of
temporal instability in relationships, particularly for moderately asso-
ciated series. Although spatio-temporal instability is a problem some-
what distinct from the Divergence Problem, it is important to consider
when undertaking large-scale reconstructions.
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Appendix A. A list of previous studies on the DP. The majority of studies target temperature, but some also examine responses to
precipitation, drought or climate indices (e.g., Alvarez et al., 2015). Most also focus on either ring width or density, but there is an
increasing number of studies that are using isotopic or other properties to reconstruct climate, and hence, some studies also examine
stability of the relationship of these parameters with climate (e.g., Barber et al., 2000; Andreu-Hayles et al., 2011a,b; Franceshini et al.,
2012; Matisons et al., 2012). As also demonstrated in the table, interest in the DP extends beyond the high latitude or high elevation
chronologies in the NH (e.g., Cook and Johnson 1989; Andreu-Hayles et al., 2011b; Allen et al., 2014). Interest in the implication of
changing responses to climate also extends beyond those engaged in climate reconstruction (e.g., Cook et al., 1987; Lavergne et al., 2015;
Sanchez-Salguero Camarero et al., 2017; Tumajer et al., 2017). The list of studies in the table is not exhaustive
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Appendix B. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.dendro.2018.02.002.
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