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Abstract 

 

The ultimate goal of an artificial pancreas is finding the optimal insulin rates that can effectively 

reduce high blood glucose (BG) levels in type 1 diabetic patients. To achieve this, most closed-loop 

control strategies need to compute the optimal insulin action on the basis of precedent glucose and 

insulin levels. Unlike glucose levels which can be measured in real-time, unavailability of insulin 

sensors makes it essential the use of mathematical models to estimate plasma insulin 

concentrations. Between others, filtering techniques based on a generalization of the Kalman filter 
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(KF) have been the most widely applied in the estimation of hidden states in nonlinear dynamic 

systems. Nevertheless, poor predictability of BG levels is a key issue since the glucose-insulin 

dynamics presents great inter- and intra-patient variability. Here, the question arises as to whether 

glycemic variability is not properly taken into account in models formulations and whether or it 

would compromise proper estimation of plasma insulin concentration. In order to tackle this point, 

a deterministic model describing glucose-insulin interaction plus a stochastic process to account for 

BG fluctuations were incorporated into the extended (EKF), cubature (CKF) and unscented (UKF) 

configurations of the Kalman filter to provide an estimate of the plasma insulin concentration. We 

found that for low glycemic variability, insulin state estimation can be attained with acceptable 

accuracy; however, as glycemic variability rises, Kalman filters rapidly degrade their performance 

as a consequence of large nonlinearities. 

 

Keywords- insulin estimation, Kalman filter, glycemic variability, stochastic model, artificial 

pancreas. 

 

 

1. Introduction 

 

Type 1 diabetes is caused by selective destruction of the pancreas β-cells, which results in deficient 

insulin production for glucose regulation. In order to restore safe glucose levels in diabetic patients 

exogenous insulin delivery is required. Due to the increased scientific and industrial effort focused 

on the automatic glycemic regulation, the commercial development of an artificial pancreas (AP) 

continues to progress rapidly and it hopefully will soon take part of clinical care (Maahs et al., 

2016). The ultimate goal of an AP is finding the optimal insulin rates that can effectively maintain 

normal BG levels, and infusing it in such way that glycemic profiles can mimic the body’s natural 

regulatory mechanism (Ali and Padhi, 2011). To achieve this, most closed-loop control strategies 

compute the optimal insulin bolus to be administrated on the basis of plasma glucose and plasma 

insulin concentration (De Paula et al., 2015; Ghosh and Maka, 2014; Hughes et al., 2011). This can 

partly be achieved by the availability of continuous glucose monitors that measure glucose levels in 

the interstitial fluid and considering the dynamics between this evaluation and plasmatic 

concentrations (Sparacino et al., 2010). However, the development of more intelligent, efficient and 

robust control strategies requires also the quantification of plasma insulin levels. 
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However, unlike glucose levels which can be determined in real-time using commercial devices, the 

lack of insulin sensors makes it mandatory the use of mathematical or experimental models to 

estimate the current plasmatic insulin concentrations (Zisser et al., 2008). To perform plasma 

estimation, some approaches -see for example Neatpisarnvanit and Boston (2002)- make use of a 

mathematical model describing a glucose-insulin correlation to determine plasmatic insulin levels 

in an open-loop strategy. The main limitation is that current sensor measurements are not used to 

adjust the states or the parameters of the model, even if these adjustments could be necessary 

especially in processes with high variability (Patek et al., 2012). More recently, plasma insulin 

concentration has been estimated in real-time from BG data using filtering techniques (de Pereda et 

al., 2016; Eberle and Ament, 2011). These techniques are based on a generalization of the Kalman 

filter to nonlinear systems and have been widely used in the study of different dynamic systems 

(Nguyen et al., 2017; Sepasi et al., 2014; Turksoy et al., 2017). Briefly, filtering techniques are based 

on the conjunction of a partially observed model of the dynamic system and a state observer. In 

such situation, the observer first predicts the states variables and once new data is acquired the 

model state estimations are updated using a weighted process (Bishop and Welch, 2001). 

 

Nevertheless, poor predictability of BG dynamics is a key issue that any filtering technique will have 

deal with. This is because the glucose-insulin dynamics shows great intra and inter-variability 

among different times and patients according to the carbohydrate content of meals, exercise level, 

age and stress (Krüger et al., 2003). This circumstance leads us to consider whether excessive 

variability might affect the proper estimation of plasma insulin concentration and, in consequence, 

compromise safety due to an inappropriate insulin control action. Even when a number of works 

have addressed the issue of plasma insulin and plasma glucose estimation taking into account 

uncertainty in the model parameters (Makroglou et al., 2006; Steil et al., 2005; Wang et al., 2014), 

the feasibility of insulin estimation under excessive but factual BG variability has not been 

sufficiently studied. De Pereda et al. (2016) studied the performance of a linearized version of the 

Kalman filter in which different selected time-variant model parameters have been considered as 

extended states. Møller (2008) has previously used the extended version of the Kalman filter in 

order to perform the modelling of the glucose-insulin dynamics using stochastic differential 

equations. Basically, this filter creates the possibility of working with nonlinear systems. However, 

when the state transition and observation models are highly nonlinear, the filter can give 

particularly poor performance. 

 

In this work, an Ito´s diffusion process plus the Hovorka’s glucose-insulin model is proposed and 

incorporated into the extended (EKF), cubature (CKF) and unscented (UKF) configurations of the 
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Kalman filter techniques to provide an estimate of the plasma insulin concentration. Introducing a 

stochastic model allows us to evaluate the effect of patient variability in diabetes control, while 

considering other sources of uncertainty in the estimation of glycemic values -such as sensor errors 

for example. This also allows us performing more realistic simulations of abnormal metabolic 

conditions while capturing a heterogeneous cohort of in-silico individuals. In such a manner, we 

can assess the performance of the different filtering techniques in a wide range of patient inter and 

intra variability situations. Then, a comparative study between these techniques is accomplished. 

Eventually, quantifying the error between a given dynamic model and the real and complex 

physiological system is useful to improve AP control and monitoring strategies.  

 

The paper has been organized as follow. In Section 2 the widely accepted Hovorka’s glucose–insulin 

model is presented and then a stochastic formulation, based this original Hovorka model, using the 

Ito diffusion process is presented. In Section 3 the observability of the stochastic model formulation 

is proven, which is mandatory for a successful estimation of plasma insulin concentration under 

glycemic variability. Then, different Kalman filter formulations for insulin estimation under 

glycemic variability are implemented. In Section 4, in silico different implementations of the 

glucose-insulin stochastic process are evaluated for different degree of glycemic variability in 

simulated patients and the obtained result are shown and discussed. Finally, in Section 5 the main 

contributions of the paper and future works are discussed. 

 

 

2. Stochastic model of the glucose-insulin dynamics 

 

In this section, we briefly present the reference deterministic model of the glucose-insulin 

interactions based on the work of Hovorka et al. (2004). Later, we present a stochastic diffusion 

process to model glycemic variability in synthetic diabetic patients. 

 

2.1. Glucose-insulin system 

 

The Hovorka glucose-insulin model is a nonlinear compartment numerical model with two inputs 

(insulin and glucose intake) and one output (glycemia). The model consists of three subsystems, 

namely the insulin absorption, the insulin action and the insulin-glucose dynamics subsystem. The 

carbohydrate absorption rate 𝑈𝐺(𝑡) [mmol/min] is described, as given in de Pereda et al. (2016), by 

the following equation 
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 𝑈𝐺(𝑡) =
𝐷𝐺 𝐴𝐺 𝑡 𝑒−𝑡/𝑡𝐺

𝑡𝐺
2  (1) 

 

where 𝐷𝐺  [mmol] is the carbohydrate content of the meal ingested (considering a molar mass of 

180 [g/mol] for glucose molecule), 𝐴𝐺  is the carbohydrate bioavailability and 𝑡𝐺  [min] is the time-

of-maximum appearance of glucose in the accessible compartment. 

 

Three equations are introduced to describe the insulin absorption subsystem 

 

 

𝑑𝑆1(𝑡)

𝑑𝑡
= 𝑢(𝑡) −

𝑆1(𝑡)

𝑡𝐼
𝑑𝑆2(𝑡)

𝑑𝑡
=

𝑆1(𝑡)

𝑡𝐼
−

𝑆2(𝑡)

𝑡𝐼
𝑑𝐼(𝑡)

𝑑𝑡
=

𝑆2(𝑡)

𝑡𝐼𝑉𝐼
− 𝑘𝐼𝐼(𝑡)

  (2) 

 

where 𝑢(𝑡) [mU/min] represents the insulin administration. Signals 𝑆1(𝑡) and 𝑆2(𝑡) are state 

variables describing absorption of subcutaneously administered insulin, 𝑡𝐼 is the time to maximum 

insulin absorption, 𝐼(𝑡) is the plasma insulin concentration subsystem output, 𝑉𝐼 is the insulin 

distribution volume and 𝑘𝐼 is the fractional elimination rate. 

  

Another three equations are used to describe the insulin action on glucose kinetics 

 

 

𝑑𝑥1(𝑡)

𝑑𝑡
= 𝑘𝑏1𝐼(𝑡) − 𝑘𝑎1𝑥1(𝑡)

𝑑𝑥2(𝑡)

𝑑𝑡
= 𝑘𝑏2𝐼(𝑡) − 𝑘𝑎2𝑥2(𝑡)

𝑑𝑥3(𝑡)

𝑑𝑡
= 𝑘𝑏3𝐼(𝑡) − 𝑘𝑎3𝑥3(𝑡)

  (3) 

 

where 𝑥1(𝑡) [min−1] is the rate of remote effect of insulin on glucose transport, while 𝑥2(𝑡) [min−1] 

and 𝑥3(𝑡) [-] account for the elimination and endogenous glucose production respectively. 

Dynamics of these effects is given by the constants: 𝑘𝑎1, 𝑘𝑎2, 𝑘𝑎3 (deactivation rate constants), 𝑘𝑏1, 

𝑘𝑏2, 𝑘𝑏3 (activation rate constants). 

 

The last subsystem is nonlinear and it describes the insulin-glucose interaction dynamics 

 
 

 
𝑑𝑄1(𝑡)

𝑑𝑡
= −[

𝐹0

𝑉𝐺𝐺(𝑡)
+ 𝑥1(𝑡)] 𝑄1(𝑡) + 𝑘12𝑄2(𝑡) − 𝐹𝑅 + 𝑈𝐺(𝑡) + 𝐸𝐺𝑃[1 − 𝑥3(𝑡)]  (4) 

 

 
𝑑𝑄2(𝑡)

𝑑𝑡
= 𝑥1(𝑡)𝑄1(𝑡) − [𝑘12 + 𝑥2(𝑡)]𝑄2(𝑡) (5) 
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where 𝑄1(𝑡), 𝑄2(𝑡) represent the masses of glucose in the accessible and non-accessible 

compartments respectively, 𝑘12 is the transfer rate constant and 𝐸𝐺𝑃 is the parameter for 

endogenous glucose production. 𝐹0 is a parameter that represents the total non-insulin dependent 

glucose flux. 

 

 𝐹0 = {
𝐹0 𝐺(𝑡) ≥ 4.5 mmol/l

𝐹0𝐺(𝑡)/4.5 otherwise
 (6) 

 

 In turn, 𝐹𝑅 represents renal glucose clearance above the glucose concentration threshold of 9 

[mmol/l] and is given as 

 

 𝐹𝑅 = {
0.003(𝐺(𝑡) − 9)𝑉𝐺 𝐺(𝑡) ≥ 9 mmol/l

0 otherwise
 (7) 

 

Finally, BG levels are given as 

 

 𝐺(𝑡) =
𝑄1(𝑡)

𝑉𝐺
 (8) 

 

where 𝑉𝐺  is glucose distribution volume. Since glycemic sensors operate in the interstitial space, 

they have access to the interstitial glucose (𝐼𝐺) rather than to plasmatic levels. Glucose exchange 

across the capillary walls occurs by a simple but not instantaneous diffusion across a concentration 

gradient, such that  

 

 
𝑑𝐼𝐺(𝑡)

𝑑𝑡
=

1

𝜏
(𝐺(𝑡) − 𝐼𝐺(𝑡)) (9) 

 

 

In Fig. 1, is given an implementation of the system of differential equations presented before in 

order to model the course of the blood glucose absorption rate, particularly when a person eats the 

meal protocol given in Table 2. 
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Figure 1: Blood glucose and carbohydrate absorption rate 𝑈𝐺(𝑡) for the carbohydrate intake 

protocol given in Table 2. 

 
 
 

According to the glucose-insulin dynamics presented, the system state can be summarized such 

that the Hovorka model can be integrated into a stochastic system of differential equations 

 

 𝒙(𝑡) = [𝑆1, 𝑆2, 𝐼, 𝑥1, 𝑥2, 𝑥3, 𝑄1, 𝑄2, 𝐼𝐺] (10) 

 

Later, to define which output signals 𝒛(𝑡) can be measured from the states, the general output 

equation is given as 

 

 𝒛(𝑡) = ℎ(𝒙(𝑡)) (11) 

 

Hence the complete state space model formulation incorporates 𝒛(𝑡) and, as only interstitial 

glucose 𝐼𝐺(𝑡) levels can be measured, the corresponding output equation results to be linear 

 

 𝒛(𝑡) = 𝐻𝒙(𝑡)   where 𝐻 = [0,0,0,0,0,0,0,0,1] (12) 

 

In Table 1 are given the value of the parameter for the Hovorka model, taken from (Hovorka et al., 

2004), in order to represent glycemic patterns in type 1 diabetic patients. 

 

 Table 1: Set of model parameters. 

Parameter Value Unit 
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BW 75 [Kg] 

𝐺𝑏 10 [mmol/l] 

𝐴𝐺  0.8 [-] 

𝑡𝐺  40 [min] 

𝑡𝐼 55 [min] 

𝑘𝐼 0.138 [min−1] 

𝑉𝐼 0.12*BW [l] 

𝜏 15 [min] 

𝑘12 0.066 [min−1] 

𝑉𝐺  0.16*BW [l] 

𝐸𝐺𝑃 0.0161 [mmol/min] 

𝐹0 0.8507 [mmol/min] 

𝑘𝑎1 0.006 [min−1] 

𝑘𝑎2 0.06 [min−1] 

𝑘𝑎3 0.03 [min−1] 

𝑘𝑏1 𝑘𝑎1*51.2*10−4 [min−2mU−1l] 

𝑘𝑏2 𝑘𝑎2*8.2*10−4 [min−2mU−1l] 

𝑘𝑏3 𝑘𝑎3*520*10−4 [min−1mU−1l] 

 

 

 

2.2. Glucose-insulin stochastic dynamic model 

 

A number of works (see for example Borg et al. (2010), Marling et al. (2011), Siegelaar et al. (2010)) 

have described the considerable variability of BG levels that exist among diabetic patients. Thus, for 

the development of control and monitoring strategies for an artificial pancreas, the deterministic 

glucose-insulin dynamic model might be enhanced by taking into account the variable behavior of 

metabolism in diabetic patients. One way to regard such behavior is modeling temporal variability, 

in a certain way. In this manner, the sources of uncertainty that are temporally dependent can be 

taken into account, in the model formulation using stochastic processes.  

 

A stochastic process is a variable that evolves with time in a probabilistic way and which has not 

temporal derivatives in the conventional sense, and in consequence, cannot be manipulated 

numerically using conventional methods. The Ito´s diffusion process is a particular stochastic 

ACCEPTED M
ANUSCRIP

T



process which can be differentiated and integrated by means of the Ito’s Lemma (Ito, 1975). 

Therefore, to model the BG variable behavior in synthetic diabetic subjects we employ an Ito´s 

diffusion process superimposed on the Hovorka´s deterministic model. This allows us performing 

more realistic simulations of metabolic conditions in diabetic patients while capturing a 

heterogeneous cohort of in-silico subjects that accounts sufficiently well for the observed inter and 

intra variability. 

 

Ito (Ito, 1975) provided an alternative to ordinary numerical rules of calculus by defining a 

particular kind of uncertainty representation based on the Wiener diffusion process as a building 

block. Therefore, the glucose-insulin dynamic function can be described as a controlled Ito’s 

diffusion process of the form 

 

 𝑑𝑞(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡))𝑑𝑡 + 𝜎𝑑𝜔 (13) 

 

where 𝑓(𝒙(𝑡), 𝒖(𝑡)) describes the glucose-insulin transition function, 𝑑𝜔  is the increment of a 

Wiener type process and 𝜎 denote Brownian noise and it is a scaling parameter, respectively. Lastly, 

in order to account for glycemic variability, the noise parameter is included such that it affects the 

mass of glucose in the accessible compartment as given by 

 
 

 𝑑𝑄1(𝑡) = (− [
𝐹0

𝑉𝐺𝐺(𝑡)
+ 𝑥1(𝑡)] 𝑄1(𝑡) + 𝑘12𝑄2(𝑡) − 𝐹𝑅 + 𝑅𝑎(𝑡) + 𝐸𝐺𝑃[1 − 𝑥3(𝑡)]) 𝑑𝑡 + 𝜎𝑑𝜔 (14) 

 
 

 

3. Plasma insulin estimation 

 

Firstly, we discuss the state observability of the presented stochastic dynamic model. Then, the 

Extended Kalman Filter (EKF), the Cubature Kalman Filter (CKF) and the Unscented Kalman Filter 

(UKF) formulations are presented for the plasma insulin estimation using the, previously 

presented, stochastic dynamic model. 

 

3.1. State observability 

 

To build an efficient estimator, first, it has to be proven the feasibility to uniquely determine the 

system state 𝒙(𝑡) from the observed output 𝒛(𝑡). This analysis is usually performed using the chain 

of Lie derivatives (Kocarev et al., 1998) 
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 𝛩(𝒙) =

[
 
 
 
 

𝐿𝑓
0ℎ(𝒙)

𝐿𝑓
1ℎ(𝒙)

⋮
𝐿𝑓
𝑟−1ℎ(𝒙)]

 
 
 
 

       𝑤𝑖𝑡ℎ {

𝐿𝑓
0ℎ(𝒙) = ℎ(𝒙)

𝐿𝑓
𝑗
ℎ(𝒙) =

𝜕𝐿𝑓
𝑗−1

ℎ(𝒙)

𝜕𝒙
𝑓𝑜𝑟𝑗 = 1,… , 𝑟 − 1

 (15) 

 

where 𝑟 ≤ 𝑛 denotes the observation relative degree and 𝑛 is the system order. Afterwards, it has 

to be verified whether the Jacobian matrix (Eq. (16)) has at least the rank of the system order 𝑛 to 

ensure that the system is observable 

 

 𝐽(𝒙) =
𝜕𝛩(𝒙)

𝜕𝒙
 (16) 

 

The observability of the Hovorka model with the state vector presented in Eq. (10) has already 

been proven using the Lie derivatives in the work of Szalay et al. (2012). The most important 

constraints that need to be taken into consideration when constructing a state estimator for the 

Hovorka model are given below 

 

 State variables 𝐺(𝑡), 𝑄1(𝑡), and 𝑄2(𝑡) are observable 

 State variables 𝐼(𝑡), 𝑆1(𝑡), and 𝑆2(𝑡) are observable if at least one of 𝑥1(𝑡), 𝑥2(𝑡), or 

𝑥3(𝑡) is observable 

 𝑥1(𝑡) is observable if 𝑥1(𝑡) ≠ 0, which always apply as long as there is injected 
insulin flow 

 𝑥2(𝑡) is observable if 𝑥2(𝑡) ≠ 0 and 𝐼(𝑡) is observable, which always apply as long as 
there is injected insulin flow 

 𝑥3(𝑡) is observable if 𝑥3(𝑡) ≤ 1 

 

If those conditions are fulfilled, then the Jacobian matrix results to have full rank and hence all the 

states are observable, in other words, it is possible to estimate plasma insulin from glucose 

measurements. 

 

 

3.2. Kalman state estimators 

 

The most simple way to obtain an estimate for plasma insulin would be to open Hovorka’s model, 

take out the submodel of the plasma insulin compartment, and drive it with the plasma glucose 

measurement 𝐺(𝑘). In such a case, plasma insulin is estimated using a submodel of the insulin 

compartment as an open loop estimator. Another manner is to obtain an estimate of the plasma 

insulin level using the idea presented in Simon (2006), this is, building a closed-loop estimator that 

uses a complete in-silico glucose-insulin model in parallel to the observed in-silico process, as 

presented in Fig. 2. 
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For computation reasons the described dynamic model (Section 2) must be integrated every 

sampling interval 𝑘 and the numerical Euler integration method with integration step size ∆𝑇 can 

be carried out with initial condition 𝒙𝑘−1. In this way, the following KF update equations will have 

the index 𝑘 referring to a certain time instant 𝑘∆𝑇. Thus, for each 𝑘-th time step the state prediction 

is obtained and then it is corrected incorporating the current measurement.  

 

  

Figure 2: State estimation using a parallel model. For each time step the prediction given the 

parallel model is corrected incorporating the current measurement. 

Processes with high variability, as the one studied in this work, can be represented by systems with 

noise in their transition and measurement functions. Commonly, in the standard discrete form 

these systems are expressed as 

 

 
𝒙𝑘 = f(𝒙𝑘−1) + 𝑤𝑘−1     𝑤𝑘−1 ∼ 𝑁(0, 𝑄𝒙)

  
𝒛𝑘 = h(𝒙𝑘) + 𝑣𝑘       𝑣𝑘 ∼ 𝑁(0, 𝑅𝒛)

 (17) 

 

where 𝒙𝑘 ∈ ℝ𝑛 is the system state and the function f represents the system dynamics in discrete 

form. In turn, h denotes the measurement function and 𝒛𝑘 ∈ ℝ𝑚 is the current measurement. 

Additionally, 𝑤𝑘 ∈ ℝ𝑛 and 𝑣𝑘 ∈ ℝ𝑚 represent the process and the observation noises, while 𝑄𝒙 is 

the process noise covariance and 𝑅𝒛 denote the measurement noise variance. 

 

The estimation is carried out in equidistant time steps 𝑡 = 𝑘∆𝑇 with a typical time step size of ∆𝑇 =

6 𝑚𝑖𝑛. At the beginning the filtering process is fed with the initial conditions of 𝒙̂0 and the initial 
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covariance matrix of the estimation error 𝑃̂0. Subsequently, the estimates of the states and 

parameters in  𝒙̂𝑘 and the covariance matrix of the estimation error 𝑃̂𝑘 have to be propagated 

through time. 

 

The initial state may assume a specific value, but because this value is generally not known a priori, 

the initial state is considered to be a random vector with a Gaussian distribution. Therefore, we 

assume that the mean of the system state equals the initial state. For plasma glucose the basal value 

𝐺𝑏 is chosen, see Table 1, while all other estimates are started with zero. Therefore, for the initial 

state we have that 

 

  𝒙̂0
+ = 𝐸{𝒙(0)} (18) 

 

In turn, the initial covariance matrix of the estimation error is initialized as diagonal matrix 

 

  𝑃̂0
+ = 𝐸{(𝒙(0) − 𝒙̂0

+)(𝒙(0) − 𝒙̂0
+)𝑇} (19) 

 

where 𝐸{. } is the expectation operator. For each time step from 𝑡𝑘−1 to 𝑡𝑘, the propagation of those 

two initial quantities is done in two steps. First the filter estimates the current state using a 

feedback loop configuration where the filter first estimates the system state at some time and then 

obtains feedback in the form of noisy measurements (Bishop and Welch, 2001). The time update 

equations are responsible for projecting forward the current state and error covariance estimates 

to obtain the a priori estimates 𝒙̂𝑘
− for the next time step. Therefore, the prediction step updates 

𝒙̂𝑘−1
+  and 𝑃̂𝑘−1

+  to 𝒙̂𝑘
− and 𝑃̂𝑘

− by evaluating the state equations of the model. 

  

In turn, the measurement update equations are responsible for the feedback -i.e. for incorporating a 

new measurement into the a priori estimate to obtain an improved a posteriori estimate 𝒙̂𝑘
+. Indeed 

the final estimation algorithm resembles that of a predictor-corrector algorithm for solving 

numerical problems as seen in Fig. 3. In the correction step, the state and covariance estimations 

are adjusted to 𝒙̂𝑘
+ and 𝑃̂𝑘

+using the output equations of the model and the current measurement 𝒛𝑘.  

 

The main challenge when dealing with nonlinear systems is not providing a proper prediction of 

the state 𝒙𝒌 but providing an appropriate estimate of the state covariance 𝑃̂. Assuming a Gaussian 

distribution around the state 𝒙𝒌, the distribution will remain Gaussian for subsequent steps given a 

linear system. However, this is not completely true when dealing with nonlinear systems. To 

overcome nonlinearities, different filtering techniques have been proposed based on the original 
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Kalman filter approach (Kalman, 1960). Between others, in following we evaluate the estimation 

performance of the Extended Kalman Filter (EKF), the Cubature Kalman Filter (CKF) and the 

Unscented Kalman Filter (UKF).  

 

 

Figure 3: Kalman filter algorithm. The time update projects the current estimate ahead in time. The 

measurement update adjusts the projected estimate by an actual measurement at that time. 

 

3.2.1 Extended Kalman Filter (EKF) 

 

A Kalman filter that linearizes around the current mean and covariance is referred to as an EKF 

(Bishop and Welch, 2001). Similarly to a Taylor series, we can linearize around the current estimate 

using the partial derivatives of the transition and measurement functions and thus computing 

estimates even in the face of non-linear correspondences. The EKF has been the most studied filter 

in the presence of non-linear systems. However, when the state transition and observation models 

–i.e. the prediction and update functions are highly non-linear, the EKF can experience poor 

performance (Julier and Uhlmann, 1997). This is the result of propagating the covariance through 

linearization of the underlying non-linear dynamic model. 

 

3.2.2 Unscented Kalman Filter (UKF) 

 

In the unscented approach, the probability density is approximated by a deterministic sampling of 

sigma-points which represent the underlying distribution as a Gaussian. The nonlinear 

transformation of these points is intended to be an estimation of the posterior distribution, the 

moments of which can then be derived from the transformed samples. This transformation is 

known as the unscented transform (Wan and Merwe, 2000). The UKF tends to be more robust and 

more accurate than the EKF in its estimation of error in all the directions (Gustafsson and Hendeby, 

2012). This technique also removes the requirement to explicitly calculate the Jacobian matrix, 
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which for complex functions can be a difficult task –either for requiring complicated function 

derivatives if done analytically or being computationally costly if done numerically. 

 

 

3.2.3 Cubature Kalman Filter (CKF) 

 

The heart of the CKF is a spherical-radial cubature rule, which makes it possible to numerically 

compute multivariate moment integrals encountered in the nonlinear Bayesian filter (Arasaratnam 

and Haykin, 2009). Specifically, the algorithm derives a third-degree spherical-radial cubature rule 

that provides a set of cubature points scaling linearly with the state-vector dimension. In 

consequence, the CKF may provide a systematic solution for high dimensional nonlinear filtering 

problems, and actually is numerically more stable than the UKF. 

 

 

4. Results 

 

4.1 Experimental setup 

 

A common problem when implementing in-silico glucose-insulin models is that they are often 

developed assuming perfect representation of the metabolic process, in particular of the parameter 

values. However, high variability in this process leads to uncertainty in both the states and the 

parameters estimation. Thus, the stochastic formulation presented in Eq. (14) models this 

uncertain glycemic behavior. To show this stochastic behavior, due to the intra-inter patient 

variability, in Fig. 4 a number of simulations using the presented Hovorka stochastic model are 

shown using different scales of BG fluctuations. This ensures a cohort of in-silico diabetic patients 

that accounts sufficiently well for the observed inter and intra glycemic variability. 

 

To simulate an increase in the glycemic variability, regarding Eq. (14), the noise scale parameter is 

progressively augmented from 𝜎 = 0.10 (blue lines at top panel in Fig. 4) to 0.25 (green lines at 

central panel in Fig. 4) and 0.50 (red lines at bottom panel in Fig. 4), whereas all the remaining 

parameters are not modified. Notice that as the value of the parameter 𝜎 grows also does the 

number and magnitude of sudden highs and lows in BG levels increase. 

 

To generate the samples measurements of blood glucose we implement the stochastic system 

presented in Section 2 (Eq. 14) in a computational way. Thus, we take samples every T time 
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instants (integration step size) during periods of 24 hours. We use T = 6 minutes, therefore we have 

240 samples/day. 

 

 

  

Figure 4: Implementations of the glucose stochastic process of a diabetic patient using different 

scales of variability, 𝜎 = 0.10 (blue), 0.25 (green) and 0.50 (red). 

 

In all the simulations, we followed a protocol with only one subcutaneous insulin infusion of 3 U of 

insulin injected at 5hs. It is assumed that the basal insulin infusion rate is equal to 1 [pmol/kg/min] 

as only short-acting insulin is administrated. This allowed us obtaining a clear graphical description 

of the plasma insulin estimated profile and how it is affected by large glycemic excursions. Besides 

this, we maintained the protocol of carbohydrate intake given in Table 2. 

 

Table 2 Carbohydrate intake protocol. 

Carbohydrate content (g) 31 10 31 10 31 10 

Meal times (h) 3.00 5.00 7.30 11.00 14.30 17.00 

 

The parameters of the dynamic model presented in Section 2 are considered time invariant, thus to 

simplify the notation and we write them independent of the time. 

 

For the Kalman Filter algorithms, we needed to determine the R and Q matrices. Since we know the 

variance of the Gaussian white noise we are injecting into the signals, we set the off-diagonal 

entries of R to 0 and set the diagonal entries to be the value of the noise variance value. Thus 

according to the previous work of (de Pereda et al., 2016), where the initial transition and 
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measurement covariance matrices were heuristically adjusted, we take the same tested 

initialization of these matrices, such that 𝑄𝒙 = diag[20,20,0.01,10−6, 10−8, 10−5, 1,1,1] and 𝑅𝒛 = 8. 

 

Random variables were adjusted to represent the transition noise 𝑤𝑘 = 0.01  ∗ 𝐼9×9 and 

measurement noise 𝑣𝑘 = 0.025. With this initialization, the uncertainty is initially fairly high, but 

the system and measurement noises are fairly small considering the amplitudes of the Ito’s 

parameter for the glycemic transition function in Eq. (14). 

 

In the prediction step the nonlinear model state equations have to be evaluated. For the unscented 

transformation (Simon, 2006), Eq. (9) have to be integrated numerically. In this step the state noise 

covariance matrix Q can be used as design parameter. Increasing values result in quick decreasing 

values in a smooth estimation behavior. 

 

As initial conditions (Fig. 2) the best possible guess for the states and their covariances should be 

used. For plasma glucose its basal value is chosen (Table 1) whereas all other estimates are started 

with zero. The UKF is initialized in the same way as the EKF, using the same values for the state 

vector and error covariance matrix upon startup. Cubature Kalman filter (CKF) is a special case of 

UKF with α = 1, β = 0, and κ = 0 – the mean weight becomes zero with these choices. 

 

 

 

 

4.2 Simulation Experiments 

 

Numerical simulations were computed so as to evaluate the performance of the EKF, UKF and CKF 

techniques by means of the root mean square error (RMSE) and the negative log-likelihood (NLL) 

metric. These metrics allow an assessment of the effectiveness of the uncertainty propagation 

algorithm through the nonlinear system for each of the filtering techniques. The aim of including 

NLL is to account for prediction uncertainty by measuring the coherence of the filtering 

distributions whilst penalizing the volume of the posterior covariance matrix. For all measures, 

lower values indicate better performance. All the simulations were executed using GNU Octave 

(version 4.2.1) on an Intel(R) Core i7-7700hq Pentium(R) processor. For each degree of glycemic 

variability: low, medium, high with 𝜎 = 0.10, 0.25 and 0.50, respectively; 100 runs were simulated 

and numerical results are shown in Tables 3 and 4. 
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From Fig. 5 to 7 we plot sensor measurements and the corresponding plasma insulin estimation for 

different amounts of glycemic variability. Notice that each filter computes the plasma insulin state 

estimate 𝐼 and besides the measured states 𝐼𝐺 are shown. Additionally, the state covariance 𝑃̂ 

estimated is plotted using yellow lines, in order to illustrate the reliability of the estimates. Also 

measurements of true insulin values (black line) are hidden to the estimator and they are only 

considered as a reference to describe the divergence of the insulin estimate. At first glance, we can 

observe that for small values of the Ito noise parameter, i.e. small BG fluctuations, insulin state 

estimation can be attained with acceptable accuracy regardless of the filtering approach employed. 

However, as glycemic variability is incremented through the noise parameter, the filters degrade 

their performance. This is clear since overestimation of the insulin peaks and marked fluctuations 

occurs. Especially, when a peak in the insulin estimated level occurs, the standard deviation 

considerably deviates emphasizing that the reliability of the estimate is quite limited. 

 

One hundred runs of stochastic simulations for each filter per variability scenario were carried out 

and numerical results are shown in Table 3. Compared with EKF and UKF, the CKF performance is 

observed to be relatively consistent and reliable when comparing the estimation error, over a wide 

range of variability. Consistently, the NLL value says that the CKF presents less variance in the 

filtering process.  

 

From Table 3, we have that for low variability the EKF and UKF show comparable performance to 

predict mean values and no significant difference between them can be found.  The UKF is known to 

provide better and more reliable performance than the EKF, however the advantage in using the 

UKF is insignificant in terms of the RMSE. However, looking deeply at the estimated insulin plots in 

Figs. 5 to 7, we can observe that the EKF estimates seem to diverge at the end of the profile. 

Apparently, the first order linearization provides insufficient precision when there are significant 

nonlinearities in the glycemic system. For medium and large variability, the UKF outperforms the 

EKF in terms of the estimation precision for the present stochastic system.  

 

In the presence of high variability, the performance of all the filters deteriorates considerably. 

Unlike for the previous variability cases, the distribution is noticeably distorted as a larger amount 

of variability in the glycemic dynamics is introduced. This is caused by the excessive nonlinearity 

introduced by Ito’s parameter  in the stochastic system, which make the filtering process very 

unstable. In particular, an unstable behavior is observed for the EKF which is attributed to outlier 

estimates since the filter does not converge under large variability. 
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From Figs, 5 to 7, we can observe that the UKF performs reasonably well in terms of the RMSE but 

poorly in the NLL measure. This indicates that the mean of the UKF’s filter estimations is on average 

close to the true insulin state, but the filter variances are overestimated leading to incoherent filter 

distributions. Remember that the RMSE value only evaluates how close the mean of the 

filtered state distribution is to the true state. NLL values reflect the coherence, that is, the 

accuracy in both the mean and the covariance of the filter distribution. 

 

Table 3 Summary of errors for insulin estimation (100 runs in µU/ml) 

 EKF UKF CKF 

Variability RMSE NLL RMSE NLL RMSE NLL 

Low (𝜎 = 0.1) 3.87±1.7 2.87± 0.6 3.72±1.4 3.00±0.9 2.79±1.0 2.14±0.6 

Medium (𝜎 = 0.25) 6.15±1.8 3.91±1.3 5.02±1.4 4.81±1.1 4.28±1.6 3.98±0.7 

High (𝜎 = 0.5) 10.05±4.5 7.88±1.8 8.84±1.8 7.99±1.5 7.34±1.7 6.122±1.9 

 

In Table 4 a comparison between the computational times for the different filtering techniques is 

given. In terms of time consumptions, the EKF cost is slightly larger than the UKF’s, and the EKF and 

UKF techniques are known to have nearly equivalent complexity (Thrun et al., 2005). Although the 

UKF algorithm requires more function evaluations in each time step due to sigma-points 

propagation, it requires a few less CPU time than the EKF in our implementation. This is probably 

due to the fact that the EKF requires costly matrix inversion operations in the linearization process 

due to the calculation of derivatives or Jacobian. The CKF algorithm is considered to have least 

numerical costs, as supported by the results. Noteworthy, we must consider that BG measurements 

are obtained every six minutes and thus neither of the filtering approaches may seem to have any 

problem to perform in real-time. 

 

Based on the numerical results, the CKF is preferred over the EKF and UKF for the current 

application. The CKF shows satisfactory performance with excellent computational efficiency, as 

long as a reasonable amount of variability is presented. Detailed performance comparisons 

between the EKF and UKF revealed that the UKF outperforms the EKF in terms of filter stability and 

estimate accuracy at the price of minor increase in computational effort.  

 

Table 4 Overall time consumption for insulin estimation (1 run in seconds) 

Variability Model EKF UKF CKF 

Low (𝜎 = 0.1) 0.043 0.885 0.803 0.344 
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Medium (𝜎 = 0.25) 0.072 0.861 0.706 0.412 

High (𝜎 = 0.5) 0.11 0.912 0.871 0.502 

 
 
 

 

Figure 5: Glucose sensor measurements and plasma insulin estimation for low glycemic variability. 
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Figure 6: Glucose sensor measurements and plasma insulin estimation for medium glycemic 

variability. 

 

Figure 7: Glucose sensor measurements and plasma insulin estimation for high glycemic variability. 
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5. Concluding remarks 

 

New diabetes technologies such as the artificial pancreas are promising for management of BG 

levels. However, most autonomous glycemic controllers need of real-time estimations of both 

plasma glucose and plasma insulin concentrations to increase the efficiency of control strategies. 

However, unlike BG levels which can be determined in real-time by means of continuous glucose 

monitors, plasma insulin still requires mathematical models to estimate current concentration. 

 

A determinant factor for the estimation quality using filtering techniques is the availability of a 

truthful glucose-insulin model. Therefore, the dynamic model must be fixed for every particular 

patient, in order to consider individual metabolic behaviors and resulting deviations. Moreover, it is 

also important to understand how fluctuating BG levels affect the quality of the resulting insulin 

estimations. In order to achieve more realistic simulations of metabolic conditions, we formulated a 

stochastic version of the Hovorka glucose-insulin model and then we incorporated the stochastic 

model into different nonlinear versions of the Kalman filter, in order to estimate plasma insulin 

concentration under glycemic variability. 

 

Notice that, the use of a stochastic model (Ito’s model) does not require of adjusting the model 

parameters to a singular case. This allows us performing more realistic simulations of abnormal 

metabolic conditions while capturing a heterogeneous cohort of patients. In this way, we assessed 

the performance of the different filtering techniques in a wide range of patient inter and intra 

variability situations 

 

For small BG fluctuations, insulin state estimation can be precisely attained regardless of the 

filtering approach employed. Unlike the conventional EKF with a first-order accuracy, the UKF 

guarantees that -at least- the second order accuracy of the posterior distribution is captured. The 

last made possible to achieve better estimations of plasma insulin concentration. However, as the 

amount of glycemic variability grows, both filters rapidly degrade their performance. In turn, the 

CKF algorithm provides a new direction to perform the nonlinear transformation, as the third-

degree spherical-radial cubature rule is employed. Results show that the CKF technique not only 

presented lower errors compared to true insulin levels but also small values of standard deviation, 

and thus better management of state uncertainties. Because of the lower computational 

requirements and small estimation error, the CKF resulted to be the best option for this specific 

implementation. 
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Our aim is to evaluate filtering techniques feasible to be used in the development of robust control 

strategies to guarantying patient safety under glycemic variability. A limitation of this work is the 

necessity of an accurate mathematical parametric model, which is inaccessible as describing all the 

(hidden) aspects of the metabolic process is quite unattainable. A suitable solution and future work 

would be the use of an approximated model in a nonparametric filtering approach. On the other 

hand, despite continuous subcutaneous insulin infusion would be more appropriate in the context 

of an artificial pancreas, a single bolus of insulin is administered for a better appreciation of the 

insulin estimated state. Besides continuous insulin administration, the next step also considers the 

evaluation of the filtering techniques on a real human dataset. The last will certainly make possible 

to open a new avenue to implement an AP that can certainly face inter- and intra-patient variability. 

Finally, the issue of how to exploit the dynamics and capture correlations via transition and 

projection property via each version of Kalman Filter is an open avenue for subsequent immediate 

works.  
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