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Wetting transitions are studied in the two-dimensional Ising ferromagnet confined between walls where
competitive surface fields act. In our finite samples of size L × M , the walls are separated by a distance L, M

being the length of the sample. The surface fields are taken to be short-range and nonuniform, i.e., of the form
H1,δH1,H1,δH1, . . ., where the parameter −1 � δ � 1 allows us to control the nonuniformity of the fields. By
performing Monte Carlo simulations we found that those competitive surface fields lead to the occurrence of an
interface between magnetic domains of different orientation that runs parallel to the walls. In finite samples, such
an interface undergoes a localization-delocalization transition, which is the precursor of a true wetting transition
that takes place in the thermodynamic limit. By exactly working out the ground state (T = 0), we found that
besides the standard nonwet and wet phases, a surface antiferromagnetic-like state emerges for δ < −1/3 and
large fields (H1 > 3), H tr

1 /J = 3, δtr = −1/3,T = 0, being a triple point where three phases coexist. By means
of Monte Carlo simulations it is shown that these features of the phase diagram remain at higher temperatures;
e.g., we examined in detail the case T = 0.7 × Tcb. Furthermore, we also recorded phase diagrams for fixed
values of δ, i.e., plots of the critical field at the wetting transition (H1w) versus T showing, on the one hand, that
the exact results of Abraham [Abraham, Phys. Rev. Lett. 44, 1165 (1980)] for δ = 1 are recovered, and on the
other hand, that extrapolations to T → 0 are consistent with our exact results. Based on our numerical results
we conjectured that the exact result for the phase diagram worked out by Abraham can be extended for the case
of nonuniform fields. In fact, by considering a nonuniform surface field of some period λ, with λ � M , e.g.,
[H1(x,λ) > 0], one can obtain the effective field H eff at a λ coarse-grained level given by H eff = 1

λ

∑λ

x=1 H1(x,λ).
Then we conjectured that the exact solution for the phase diagram is now given by H eff/J = F (T ), where F (T )
is a function of the temperature T that straightforwardly follows from Abraham’s solution. The conjecture was
exhaustively tested by means of computer simulations. Furthermore, it is found that for δ �= 1 the nonwet phase
becomes enlarged, at the expense of the wet one, i.e., a phenomenon that we call “surface nonuniformity-induced
nonwetting,” similar to the already known case of “roughness-induced nonwetting.”
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I. INTRODUCTION

When a liquid droplet is deposited onto a solid surface,
it may spread across the surface such that the contact angle
(�) is zero. This situation is called complete wetting. On the
other hand, partial wetting occurs when 0 < � < 180◦, so
that the droplet does not spread. Within this context we refer
to a wetting transition as the surface phase transition that takes
place from partial to complete wetting; for reviews on the topic
see, e.g., Refs. [1–10].

The above scenario can easily be generalized in order to
describe similar situations often encountered in condensed
matter physics (i.e., from Bose-Einstein condensates [10]
up to polymer blends [11]), a typical example being the
localization-delocalization transitions, often observed in the
confined Ising ferromagnet (for a review see, e.g., Ref. [12])
in d = 2 and 3 dimensions [13–36], which in turn are the
precursors of true wetting transitions when the thermodynamic
limit is properly taken [12,21,35,36]. Of course, wetting
transitions are ubiquitous in both nature and technology;
in fact, wetting occurs whenever a surface is exposed to
a fluid or gas phase. Under these circumstances it is not

surprising that the study of wetting and related phenomena
has attracted longstanding interest among both theorists and
experimentalists [1–10]. Within this broad context it is worth
mentioning that the surface structure can dramatically change
wetting properties, and for this reason, the study of wetting in
structured surfaces has become a hot topic of current research
[9]. Recent advances in nano-and microtechnology [37–39]
allows for the construction of patterned surfaces where wetting
properties can be varied spatially in a controlled fashion, as
well as structured surfaces such that the surface geometry can
be controlled but the chemical structure is the same along
the surface [9,40,41]. It is also known that surface roughness
reinforces the wetting properties as compared to a smooth
substrate; i.e., the effective contact angle is smaller when the
roughness increases [42–44]. Conversely, the combined effects
of roughness and heterogeneity can dramatically change the
wettability of a surface leading, e.g., to superhydrophobicity
[41]. One cannot, of course, forget examples from nature where
a certain class of self-affine profiles of surface roughness
occurring in some leaves may lead to macroscopic contact
angles close to 180◦, i.e., a nonwet situation known as
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FIG. 1. Schematic description of the system geometry and its
state slightly below the wetting transition temperature Tw(H1) such
that ξ‖ and ξ⊥ are much larger than the lattice spacing. Here a
nonuniform (positive) surface field acts on the upper wall, while
a negative one acts on the lower wall. Notice that nonuniform surface
fields are simply achieved by introducing a factor δ (−1 � δ � 1),
so that the strength of the field is given by H1,δH1,H1,δH1, . . .. By
coarse graining the local magnetization on a length scale intermediate
between the lattice spacing and ξ⊥, one is left with one coarse-grained
contour, i.e., an interface. Such an interface separates the domain
with positive magnetization, which was assumed to be the majority
domain at the top, without loss of generality, from the domain with
negative magnetization at the bottom. So, in this particular example,
the interface is still bound to the lower wall. Note that ξ‖ ∝ ξ⊥, and the
mean distance of the interface from the nearest boundary is also of the
same order as ξ⊥. The choice of linear dimensions L, M , and of the
periodic boundary conditions in the x direction (p.b.c.) is indicated.

“roughness-induced nonwetting” [45]. For that reason the
understanding of wetting in (natural) leaves is relevant for
the design and efficiency of pesticides.

Within this context the aim of this paper is to contribute to
the understanding of the effects caused by surface heterogene-
ity on the wetting behavior just by addressing a simple case
where the surface is geometrically uniform (flat) but chemical
heterogeneity can be modeled by a suitable change in the
interaction energy between different components of the surface
and the fluid. For this purpose we will focus our study on
the d = 2 confined Ising ferromagnet in the L × M(L � M)
geometry, where at the confinement walls separated by a
distance L nonuniform (short-range) surface magnetic fields
act. In fact, it is well known that the d = 2 Ising magnet
confined between antisymmetric walls (see Fig. 1) exhibits
localization-delocalization transitions of the interface between
domains of different orientation, which are the precursors
of a true wetting transition occurring in the thermodynamic
limit [12,21,35,36]. On the other hand, recent developments
in a finite-size scaling theory [35,36] that rationalize wetting
transitions in systems with short-range interactions between
the walls and the system, as a bulk critical phenomenon
with order parameter critical exponent β = 0, allow for a
precise determination of the critical points and therefore, the
construction of suitable phase diagrams.

The manuscript is organized as follows: in Sec. II we
describe the geometry used in order to simulate the confined
Ising ferromagnet, while Sec. III is devoted to a brief overview
of recent improvements of the finite-size scaling theory for
wetting. In Sec. IV we provide a brief description of the

simulation procedure, and our results are presented and
discussed in Sec. V. Finally, we state our conclusions in
Sec. VI.

II. THE CONFINED ISING FERROMAGNET

We consider the Hamiltonian of the Ising magnet in the
d = 2-dimensional square lattice in an L × M geometry,
where each lattice site i carries a spin Si that can take only
two values, Si = ±1 [21]. Periodic boundary conditions are
assumed along the x direction, where the lattice is M rows
long (see Fig. 1), while free boundary conditions are used in
the y direction where the lattice is L files long. Furthermore,
short-range nonuniform competitive surface fields H1(x) and
HL(x) act on the first and last rows, respectively. Thus the
Hamiltonian reads

H = −J
∑
〈i,j〉

SiSj − H1(x)
∑

i∈row1

Si − HL(x)
∑

i∈rowL

Si,

(1)

where J > 0 is the coupling constant between spins placed
at nearest-neighbor sites, and the “surface fields” H1(x) and
HL(x) act only on the spins placed in the first (y = 1) and last
(y = L) rows, respectively (see Fig. 1). Notice that magnetic
fields are measured in units of the coupling constant J .

For the study of wetting transitions, or more rigorously
localization-delocalization “effective” transitions occurring in
finite samples, it is convenient to adopt the antisymmetric
situation H1(x) = −HL(x) < 0 and then consider the thermo-
dynamic limit (L −→ ∞,M −→ ∞). Under these conditions
actually two phase transitions are observed: one at the tempera-
ture Tcb that is the standard order-disorder critical temperature
of the Ising magnet, namely, exp( 2J

kBTcb
) = √

2 + 1, Tcb �
2.27J/kB [46]. Furthermore a second wetting transition can
be observed at Tw(H1) < Tcb, and this wetting transition is
of second order throughout the regime 0 <| H1 |< J if H1 is
taken uniform. Now, we further considered flat confinement
walls, but the magnetic field is nonuniform adopting the values
H1,δH1,H1,δH1, . . . for adjacent sites along the walls. Here
−1 � δ � 1 is a parameter that allows us to control the degree
of nonuniformity of the surface field. Of course, the case δ = 1
(uniform field) corresponds to the standard case whose the
phase diagram was worked out exactly by Abraham [13], such
that the wetting transition occurs for H1w given by the solution
of

exp

[
2J

kBT

] [
cosh

(
2J

kBT

)
− cosh

(
2H1w

kBT

)]

= sinh

(
2J

kBT

)
. (2)

It is worth mentioning that in a recent paper Fytas and Selke
[47] have studied the role of interfacial adsorption in wetting
transitions by using the three-state Blume-Capel model. In
order to study wetting, these authors have employed special
boundary conditions, modifying the exchange interaction at
one of the boundaries by introducing, at one wall, the surface
coupling αJ between the boundary spins and the neighboring
bulk spins, with 0 � α � 1. Otherwise, the couplings between
neighbors spins are always J . So in that approach the surface
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field remains uniform but may be weakened in one wall, while
in our study the factor δ is introduced in order to produce a
nonuniform surface field.

III. BRIEF OVERVIEW OF THE FINITE-SIZE SCALING
THEORY FOR CRITICAL WETTING WITH

SHORT-RANGE SURFACE FIELDS

By taking the lattice spacing as the unit of length, the
total number of spins is given by N = L × M , and the
magnetization m per lattice site can be evaluated as

m = 1

N

N∑
i=1

Si. (3)

The thermal expectation 〈|m |〉T for T < Tcb will be nonzero
for the standard order-disorder transition. In contrast, for the
wetting transition the total magnetization, or strictly speaking,
its absolute value 〈|m |〉T undergoes a transition from nonzero
value (corresponding to the presence of a localized interface
between domains of opposite magnetization see Fig. 1) to zero
just when the interface becomes delocalized at the effective
wetting transition temperature, which can be obtained from
simulation results in finite samples but must be extrapolated
to the thermodynamic limit in order to obtain the true critical
point. Based on these considerations, it has been proposed
[35,36] that the distribution function PL,M (m) of the total
magnetization in a finite geometry scales as [50,51]

PL,M (m) = ξ
β/ν‖
‖ P̃

(
Lν‖/ν⊥

M
,
M

ξ‖
,mξ

β/ν‖
‖

)
, (4)

an expression that generalizes the standard scaling law for
isotropic systems having linear dimension L in all spatial
directions [52], to the case with anisotropic correlation length
exponents ν‖ and ν⊥ in the direction parallel and perpendicular
to the interface (see Fig. 1), respectively. Now, the fact
that M scales with ν‖ and L scales with ν⊥ can be used
to show that the finite-size dependence on either L or M

enters in the scaling function, through “the generalized aspect
ratio” c ≡ Lν‖/ν⊥/M , instead of the isotropic case where the
“aspect ratio” L/M has to be used. The prefactor ξ

β/ν‖
‖ in

Eq. (4) ensures that the probability distribution PL,M (m) can
be properly normalized. Also, by taking suitable moments of
PL,M (m) one can derive the following expressions:

〈|m |〉 =
∫ 1

−1
dm|m|PL,M (m)

= ξ
−β/ν‖
‖ m̃

(
Lν‖/ν⊥

M
,
M

ξ‖

)
(5)

and

〈m2k〉 = ξ
−2kβ/ν‖
‖ m̃2k

(
Lν‖/ν⊥

M
,
M

ξ‖

)
, (6)

k = 1,2, . . ., where m̃ and m̃2k are scaling functions that do
not need to be specified here. By using Eqs. (5) and (6) we can
obtain the susceptibility χ given by

kBT χ = LM(〈m2〉 − 〈|m |〉2), (7)

and the Binder cumulant (U ) given by

U (T ) = 1 − 〈m4〉
[3〈m2〉2]

, (8)

which in turn are valuable observables in numerical simula-
tions (see also below).

Note that for critical wetting in d = 2 dimensions there is
a single independent critical exponent given by [48]

ν‖ = 2. (9)

Also, the hyperscaling relationship for interfacial phenomena
ν‖ = 2 − αs [3] implies αs = 0 for the critical divergence of
the surface specific heat. Furthermore, the correlation lengths
describing the fluctuations of the interface scale as

ζ 2
⊥ ∝ ζ‖,ζ⊥ ∼ (T − Tw)−ν⊥ , (10)

so that ν⊥ = 1 [35,36]. Now, by pointing our attention to
Eqs. (4)–(6), it follows that for a full scaling description of
critical wetting in the d = 2 dimension one needs to fix the
value of β. In recent papers [35,36] by using scaling arguments,
we have shown that β = 0 for critical wetting with short-range
forces. Of course, second-order transitions with an order
parameter critical exponent equal to zero are rather unusual;
see, e.g., Ref. [49] for a recent example. From the practical
point of view the key results reviewed in this section, namely,
β = 0, ν‖ = 2 and ν⊥ = 1 for critical wetting with short-range
surface fields, imply that plots of the magnetization and all
its moments obtained for different sample sizes will show
a common intersection point provided that the “generalized
aspect ratio” c ≡ Lν‖/ν⊥/M is kept constant. This intersection
point allows for precise determinations of wetting transition
points.

IV. BRIEF COMMENTS ON THE SIMULATION
PROCEDURE

Monte Carlo simulations are performed by using the stan-
dard Metropolis algorithm since for systems below the critical
temperature, exposed to boundary fields, cluster algorithms
do not provide any advantage. As usual one Monte Carlo time
step (MCS) involves L × M flipping attempts, so each spin of
the sample is visited once, on average. Typically, we disregard
1 × 106 MCSs in order to allow for the equilibration of the
system and subsequently, averages of relevant observables are
taken over 5 × 106 MCSs. In this way the statistical error in
relevant observables such as 〈|m|〉 and 〈m2〉 are of the order of
the symbol size in the figures presented below. As expected,
larger errors are observed in the evaluation of the cumulant, so
that in many cases we used those measurements to qualitatively
check the self-consistency of the data.

All simulations are performed for the choice c = L2/M =
9/8 of the generalized aspect ratio, which on the one hand
provides a suitable range for the observation of the common
intersection point of the observables plotted as a function of
temperature [35], and on the other hand allows for a set of
integer solutions of L and M , i.e., values such as (L,M) =
(12,128),(18,288),(24,512),(36,1152), and (48,2048), which
are commonly used in our calculations.
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FIG. 2. (Color online) A phase diagram (J/H1w vs δ)as obtained
exactly for the ground state. Solid lines show the location of the
various phase transitions according to Eqs. (16), (20), and (21), while
the dashed lines correspond to unstable solutions of the equations.
The sketch schematically shows the orientation of the spins in ground
states analyzed in the text.

V. RESULTS AND DISCUSSION

A. A phase diagram (H1 vs δ) for T = 0

In order to work out the phase diagram at T = 0, let us
now evaluate the surface excess energy in the ground state
for the following states: (a) nonwet surface-ordered, (b) wet
surface-ordered, and (c) surface-covered for a sequence of up
and down spins (↑↓↑↓↑↓↑↓ . . .) according to the direction
of the surface field (δ < 0), in a surface antiferromagnetic-
like state (SAFLS), while the bulk remains ordered. First, we
assume a semi-infinite system with all spins in the bulk in
the state Si = −1 and a nonuniform surface magnetic field
H1,δH1,H1,δH1, . . . ., with H1 > 0. Then the energy of the
bulk is HBulk = −2J .

For case (a) the energy of the second layer is the same as in
the bulk, while the first layer has energy

H1st
A = −3

2
J + H1

2
+ δH1

2
, (11)

where in the first term we account for the missing neighbor
spin at the surface, while the second term is due to the fact
that the field H1(δH1) is antiparallel (antiparallel or parallel
depending on the sign of δ) to the spins in the first layer. So,
by subtracting the bulk energy, the excess free energy of the
nonwet surface-ordered state is

�HA = 1

2
J + H1

2
+ δH1

2
. (12)

For case (b) the surface is wet, so all spins in the first layer
are pointing up. Then the energy of the second layer is

H2nd
B = −J, (13)

while for the first layer one has

H1st
B = −1

2
J − H1

2
− δH1

2
. (14)

Therefore, the excess energy is given by

�HB = 5

2
J − H1

2
− δH1

2
. (15)

Now, for the nonwet-wet transition one has �HA = �HB ,
so that

H1w

J
= 2

1 + δ
. (16)

From Eq. (16) one recovers the exact result for the ground
state, namely, H1w/J = 1 for δ = 1 (T = 0); see also Eq. (2).
Also, Eq. (16) suggests that for δ −→ −1 one would have
H1w −→ ∞; however, this limit and values of δ < 1 have to
be investigated carefully. In fact, for state (c), one has that
the surface adopts an antiferromagnetic-like state, so that the
energy of the second layer is given by

H2nd
C = − 3

2J, (17)

while the first layer has energy

H1st
C = J − H1

2
+ δH1

2
, (18)

where we assumed that spins pointing up (down) are placed at
sites with fields H1 > 0 (δH1 < 0). Then, the excess energy is
given by

�HC = 7

2
J − H1

2
+ δH1

2
, (19)
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FIG. 3. (Color online) Plots of (a) the average absolute value of the magnetization 〈|m|〉 and (b) the magnetization square 〈m2〉 vs the surface
field H1/J . Results obtained for δ = 0.25 and T/Tcb = 0.7. The different sample sizes used in the simulations, with a constant generalized
aspect ratio c = L2/M = 9/8, are indicated with different symbols.
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FIG. 4. (Color online) Plots of (a) the average absolute value of the magnetization 〈|m|〉 and (b) the magnetization square 〈m2〉 vs the
parameter δ. Results obtained for H1/J = 3 and T/Tcb = 0.7. The different sample sizes used in the simulations, with a constant generalized
aspect ratio c = L2/M = 9/8, are indicated with different symbols.

and for the nonwet SAFLS, one has that �HA = �HC implies

H1w

J
= 3, (20)

independent of δ. So, the SAFLS would prevail for J/H1 <

1/3. However, for the wet SAFLS the solution of �HB =
�HC yields

H1w

J
= −1

δ
, (21)

pointing out that the solution of Eq. (20) has an unstable branch
for δ > −1/3.

All these results [Eqs. (16), (20), and (21)] are summarized
in Fig. 2, which shows the phase diagram corresponding to
the ground state, i.e., plots of J/H1w versus δ. It is worth
mentioning that all phases coexist in a triple point given by
H tr

1 /J = 3, δtr = −1/3 (T = 0).

1. A phase diagram (H1w vs δ) at finite temperature (T/Tcb = 0.7)

In order to evaluate the influence of the temperature on the
phase diagram, shown in Fig. 2 for T = 0, it is necessary to
perform extensive Monte Carlo simulations. For this purpose

-1 -0.5 0 0.5 1
δ

0

0.5

1

J/
H

1w

φS
AFM= 0.30

φS
AFM= 0.40

φS
AFM= 0.50

φS
AFM= 0.60

φS
AFM= 0.70

φS
AFM= 0.80

φS
AFM= 0.90

NONWET

WET

FIG. 5. (Color online) A phase diagram (J/H1w vs δ) as obtained
by means of Monte Carlo simulations for T/Tcb = 0.7. Data points
obtained by scanning δ (H1/J ) by keeping H1/J (δ) constant are
shown by solid squares (circles). On the left-hand side and at the
bottom we show seven “level” curves of the surface antiferomag-
netic order parameter that covers the range 0.3 � φAFM

S � 0.90, as
indicated.

we have chosen T/Tcb = 0.7, i.e., a temperature (far) below
Tcb in order to be rid of undesired crossover effects due to bulk
criticality, but high enough in order to ensure a reasonable
flipping probability for the spins. Figure 3 shows plots of
〈|m |〉 and 〈m2〉 versus H1/J as obtained for δ = 0.25 and
T/Tcb = 0.7. We observed a common intersection point of
those observables, also including the cumulant (not shown
here for the sake of space), which is obtained for samples
of different size (but keeping the generalized aspect ratio
c = L2/M = 9/8 constant). This result confirms the scaling
theory for wetting with short-range surface fields [35,36],
as discussed in Sec. III. In fact, the theory predicts that by
rationalizing the wetting transition in terms of a bulk order
parameter (i.e. the magnetization) the corresponding order
parameter critical exponent is β = 0 [35,36]. Consequently,
the prefactors of the scaling functions of 〈|m |〉 and 〈m2〉
become independent of L as follows from Eqs. (5) and (6) (the
prefactor of the cummulant is already independent of L), so
that all those observables must exhibit a common intersection
point at criticality. In this way we determine the critical point
for the wetting transition given by H1w/J = 1.17 ± 0.02.

On the other hand, in order to locate the transition between
nonwet phase with a SAFLS and the wet phase, close to the
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FIG. 6. (Color online) Plots of the AFM order parameters
corresponding to the first (Lth) row φAFM

1 (φAFM
L ) vs δ as obtained for

H1/J = 3 and T/Tcb = 0.70. The data correspond to three different
lattice sizes, and the length of the corresponding walls are indicated.
The generalized aspect ratio C = L2/M = 9/8 is kept constant.
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FIG. 7. (Color online) Plots of the magnetization profiles m(y)
vs the row index (j = y) as obtained for the nonwet phase (solid
squares) with H1/J = 1.35 and δ = 0, as well as within the wet
phase (solid circles) with H1/J = 4 and δ = 0. The values taken by
the antiferromagnetic order parameters at the walls are also shown
by the indicated symbols.

triple point, it is convenient to scan the parameter δ by keeping
H1/J constant, as shown in Fig. 4 for 〈|m |〉 and 〈m2〉. Again,
for this case the common intersection point of the measured
observables allows us to determine the critical point, e.g.,
δw = −0.27 ± 0.02, for H1/J = 3 (T/Tcb = 0.70). Results
obtained for the cumulant (not shown here for the sake of
space) are in qualitative agreement. All points of the phase
diagram obtained by scanning H1/J and keeping δ = constant
(by scanning δ and keeping H1/J constant) are shown by full
circles (squares) in Fig. 5.

In order to further characterize the SAFLS we evaluated the
antiferromagnetic order parameter of rows y = 1 and y = L

given by φAFM
1 and φAFM

L , respectively. Figure 6 shows plots of
those observables versus δ as obtained for the same parameters
as in Fig. 4, i.e., H1/J = 3 and T/Tcb = 0.70. Here one
observes that when the system is in the nonwet phase, φAFM

adopts a large value at the wall where the interface is localized
(e.g., since the interface can be attached to both walls with the
same probability, we take φAFM

1 for this case for the sake of
clarity without losing generality). On the other hand, φAFM

L is
rather negligible at the wall such that the interface is far away.
By approaching the wetting phase one has that φAFM

1 ≈ φAFM
L ,

almost independent of the length M of the sample. Data points

that fulfill the above condition provide a rough estimation of
the transition. It should be mentioned that in Fig. 6, close
to the wetting transition, one observes jumps for φAFM

L for
L = 18 (squares) and φAFM

1 for L = 24 (diamonds), which
are most likely due to excursions performed by the interface
arriving close to the walls in those finite samples, affecting
consequently the respective surface antiferromagnetic order
parameters. This effect tends to vanish by increasing the
sample size (see Fig. 6).

The transition between the nonwet state with a SAFLS
and the wet phase is also evidenced by plotting magnetization
profiles, i.e., plots of the magnetization versus the row index,
as shown in Fig. 7. In fact, for the nonwet phase one has that the
magnetization profile adopts the value of the bulk spontaneous
magnetization along most of the rows, except for the last one
(y = L), where the interface is bound to the wall. On the other
hand, in the wet phase the profile is antisymmetric and falls
almost linearly from a large positive value (H1 > 0) to a large
negative value (HL < 0), pointing out that the interface is fully
delocalized with an average position close to the center of the
strip (y ≈ L/2). Also note that in Fig. 7 we show the values
of both φAFM

1 and φAFM
L for the sake of comparison: one has

that φAFM
1 � φAFM

L � 0 for the wet phase, while for the nonwet
phase one has φAFM

1 > 0 and φAFM
L � 0 since in this particular

example the interface is bound to the wall located at y = L.
The raw data shown in Figs. 3 and 4 are suitable to test

the scaling behavior of the observables 〈|m|〉 and 〈m2〉, which
follows from Eq. (6) and is generally given by

O(T ,H1,δ) = Õ

(
Lν‖/ν⊥

M
,εM1/ν‖

)
, (22)

for any observable O, where the scaling variable can be either
εT = |(T − Tw)/Tcb|, εH1 = (H1 − H1w)/J , or εδ = δ − δw.
In fact, Figs. 8 and 9 show that data collapse is achieved
by using ν‖ = 2, ν⊥ = 1, and β = 0, validating the scaling
approach recently developed for wetting phenomena with
short-range interactions between the walls and the system
[35,36].

On the other hand, for large values of the surface field
(H1/J � 3) and δ � −1/3 it is expected that the strongly
antiferromagnetic surface layers attached to the walls of
the sample would screen out the influence of surface fields
on the bulk of the sample. In that case, the system would
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FIG. 8. (Color online) Scaling plots of the data shown in Fig. 3 for (a) the average absolute value of the magnetization 〈|m|〉 and (b) the
magnetization square 〈m2〉 vs M1/2εH1 ,with εH1 = (H1 − H1w)/J . Results obtained for δ = 0.25 and T/Tcb = 0.7. The sample sizes used in
the simulations, with a constant generalized aspect ratio c = L2/M = 9/8, are indicated with different symbols.
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FIG. 9. (Color online) Scaling plots of the data shown in Fig. 4 for (a) the average absolute value of the magnetization 〈|m|〉 and
(b) the magnetization square 〈m2〉 vs M1/2εδ , with εδ = δ − δw . Results obtained for H1/J = 3 and T/Tcb = 0.7. The sample sizes used in the
simulations, with a constant generalized aspect ratio c = L2/M = 9/8, are indicated with different symbols.

remain nonwet undergoing a genuine standard order-disorder
transition when the temperature is increased. In order to
avoid unpleasant crossover effects that may occur close to the
transitions lines, we explored the above-discussed scenario
deep inside the phase where the SAFLS prevails, i.e., for
H1/J = 50 and δ = −0.75. For a standard order-disorder
transition in the bulk, one recovers the isotropy in Eq. (4)
with ν‖ = ν⊥ = ν = 1 for the Ising model. Furthermore, one
has β = 1/8, and Eq. (4) becomes [52]

PL,M (m) = L−β/νP̃

(
εL1/ν,

L

M

)
, (23)

which means that data collapse of observables measured in
finite samples of different size can be achieved only by keeping
the geometric aspect ratio cG = L/M constant. In particular,
the scaling behavior of the order parameter is given by

m(T ,L,M) = L−β/νm̃

(
(T − Tcb)L1/ν,

L

M

)
. (24)

Figures 10(a) and 10(b) show plots of 〈|m |〉 and U versus T

as obtained for H1/J = 50 and δ = −0.75, by using samples
of different size but keeping cG = 0.046875 constant. The
intersection point of the cumulant close to Tcb [10(b)] and
the behavior of the magnetization [10(a)] fully support the

existence of a standard order-disorder transition of the bulk
as a consequence of the screening effect of the SAFLS
layers attached to the walls where the surface fields act. That
statement is further confirmed by the data collapse observed
in the insets of Fig. 10(a) and 10(b), which shows scaling plots
of both the order parameter and the cumulant, respectively.
Data collapse is achieved according to Eqs. (23) and (24),
with ν = 1 and β = 1/8 for the Ising model. As expected,
we obtained a poor data collapse for the cumulant since our
measurements of this observable are rather inaccurate, as was
already discussed.

2. Wetting phase diagrams (H1 vs T) and their dependence on δ

The phase diagram corresponding to uniform short-range
surface fields is known exactly since the work of Abraham [13]
and is given by Eq. (2). We further tested the scaling theory
for critical wetting briefly discussed in Sec. III by determining
few points for δ = 1, which are in full agreement with the
exact results [see Fig. 11(a)].

Subsequently we also evaluated the phase diagrams cor-
responding to different values of δ > 0, e.g., δ = 1/4,1/2,
and 3/4. Figure 12 shows plots of 〈|m |〉 and 〈m2〉 versus
T/Tcb as obtained for δ = 0.75 and H1/J = 0.70. From the
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U

(b)
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FIG. 10. (Color online) Plots of the average absolute value of (a) the magnetization 〈|m|〉 and (b) the cumulant U vs the temperature, for
the choice H1/J = 50 and δ = −0.75. Data obtained for samples of different size as indicated by the symbols, but in all cases the geometric
aspect ratio is cG = 0.046875. The insets in (a) and (b) show the corresponding scaling plots [see Eqs. (23) and (24)], on a log-log scale,
namely, 〈|m|〉L1/8 and U vs L(T/Tcb − 1), respectively.
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FIG. 11. (Color online) In all panels the full line corresponds to the exact solution given by Eq. (2). (a) Phase diagram (H1w/J vs Tw/Tcb)
as obtained for different values of δ as indicated. The solid line corresponds to the exact solution given by Eq. (2). The dashed lines in the
low-temperature regime correspond to extrapolations to T → 0 as obtained with Eq. (16). (b) Plot of H1w(T )/J vs ((Tcb − T )/Tcb)1/2 as
obtained by using the data shown in (a), showing that the exponent �1 = 1/2 holds [see Eq. (25)], irrespective of δ. Note that the dashed lines
show extrapolations to T → Tcb drawn as a guide for the eye. (c) Plots of the critical wetting surface fields normalized by their ground state
values [see Eq. (16) vs Tw/Tcb] as obtained by using the data shown in (a).

common intersection point of all observables one obtains
Tw/Tcb = 0.783 ± 0.005.

Furthermore, Fig. 13 shows that all these observables obey
the expected scaling behavior obtained by taking β = 0, and
c = L2/M = 1.125 constant [see also Eq. (22)]. By repeating
the above described procedure (plots not shown here for the
sake of space) we drew phase diagrams for different values of
δ [see Fig. 11(a)]. Here one observes that for low temperature
the curves nicely extrapolate [dashed lines in Fig. 11(a)] to the
exact values already calculated for the ground state, namely,
H1
J

= 2
1+δ

, as given by Eq. (16).
On the other hand, one aspect of wetting in the Ising

model that attracted great attention is the behavior near bulk
criticality. In fact, for a second-order wetting transition the
inverse function H1w(T ) of Tw(H1) behaves as [15]

H1w(T ) ∝ (Tcb − T )�1 , (25)

where �1 is the critical exponent that controls the scaling
behavior with the surface field H1 near bulk criticality [53–55].
In d = 2 Abraham’s exact solution [13] given by Eq. (2)
implies �1 = 1

2 . Of course, for T close to Tcb we observed
strong crossover effects due to the neighborhood of the
standard order-disorder transition of the Ising ferromagnet,
a fact that affects the accuracy of our determination of some
wetting critical points. This shortcoming could be healed by

using even larger samples, but the task is beyond both the aim
of this paper and our computational facilities. However, our
data [see Fig. 11(b)] are consistent with the expected behavior
irrespective of the value of the parameter δ.

B. A conjecture: Exact results for the phase diagram
for nonuniform short-range fields

A simple view inspection of Fig. 11(a) suggests that by
rescaling the critical wetting field by the corresponding result
of the ground state [see Eq. (16)], one may obtain data collapse
for different values of δ. That assumption is nicely verified
in Fig. 11(c), which leads us to conjecture that the exact
solution of the phase diagram for short-range nonuniform
fields can straightforwardly be derived from the result of
Abraham [Eq. (2)] simply by rescaling the surface field. In
fact, by applying some algebra to Eq. (2) one obtains the
temperature dependence of the critical wetting field, namely,

H1w(T )/J = (kBT /2J ) cosh−1[cosh(2J/kBT )

− sinh(2J/kBT ) exp(−2J/kBT )]

≡ F (T ). (26)

Now, if a nonuniform surface field is applied at the
confinement walls we conjecture that the exact solution for
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FIG. 12. (Color online) Plots of (a) the average absolute value of the magnetization 〈|m|〉 and (b) the magnetization square 〈m2〉 vs T/Tcb, for
the choice H1/J = 0.70 and δ = 0.75. From the common intersection point of both observables, one concludes that Tw/Tcb = 0.783 ± 0.005.
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FIG. 13. (Color online) Scaling plots of (a) 〈|m|〉 and (b) 〈m2〉 vs εT

√
M as obtained by using the data already shown in Fig. 11, which

were obtained for H1/J = 0.70, δ = 0.75, and various choices of the system size (for L2/M = 9/8).

the phase diagram is given by

H eff
w /J = F (T ), (27)

where H eff is an effective surface field that has to be evaluated,
e.g., as a function of the original nonuniform field, by working
out the ground state solutions. In fact, by considering a
nonuniform field of some period λ � M , such that H1(x,λ) >

0, one can avoid the formation of SAFLS layers at the walls
and the effective field H eff at a λ coarse-grained level is given
by a simple average, namely,

H eff = 1

λ

λ∑
i=1

Hi(x,λ). (28)

In the particular case of the nonuniform field used in this
paper one has that H eff can be evaluated according to Eq. (28)
for the wet-nonwet transition. However, due to the subtle
behavior of the spin layers attached to the walls for δ < 0,
the transitions involving the SAFLS require the knowledge of
the ground state solutions for the calculation of the effective
field. In this way we obtained

H eff
w /J

=

⎧⎪⎨
⎪⎩

2
1+δ

F (T ) for −1/3 < δ < 1, wet-nonwet
−1
δ

F (T ) for −1/3 < δ < 0, wet-SAFLS

3F (T ) for −1 < δ � −1/3, nonwet-SAFLS.

(29)

Figure 14(a) shows a comparison between the phase
diagram (J/H1w vs δ) corresponding to T/Tcb = 0.70 as
obtained numerically and by means of Eq. (29). Here we
observe excellent agreement for δ � −0.2, i.e., when it is
accurate to determine critical points by using numerical data
obtained by scanning H1 (δ) keeping δ (H1) constant. Note
that the accuracy of our numerical data decreases close to
the triple point at δ = −1/3. This effect is probably due to
the contributions of many sources, among others: the missing
of entropic contributions in Eq. (29) that is based in ground
state considerations, the onset of the formation of the SAFLS,
the missing of corrections to scaling affecting our relatively
small samples, etc. Also, and for the sake of comparison, in
Fig. 14(a) we include the points corresponding to φAFM

S = 0.30
that are very close to the exact results. Of course, the location
of the SAFLS by means of numerical simulations is no longer
straightforward, but our data provide a rough estimation. For
the sake of completeness, in Fig. 15 we show phase diagrams,
i.e., plots of H1w/J versus T/Tcb, as obtained by means of
Eq. (29) and using different values of δ. It is found that,
irrespective of the value of the parameter δ that controls
the degree of nonuniformity of the surface field, the nonwet
phase is always enhanced at the expense of the wet one. The
enhancement of the nonwet phase due to the increment of the
surface roughness is a well-documented phenomenon called
“roughness-induced nonwetting,” the behavior of water drops
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FIG. 14. (Color online) (a) Phase diagram, J/H1w vs δ obtained for T/Tcb = 0.70. The solid circles and squares correspond to the numerical
data already shown in Fig. 5. Also, the solid diamonds show the level curve corresponding to φAFM

S = 0.30, which is used in order to give
insight into the location of the SAFLS. Solid lines correspond to the exact solution given by Eq. (29), while the dashed lines are unstable
branches. (b) Phase diagrams obtained at different temperatures by using Eq. (29). Note that at the triple point the value of δ = −1/3 remains
unchanged irrespective of T . Also note that only the stable solutions are shown for the sake of clarity.
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FIG. 15. (Color online) Plots of H1w/J vs T/Tcb, as obtained by
means of Eq. (29) and using different values of δ. The main panel
corresponds to the case δ > 0, while the inset shows results obtained
for δ < 0. Note that in all cases δ �= 1 causes the enhancement of the
nonwet phase as compared with the case of the uniform field that is
recovered for δ = 1.

on some natural leaves being a paradigmatic example [45].
In the same direction, our observation can be considered
as an example of similar characteristics, namely, “surface
nonuniformity induced nonwetting.” This phenomenon is
dominant for negative values of δ, and in particular for
δ < −1/3 the wetting phase is no longer observed.

VI. CONCLUSIONS

Our numerical study of the two-dimensional Ising
ferromagnet confined between walls, where competitive
(nonuniform) surface fields act, confirms the validity of the

recently proposed scaling theory for critical wetting transitions
[35,36], which rationalizes these transitions in terms of a
bulk critical phenomenon with an order parameter critical
exponent β = 0. By considering a surface field of the form
H1,δH1,H1,δH1, . . ., where the parameter −1 � δ � 1 allows
us to control the nonuniformity of the fields, we exactly work
out the ground state phase diagram, i.e., H1w versus δ. In
this way, apart from the standard wet and nonwet phases,
we also identify a surface antiferromagnetic-like state that
prevails for δ < −1/3 and H1 > 3, so that the system exhibits
a triple point. We also calculate that phase diagram by means
of numerical simulations for higher temperatures, showing that
it preserves its main features. Of course, the standard phase
diagram of wetting phenomena, i.e., plot of H1w versus T , is
also evaluated by taking δ as a parameter. Based on the obtained
numerical results we conjecture that the exact solution due
to Abraham [13] could be generalized for a certain class of
nonuniform surface fields when they can be replaced by an
effective field obtained by means of a suitable coarse graining
over a certain finite range.

We find that the nonuniformity of the surface fields causes
the enhancement of the nonwet phase, i.e., a phenomenon that
we call “surface nonuniformity-induced nonwetting.” We ex-
pect that our results will contribute to the understanding of the
role played by surface heterogeneity in wetting phenomena,
which is a relevant topic from both the basic and applied points
of view that deserves further studies.
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