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Abstract.  We study an opinion dynamics model that explores the competition 
between persuasion and compromise in a population of agents with nearest-
neighbor interactions on a two-dimensional square lattice. Each agent can hold 
either a positive or a negative opinion orientation, and can have two levels of 
intensity—moderate and extremist. When two interacting agents have the same 
orientation they become extremists with persuasion probability p, while if they 
have opposite orientations they become moderate with compromise probability 
q. These updating rules lead to the formation of same-opinion domains with a 
coarsening dynamics that depends on the ratio r  =  p/q. The population initially 
evolves to a centralized state for small r, where domains are composed of 
moderate agents and coarsening is without surface tension, and to a bi-polarized 
state for large r, where domains are formed by extremist agents and coarsening 
is driven by curvature. Consensus in an extreme opinion is finally reached in 
a time that scales with the population size N and r as τ � r−1 lnN  for small 
r and as τ ∼ r2N1.64 for large r. Bi-polarization could be quite stable when 
the system falls into a striped state where agents organize into single-opinion 
horizontal, vertical or diagonal bands. An analysis of the stripe dynamics 
towards consensus allows us to obtain an approximate expression for τ, which 
shows that the exponent 1.64 is a result of the diusion of the stripe interfaces 
combined with their roughness properties.
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1. Introduction

In 1964, Abelson [1] used a mathematical model to pose a puzzle that still intrigues 
theoretical social scientists. He demonstrated that convergence on ‘monoculture’, an 
overall opinion consensus at the population level, is inevitable in a connected popula-
tion of individuals that continuously update their views by moving towards the average 
opinion of their neighbors. However, extensive research on opinion formation shows 
that most empirical opinion patterns resembles those of bi-polarization, rather than 
those of consensus [1]. The phenomenon of bi-polarization is defined as the develop-
ment of two groups with antagonistic opinions that intensify their dierences over 
time, and where positions between the two extremes of the opinion spectrum are 
increasingly less occupied (see [2] for a recent review). The theoretical inevitability of 
consensus, poorly supported by empirical observations, led Abelson to wonder: ‘what 
on earth one must assume in order to generate the bimodal outcome of community 
cleavage studies?’. This is one of the long standing questions in theoretical sociology. 
Along the same lines, Bonacich and Lu [3] recently noted that many models show how 
groups arrive at consensus, but there are not generally accepted models of how groups 
become polarized or how two groups can become more and more dierent and possibly 
hostile. Some models that combine positive and negative social influence [4–6] lead to 
a bimodal opinion distribution that could explain bi-polarization. However, negative 
influence is not fully supported by empirical evidence.

Based on previous works [7], Mäs and Flache have recently proposed in [2, 8] an 
alternative mechanism that combines homophily [9, 10] with ‘persuasion argument 
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theory’ (PAT) [11–13], which gives rise to bi-polarization without the assumption of 
negative influence. The authors have also performed group-discussion experiments to 
test the validity of the theoretical model. The idea is that, due to homophily an individ-
ual tends to interact and talk with a partner that holds the same opinion orientation on 
a given issue, as for instance to be in favor of same-sex marriage. Then, PAT suggests 
that the two interacting individuals are likely to exchange dierent arguments that 
support their positions, and thus they can provide each other with new arguments or 
reasons that reinforce their initial opinions. This could intensify the individuals’ views 
and make them more extreme in their beliefs. Motivated by this work, La Rocca et al 
[14] recently introduced a model that incorporates the mechanisms of homophily and 
persuasion in a simple way, and that is able to generate desired levels of bi-polarization. 
We refer to this model as the ‘M-model’ from now on. The opinion of each agent is 
represented by an integer number k bounded in the interval [−M ,M ] (k �= 0) that 
describes its degree of agreement on a political issue, from totally against (k  =  −M) to 
totally in favor (k  =  M). Each agent is allowed to interact with any other agent in the 
population, which corresponds to a mean-field (MF) setup (all-to-all interactions). Two 
interacting agents with the same orientation (positive or negative) reinforce their opin-
ions in one unit and become more extremists with persuasion probability p, while the 
opinions of two interacting agents with opposite orientations get two units closer with 
compromise probability q. It was shown in [14] that the behavior of the model depends 
on the relative frequency between same-orientation (persuasion) and opposite-orienta-
tion (compromise) interactions, determined by the ratio p/q. When persuasive events 
are more frequent than compromise events, opinions are driven towards extreme values 
k  =  −M and k  =  M, inducing the coexistence of extreme opinions or bi-polarization. In 
the opposite case, when compromise events dominate over persuasion events, opinions 
are grouped around moderate values k  =  −1 and k  =  1, leading to centralization. Also, 
it was observed that stationary states of bi-polarization and centralization are unstable, 
given that a small opinion asymmetry is enough to drive the population to a fast con-
sensus in one of the two extreme opinions. While these results correspond to the MF 
version of the M-model, the consequences of the competition between persuasion and 
compromise have not been explored in spatial or complex interaction topologies.

In this article we study the dynamics of the M-model on a two-dimensional (2D) 
square lattice, for the simplest and non-trivial case M  =  2. Our goal is to investigate the 
eects of the persuasion and compromise mechanisms in a population of agents with 
nearest-neighbor (short range) interactions, in contrast to the all-to-all interactions of 
the MF case. In particular, we aim to explore how the 2D spatial topology aects the 
stability of the polarized and centralized states. We also aim to understand basic prop-
erties of the approach to extremist consensus.

The mechanisms of persuasion and compromise have been implemented in several 
works to model opinion formation in interacting populations. On the one hand, persua-
sion have recently been introduced in some agent-based models [15–18]. For instance, 
persuasion was used in [15, 16] as a degree of a person’s self-conviction where, in addi-
tion to the influence from others, a person takes into account its own opinion when 
making a decision. The authors in [17] introduced a model where each individual can 
have one of two opposite opinions or be undecided, and each of these three choices is 
determined by its persuasion or degree of conviction on the given issue, represented by 
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a real number on a persuasion interval. Another work studied a model where the per-
suasion takes place between opposite-orientation agents [18]. On the other hand, the 
compromise process was initially studied in models with continuous opinions and inter-
action thresholds [19, 20], and the stability of the bimodal opinion distribution was 
tested under the influence of noise [21]. Some multistate voter models (VMs) [22–25] 
have incorporated a rule similar to compromise that uses a reinforcement mechanism 
by which agents switch orientation only after receiving multiple inputs of agents with 
opposite orientation. For instance, Castelló et al [22] studied a three-state language 
model where each agent could either speak one of two possible languages (A or B) or 
be bilingual AB. A monolingual A-agent can become bilingual AB by interacting with 
an agent that speaks the opposite language (B-agent or AB-agent). They investigated 
the ordering process of the system on regular lattices and small world networks, and 
the mean consensus time associated to each topology. A stability analysis of this model 
[26] revealed that the dominance of one language is enhanced by the connectivity of 
the network, and that this eect is even stronger in lattices. More recently, Volovik and 
Redner [23] studied a VM with four states, in which each agent can choose between 
two possible opinions and can additionally have two levels of commitment to the opin-
ion (confident and unsure). A confident voter that interacts with an agent of a dierent 
opinion becomes less committed (unsure), but keeps its opinion. However, an unsure 
voter can change its opinion by interacting with an agent of a dierent opinion. In 
another work [24] Dall’Asta and Galla performed a numerical and analytical study 
of the coarsening properties of general VMs with many intermediate states on lattices 
[25], which have interaction rules similar to that of the works [22, 23] described above. 
They showed that the addition of intermediate states to the two-state VM [27] restores 
an eective surface tension. It is important to mention that all these models lack the 
mechanism of strengthening of opinions induced by the same-orientation interactions 
that characterizes the M-model.

The rest of the paper is organized as follows. In section 2 we describe the M-model 
on a 2D square lattice. In section 3 we analyze the temporal evolution of the system 
and explore the coarsening dynamics in the regimes of bi-polarization and centraliza-
tion. Results on the behavior of the mean consensus times are presented in section 4. 
In section 5 we investigate the dynamics of interfaces between opinion domains in the 
large persuasion limit. This study allows us to derive an approximate expression for 
dependence of the mean consensus time on the system size, which explains the non-
trivial scaling observed in the M-model and in general models with coarsening by sur-
face tension. Finally, in section 6 we summarize and discuss our findings.

2. The M-model on a square lattice

We consider the opinion formation dynamics of the model proposed by La Rocca et al 
[14] on a 2D square lattice of N  =  L2 sites, where L is the linear size of the lattice. Each 
site is occupied by an agent that can interact with its four nearest neighbors, and can 
take one of four possible opinion states k = −2,−1, 1 or 2, which represents its posi-
tion on a political issue, from a negative extreme k  =  −2 (a negative extremist) to a 
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positive extreme k  =  2 (a positive extremist), taking moderate values k = −1, 1 (a mod-
erate). The sign of k and its absolute value |k| indicate the opinion orientation and its 
intensity, respectively. In a single time step of the dynamics of length ∆t = 2/N , two 
nearest-neighbor agents i and j with respective states ki and kj are picked at random 
to interact. Then, their states are updated according to their opinion orientations (see 
figure 1):

 •	 Persuasion (figures 1(a) and (b)). If they have the same orientation (ki, kj > 0 
or ki, kj < 0), then a persuasion event happens with probability p. An agent 
increases its intensity by one if it is a moderate (|k| = 1), while it keeps its opinion 
if it is an extremist (|k| = 2).

 •	 Compromise (figures 1(c) and (d)). If they have opposite orientations (ki  >  0 and 
kj  <  0 or ki  <  0 and kj  >  0), then a compromise event happens with probability 
q. If both agents are extremists (|ki| = |kj| = 2) they decrease their intensities by 
one. If one is an extremist and the other is a moderate |k| = 1, then the extremist 
decreases its intensity by one while the moderate switches orientation. If both 
agents are moderates one switches orientation at random.

We can think of persuasion and compromise as two competing mechanisms that shape 
the distribution of opinions in the population. While persuasive interactions make indi-
viduals adopt extreme opinions 2 and  −2 and lead to opinion bi-polarization, compro-
mise contacts tend to moderate opinions, promoting a centralized opinion distribution 
around moderate values 1 and  −1.

3. Coarsening dynamics

We started the analysis of the model by studying the time evolution of the number of 
agents in each state, which describes the system at the macroscopic level. For that, 
we run Monte Carlo simulations of the dynamics described in section 2 and measured 
the quantities xk(t) (k = −2,−1, 1, 2), defined as the fraction of agents in state k at 
time t, which are normalized at all times (

∑
k xk(t) = 1 for all t � 0). Initially, each 

agent adopts one of the four possible states with equal probability 1/4. The qualita-
tive behavior of the system turns out to depend on the relative frequency between 
persuasion and compromise events, which is controlled by the ratio r ≡ p/q between 
persuasion and compromise probabilities. Therefore, for convenience we set p  +  q  =  1.0 
(p = r/(1 + r) and q = 1/(1 + r)) and analyzed the system as r is varied. In figure 2 we 
show the evolution of the densities xk in single realizations of the dynamics for a system 
of size N  =  104, and two dierent values of r.

In the realization with a very small r  =  10−3 (figure 2(a)) compromise interactions 
are much more frequent than persuasive interactions (q � p), driving most agents’ 
opinions towards moderate values during an initial stage (t � 500) in which x1 and 
x−1 are much larger than x2 and x−2. This corresponds to a centralization of opinions. 
Then, at time t0  =  2150 negative states  −1 and  −2 disappear and the density x1 decays 
exponentially fast to zero, while x2 approaches exponentially fast to 1. Once x2 equals 1 
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the system can no longer evolve (absorbing state), which, in this case, corresponds to a 
positive extremist opinion consensus. In a general case, the ultimate state of the system 
is always consensus in either extremist state, i e. all agents with opinion 2 (x2  =  1) or 
all with opinion  −2 (x−2  =  1). An insight into this exponential approach to consensus 
can be obtained within an MF approximation, which assumes that every agent inter-
acts with every other agent. This corresponds to the MF version of the M-model for 
small r studied in [14]. After time t0 only positive states 1 and 2 remain in the system 
(x1(t) + x2(t) = 1), and thus the dynamics is only driven by persuasive events that 
slowly drive all agents to state 2 with a very small probability p = r/(1 + r) � r in the 
r � 1 limit. Then, the mean change of x1 in a single time step of length ∆t = 2/N  is 
given by

dx1

dt
=

∆x1

∆t
= −

p x2
1

2
N

2/N
−

p 2 x1 x2
1
N

2/N
= −p x1 for t � t0. (1)

The first term of equation (1) describes the interaction between two state-1 agents that 
make the transition to state 2 with probability p, while the second term accounts for 
the transition to state 2 of a state-1 agent that interacts with a state-2 agent. The solu-
tion of equation (1) is

x1(t) = x1(t0) e
−r(t−t0) for t � t0, (2)

where we have used r as an approximate value for p. Expression equation (2) for 
x1 is plotted in figure 2(a) (dashed line) using r  =  10−3 and the initial condition 

Figure 1. The two update events of the M-model on a square lattice.  
(a), (b) Persuasion. In panel (a), a positive moderate agent i that has opinion 
ki  =  −1 becomes extremist (ki = −1 → ki = −2) with persuasion probability p by 
interacting with a nearest-neighbor agent j that has extreme opinion kj  =  −2. 
Panel (b) shows all possible persuasion events in which two neighboring agents 
with the same opinion orientation reinforce their opinions and become extremists. 
(c), (d) Compromise. In panel (c), two interacting neighbors with opposite and 
extreme opinions become moderate with probability q (ki = 2 → ki = 1 and 
kj = −2 → kj = −1). Panel (d) shows all possible compromise events in which two 
neighbors with opposite orientations become moderate.

https://doi.org/10.1088/1742-5468/aab1b4
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x1(t0 = 2150) � 0.34 extracted from the curve of x1(t). The good agreement with simu-
lations shows that the dynamics on the lattice for small r is well described by the MF 
theory.

In the realizations with r  =  1/3 (figures 2(b) and (c)) persuasive interactions, which 
are more frequent than in the previous case but still less often than compromise inter-
actions, seem enough to make most agents adopt extreme states 2 and  −2, and thus x2 
and x−2 are larger than x1 and x−1 for all times. This corresponds to a polarized state 
where the population of agents is divided in two groups of similar size that hold extreme 
and opposite opinions. We also observe that in the realization of panel (b) the system 
reaches consensus in extremist state 2 at time t � 2400, while in the realization of panel 
(c) an extremist consensus in state  −2 is achieved in a much longer time t � 6× 105. 
These examples correspond to two dierent types of realizations observed in simula-
tions. In realizations of type 1 (panel (b)) the initial symmetry between positive and 
negative states is broken at early times and the system is quickly driven towards con-
sensus, where the densities x1 and x−1 decay to zero and either x2 or x−2 approaches 
1. In realizations of type 2 (panel (c)) the system falls in a long-lived metastable state 
where x1 and x−1 fluctuate around a stationary value for a very long time until they 
drop to zero together with x2. This metastable state lasts for a much longer time than 
the one observed in the MF version of the model [14]. This means that the coexistence 
of opinions could be very stable when interactions are restricted to nearest-neighbors 
on a lattice, increasing the stability of the opinion bi-polarization.

In order to investigate the origin of the dierent behaviors described above we 
study the coarsening properties of the system by looking at the density of interfaces 
ρ, defined as the density of bonds between neighbors in dierent states [22, 24]. In 
figure 3 we show the time evolution of ρ in single realizations for r  =  10−4 (panel (a)) 
and r  =  1/3 (panel (b)), together with snapshots of the lattice at dierent times and 
for each type of realization. We observe the formation of same-opinion domains with 
dierent characteristics. For r  =  10−4 (figure 3(a)), the large frequency of compromise 
events as compared to persuasive events drives almost all agents towards moderate 
states, leading to the early formation of large domains composed by agents with states 

Figure 2. Time evolution of the densities xk of agents in dierent opinion states k in 
single realizations of the dynamics, for a system of N  =  104 agents and two values 
of r  =  p/q. (a) xk(t) for r  =  10−3. The dashed line is the expression 0.34 e−r(t−2150) 
from equation (2). Panels (b) and (c) show xk(t) for r  =  1/3 in realizations of type 
1 and type 2, respectively.

https://doi.org/10.1088/1742-5468/aab1b4
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1 or  −1, with a few sparse extremists (bottom-left snapshot). During this stage, the 
dynamics at the interface between 1 and  −1 domains follows that of the VM. This 
explains the noisy shape of the interface that characterizes the coarsening without sur-
face tension of the VM [28]. The domains slowly grow in size until almost all agents—
except for a few extremists—adopt the same moderate state (state 1 in the snapshot), 
and ρ reaches a minimum. This corresponds to the beginning of the persuasive stage 
discussed previously, during which moderate agents become extremists. The final 
relaxation to consensus follows the MF exponential decay ρ � x1(1− x1) ∼ e−r t from 
equation (2) (dashed lines). We note that this dynamics is very dierent from that 
observed in related multistate voter models [22–24], where agents with intermediate 
(moderate) states place themselves at the boundaries between extreme-state domains 
and form rather smooth interfaces. This last phenomenon happens for r  =  1/3 (figure 
3(b)), where moderate states 1 and  −1 are located at the interface between 2 and  −2 
domains. This is checked in figure 3(c) where we show the time evolution of the aver-
age value of ρ and the average density of moderate (intermediate) states x1 + x−1. We 
see that both 〈ρ〉 and 〈x1 + x−1〉 decay as t−0.46, indicating that the interface dynamics 
is correlated with that of the moderate states. The behavior 〈ρ〉 ∼ t−0.46 is consistent 
with the algebraic coarsening found in VMs with intermediate states [22, 24]. As was 
shown in [24], the addition of intermediate states to the two-state VM changes the 
phase-ordering properties of the system, from a coarsening driven by interfacial noise 
observed in the VM to a coarsening driven by surface tension in models with one or 
many intermediate states. Also, the coarsening exponent 0.46 is compatible with the 
exponent 0.5 associated with the domain growth driven by curvature observed in 
kinetic Ising models [29, 30].

Figure 3. Time evolution of the interface density ρ in single realizations, for a 
system of size N  =  104 and r  =  10−4 (a) and r  =  1/3 (b). The snapshots of the lattice 
show the spatial pattern of opinions at dierent times and for dierent realization 
types. Panel (a): the bottom-left snapshot corresponds to the centralization of 
opinions around moderate values k  =  −1 and k  =  1, while in the top-right snapshot 
all opinions are positive and driven by persuasion. Dashed lines have slope r  =  10−4. 
Panel (b): the bottom-left snapshot corresponds to realizations that reach a quick 
consensus by domain coarsening (type 1), while the bottom-right and top-right 
snapshots represent realizations of type 2, where the system gets trapped in a 
long-lasting stripe state before reaching consensus. Panel (c): average interface 
density 〈ρ〉 (circles) and average density of moderate states (squares) versus time 
on a system of size N  =  3002. The average was done over 104 realizations. Dashed 
lines have slope  −0.46.
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Another observation from figure 3(b) is related to the dierent types of realiza-
tions, whose interface dynamics explains the temporal behavior of the moderate den-
sities x1 and x−1 observed in figures 2(b) and (c). The initial evolution of ρ in all 
realizations follows the power-law decay described above, but then they split in two 
main groups. The group of short-lived realizations corresponds to figure 2(b), in which 
small domains shrink and disappear until one large extremist domain covers the entire 
lattice (bottom-left snapshot). The group of realizations that fall into a long-lived 
metastable state, which consists of either horizontal stripes or vertical stripes (bottom-
right snapshot) or diagonal stripes (top-right snapshot), corresponds to figure 2(c). In 
these dynamical metastable states, the interface density ρ fluctuates around a station-
ary value until a finite-size fluctuation takes the system to one of the absorbing states 
(ρ = 0). The long plateau observed in ρ shows that the polarized state is much more 
stable in lattices than in MF [14]. As we shall study in more detail in section 5, this 
behavior is due to the slow diusion of the interfaces between these stripes, which 
eventually meet and annihilate, and lead the system to consensus. Diagonal stripes are 
characterized by a stationary value of ρ that is approximately 

√
2 times larger than 

the corresponding value for horizontal or vertical stripes. It is also worth mentioning 
that, even though diagonal stripes were not reported in related models [22, 23, 31], 
probably because they are very unlikely to be formed (around 3 percent of the time in 
our simulations), we expect to see diagonal stripes in all these models with Ising-like 
coarsening [32].

4. Consensus times

As we showed in section 3, the M-model has two absorbing states corresponding to the 
two extremist consensus. A quantity of interest in these models is the mean time to 
reach opinion consensus τ. In figure 4(a) we present results from numerical simulations 
of τ as a function of r and three dierent lattice sizes N. Each data point corresponds 
to an average over 104 independent realizations with uniform initial condition. We see 
that τ has a non-monotonic shape with r, taking very large values for small and large 
r. We also observe that τ increases with N and that the increase is much faster for 
large r, which suggests two dierent scalings at both sides of the minimum. Indeed, 
panels (b) and (c) of figure 4 show the collapse of the data at small and large values 
of r when curves are rescaled by lnN  and N1.64, respectively. The logarithmic scaling 
of τ with N in the small r limit can be obtained from the behavior of the density x1 
given by equation (2). We first note that the exponential decay of x1 with time holds 
for any r � 1 and N (not shown), and that the time t0(r,N) at which the persuasive 
stage begins varies with both r and N. To derive an expression for τ we make two 
assumptions. First, we expect that the distribution of states at t0(r,N) peaks at k  =  1, 
i.e. x1(t0) � 1 and x2(t0) � 0. Indeed, we have checked that x1(t0) approaches 1.0 as r 
decreases (x1(t0) � 0.34 for r  =  10−3 while x1(t0) � 0.7 for r  =  10−4). Second, we assume 
that consensus is reached when there is less than one agent in state 1, which leads to 
the condition x1  =  1/N at τ. Then, solving for τ from the relation 1/N � e−r[t−t0(r,N)] we 
arrive at the approximation τ � t0(r,N) + r−1 lnN . The second term associated with 
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the duration of the persuasive stage dominates in the small r limit and, therefore, τ can 
be approximated as

τ � lnN

r
for r � 1. (3)

We observe in figure 4(b) that the analytical expression equation (3) represented by a 
solid line has a good agreement with numerical data, showing the 1/r divergence of τ 
in the r → 0 limit.

The power-law behavior τ ∼ N1.64 used to collapse the data for large r (see figure 4(c)) 
was obtained by running simulations for r  =  1/3 and various system sizes. Results are 
shown in figure 6 with empty circles, where we also plot a solid line with slope 1.64, 
which serves as a guide to the eye, corresponding to the best fit of the data. The data 
points of figure 4(c) collapse into a single curve that seems to approach the quadratic 
behavior r2 as r becomes large (dashed line), which surprisingly agrees with that pre-
dicted by the MF expression τMF ∼ r2 lnN  derived in [14]. However, this logarithmic 
increase in τMF with N in MF is much slower than the non-linear increase τ ∼ N1.64 
obtained in lattices. As consequence, the consensus in MF is much faster than in lattices.

As we explain below, long consensus times in lattices for large r are a consequence 
of the long-lived metastable states that characterize the realizations of type 2 discussed 
in section 3, which lead to the non-trivial scaling exponent 1.64. Indeed, the value 
of τ obtained from simulations is the combination of two main types of realizations 
that have very dierent time scales. That is, realizations of type 1 where consensus is 
reached by domain coarsening, and realizations of type 2 in which consensus is reached 
by the diusion of the two interfaces that define the stripe. To distinguish between 
type-1 and type-2 realizations we follow the method developed in [22, 31] and study 
the distribution of consensus times P (t), from where the mean consensus time is calcu-
lated as τ =

∫∞
0

t P (t) dt. This is equivalent to studying the survival probability S(t) of 

Figure 4. (a) Mean consensus time τ as a function of r on a double logarithmic 
scale for lattice sizes N  =  100 (circles), N  =  400 (squares) and N  =  900 (triangles). 
Panels (b) and (c) show the data collapse for small and large r, respectively. The 
solid line in (b) is the analytical approximation τ � r−1 lnN  from equation (3), 
while the dashed line in (c) has slope 2.
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single runs defined as the probability that a realization did not reach consensus up to 

time t, which is related to P (t) by the expression S(t) = 1−
∫ t

0
P (t) dt. The advantage 

of calculating S instead of P is that S has fewer fluctuations associated with the finite 
number of realizations. Figure 5(a) shows S versus time for r  =  1/3 and three system 
sizes. In agreement with results in related models [22, 31], curves are characterized by 
two time scales—a short time scale consistent with a fast decay to consensus, and a 
much longer time scale associated with an asymptotic exponential decay (the tail). The 
initial fast decay of S corresponds to the consensus induced by coarsening observed in 
type-1 realizations, while the exponential tail describes the consensus times of realiza-
tions that get trapped in a stripe metastable state (type-2 realizations). Then, the time 
t* at which the exponential decay begins was taken as a reference to assign a type to a 
given realization. Realizations that reached consensus before (after) t* were considered 
to be of type 1 (type 2). Using this criteria we estimated the time to reach consensus 
in each type of realization. In figure 6 we show that the mean consensus time scales as 
τ1 ∼ N  in type-1 realizations, while the scaling τ2 ∼ N1.71 was found for type-2 realiza-
tions. The data collapse in panels (b) and (c) of figure 5 shows that τ1 can be considered 
as the characteristic time scale associated with the fast initial decay of S, and that τ2 
is proportional to the time constant of the exponential decay. We have also calculated 
the probability that a realization reaches the metastable state as the fraction of type-2 
realizations over 103 independent runs, which gave the approximate mean value 0.34 in 
the size range 400 � N � 10 000, with a very slow decrease as N increases. The indirect 
estimation of the mean consensus time as the combination of the two realization types

τ � 0.66 τ1 + 0.34 τ2 (4)
is plotted in the inset of figure 6 (solid diamonds), where we observe a good agree-
ment with the value of τ calculated over all realizations (empty circles). Therefore, the 
approximate scaling τ ∼ N1.64 observed in simulations can be explained as the result 

Figure 5. (a) Survival probability S versus time on a linear-log scale, for r  =  1/3 and 
system sizes N  =  3600, 6400 and 10 000 (from bottom to top). The initial fast decay 
of S describes the domain coarsening, which has a mean lifetime proportional to N 
(panel (b)). The long exponential tail of S decays with a time constant proportional 
to N1.71, associated to the mean lifetime of type-2 realizations (panel (c)).
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of the linear combination of the power-law behaviors τ1 ∼ N  and τ2 ∼ N1.71. Since τ2 
becomes much larger than τ1 as N increases –by a factor of 10 (100) for N  =  400 (104), 
we expect that the eective exponent 1.64 of τ will approach the exponent of τ2 as N 
increases. In the next section we provide an explanation of the non-trivial exponent 
1.71 by studying the dynamics of stripes in detail.

5. The dynamics of stripes towards consensus

In section 4 we showed that the mean consensus time for r  =  1/3 scales as τ ∼ N1.64 
with the system size N. As discussed previously, this scaling is mainly due to the exis-
tence of metastable states that survive for very long times, in which the system exhib-
its a stripe-like pattern. It is important to mention that very similar scaling laws for 
the consensus time with system size, τ ∼ Nν, were already reported in the literature 
in related works in lattices [22, 23, 31]. For instance, in the majority rule (MR) model 
introduced in [31] the authors found ν = 1.7, while in the bilinguals model studied in 
[22] an exponent ν = 1.8 was obtained, and also a similar exponent was observed in 
the confident VM investigated in [23], whose exact value was not reported. What all 
these models have in common with the M-model on a lattice is the existence of stripe 
states with a probability around 1/3 when the system starts from random initial con-
ditions, and an ultimate consensus state that is absorbing. Despite that these models 
dier in the number of opinion states (2 states in the MR model, 3 states in the bilin-
gual model, 4 states in the confident VM, and 4 or more states in the M-model), their 
microscopic rules induce a coarsening dynamics that is driven by surface tension, which 
can lead to the formation of horizontal, vertical or diagonal stripes in square lattices, 
as is known to happen in Ising-like systems [32]. Therefore, it seems that the dynamics 
of stripes is the fundamental mechanism that determines the consensus times in lattice 

Figure 6. Mean consensus times τ, τ1 and τ2 versus system size N on a log-log scale 
for r  =  1/3. τ is the average over all 104 realizations, while τ1 and τ2 correspond 
to the average values over realizations of type 1 and type 2, respectively. Straight 
lines have slopes 1.71, 1.64 and 1.0 (from top to bottom). Inset: the estimation of 
the mean consensus time as the linear combination 0.66 τ1 + 0.34 τ2 (diamonds) of 
both realization types is compared to τ (circles).
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models with coarsening by surface tension and frozen consensus states, leading to the 
scaling τ ∼ Nν (with 1.64 � ν � 1.8) reported in the works mentioned above. As far as 
we know, there is not yet a satisfying explanation for the behavior of τ with N. Some 
attempts to obtain the exponent ν were developed in [31] and [23], which arrived to 
the approximate value ν = 1.5, which is far from the exponent obtained from numerical 
simulations of the respective models, ν = 1.7 and ν = 1.8.

In this section we propose an approach that gives an insight into the dynamics of 
the system towards consensus and provides a value of ν in good agreement with simu-
lations. Equation (4) shows that the mean consensus time has a linear contribution 
(τ1 ∼ N ) that corresponds to short-lived realizations (type 1) and a non-linear term 
(τ2 ∼ N1.71) corresponding to long-lived realizations (type 2). Given that τ1 is much 
smaller than τ2 for the explored range of N (see figure 6), we can assume that τ is 
mainly determined by the long-lasting realizations that fall into a stripe state (type-2 
realizations). The evolution of a typical type-2 realization consists of two dierent 
stages, as we can see from the evolution of ρ in figure 3(b). The initial stage is charac-
terized by the dynamics of domain coarsening where ρ exhibits a power-law decay up 
to a time t � 104. Then, the system falls into a striped metastable state where ρ stays 
nearly constant until consensus is reached at time t � 2× 106. Therefore, we see that 
the consensus time is greatly controlled by the duration of this stripe stage, given that 
it is much longer than the initial coarsening stage.

To study the dynamics of stripes we prepared the system in an initial condition that 
consisted of two vertical stripes of width L/2 each, as we see in figure 7(a)(I). Figure 7(a) 
shows a typical evolution of the stripes in a single realization, where we combined both 

Figure 7. (a) Snapshots of a 100× 100 square lattice at four dierent times, 
showing the evolution of same-opinion-orientation stripes in a single realization 
(negative opinions  −1 and  −2 in blue and positive opinions 1 and 2 in red). Vertical 
straight lines denote the position of the stripe interfaces. (b) We compare the 
mean consensus time of type-2 (stripe) realizations starting from a random initial 
condition τ2 (left triangles), with the mean consensus time τs (up triangles) and the 
mean interface breaking time τb (squares) starting from the striped configuration 
showed in snapshot I of panel (a). We also compare the mean consensus time τ 
(circles) with the estimation 0.34 τb (diamonds). The solid line is the analytical 
approximation from equation (11).
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opinions of a given orientation into a single color to make the interfaces look clearer 
to the eye (−1 and  −2 in blue, 1 and 2 in red). The interfaces that separate the stripes 
freely diuse in the direction perpendicular to the interfaces (figure 7(a)(II)) until they 
meet and annihilate each other, cutting one stripe in two (figure 7(a)(III)). Then, during 
the last stage, the resulting domain quickly shrinks (figure 7(a)(IV)) and disappears, and 
the system reaches consensus. As this last stage is much shorter than the diusive stage, 
the mean consensus time starting from a stripe initial state, called τs, can be approxi-
mated as the mean time required for the two interfaces to meet and break, which we 
call the ‘mean breaking time’ τb. In figure 7(b) we verify that τb (squares) is indeed very 
similar to τs (up triangles). We also see that τb is similar to the mean consensus time 
τ2 of type-2 realizations starting from a random initial condition (left triangles), as we 
suggested previously. Then, using equation (4) we find that τ can be approximated as

τ � 0.34 τb, (5)
represented by diamonds in figure 7(b). Based on this result, we derive in section 5.1 an 
analytical approximation for the dependence of τb with L using the diusion properties 
of the interfaces, and in section 5.2 we improve this approximation by incorporating 
the roughness properties of the interfaces.

5.1. Estimation of τb considering two diusive point-like particles

To study the dynamics of the interfaces we start by defining the position xi(t) of inter-
face i (i = 1, 2) at a given time t as the mean value of the interface positions xi,y(t) at 
height y (see figure 8(a))

Figure 8. Illustration of the mapping of the stripe interface dynamics to the problem 
of two diusive point-like particles in an interval [1,L] with periodic boundary 
conditions. (a) Vertical lines indicate the positions x1 and x1 of the interfaces, 
denoted by circles (particles) in panel (b). (b) The system is replicated in the entire 
1D space, where the particles diuse freely with no boundary constraints. (c) The 
equivalent particle with position x = x2 − x1 diuses in the interval [0,L] with 
absorbing boundaries at the ends. The diusion coecient 2DL is twice that of the 
particles in panel (a).
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xi(t) =
1

L

L∑
y=1

xi,y(t). (6)

Then, we can interpret x1 and x2 as the respective positions of two independent point-
like particles that diuse in an interval [1,L] with periodic boundary conditions, which 
they annihilate when they meet. This equivalence was proposed by Chen and Redner 
in the MR model [31], and also used later by Volovik and Redner in the confident VM 
[23]. We checked that particle 1 (and also particle 2) moves diusively by measuring 
the time evolution of the variance of x1, σ

2(t) = 〈x2
1〉(t)− 〈x1〉2(t), where averages were 

done over 104 independent realizations. We found that σ2(t) increases linearly with 
time for various linear sizes L and that the diusion coecient DL, calculated from the 
relation σ2(t) = 2DL t of a diusive process, decays as 1/L (plots not shown). Indeed, 
we observed that all curves collapse when the y-axis is rescaled by L, obtaining the 
approximate relation

DL � d

L
, (7)

with d  =  0.04. An estimation of this scaling relation was developed in [23, 31] by assum-
ing that each point at the interface xi,y behaves as an independent random walker [33, 
34] that jumps one site to the right or left with equal probability. Then, 

√
DL should be 

proportional to the mean displacement of the interface’s position x1 in a time interval 
∆t = 1, which scales with the number of walkers L as 

√
L/L = L−1/2, thus DL ∼ 1/L.

We can now approximate the mean interface breaking time τb as the mean time the 
particles take to meet in the [1,L] interval, when their initial positions are a distance 
L/2 apart. Given the periodic character of the interval’s boundaries, it proves useful to 
consider an equivalent system that is obtained by replicating the interval and particles 

Figure 9. Mean interface breaking time versus lattice side L on a log-log scale 
starting from the stripe initial condition of figure 7(a)(I). We compare simulation 
results (τb, filled circles) with the following approximate expressions: τ Ib (dashed 
line) from equation (8), τ IIb  (empty squares) from equation (9) and τ IIIb  (solid line) 
from equation (10). Inset: circles correspond to the local slope of the τb versus L 
curve on a log-log scale calculated from the data points of the main figure, while 
the solid line is the analytic approximation equation (14).
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in the one-dimensional (1D) space (see figure 8(b)), where particles can freely diuse 
in the entire 1D space without boundary constraints. In this replicated system, par-
ticle 1 moves always between particle 2-left and and its left image particle located at 
(x2 − L � x1 � x2) until it annihilates with one of these two particles (x1 = x2 − L or 
x1 = x2). Thus, the dierence x ≡ x2 − x1 can be seen as the position of an equivalent 
particle that diuses in the interval [0,L] with absorbing boundaries at x  =  0 and x  =  L 
(see figure 8(c)). Then, the problem is reduced to the escape of a particle with diusion 
2DL (twice of that of particles 1 and 2) from an interval [0,L] starting from a position 
x  =  L/2, whose exact expression for the mean exit time is known to be L2/16DL (see for 
instance [35]). After replacing the expression equation (7) for DL we obtain

τ Ib =
L3

16 d
, (8)

where the superindex I in τ Ib is used to indicate a first-order approximation for 
τb (see next subsection for higher-order approximations). In figure 9 we compare 
the expression equation (8) for τ Ib (dashed line) with the value of τb obtained from 
numerical simulations (circles). Even though we see that τ Ib is a reasonable approx-
imation of τb, it overestimates τb for all simulated values of L. However, we shall 
show later that τ Ib asymptotically approaches τb in the L → ∞ limit. This observa-
tion has already been reported in [23, 31] together with the approximate scaling 
τ ∼ L3 = N3/2.

5.2. Estimation of τb considering two diusive rod-like particles

The meeting time τ Ib can be considered as a first approximation for τb, where it is assumed 
that stripes’ interfaces break when their positions become exactly the same (x1 = x2). 
However, this approximation neglects the roughness of each interface, which plays an 
important role in the breaking dynamics, as we shall see. A more refined approximation 
that takes into account the width of the interfaces considers that, in a given realization, 
the interfaces break when they are located at some distance ∆xb = |xb

2 − xb
1| > 0 apart 

(see figure 10(a)), where xb
1 and xb

2 are the respective interfaces’ positions at the break-
ing time. The idea behind this argument is that the breaking happens when the inter-
faces touch for the first time at some point y that depends on the specific roughness of 
the interfaces at that moment, as we see in figure 10(a). Therefore, each interface can 
be better described by a diusive rod-like particle of length ∆xb that represents the 
interfaces’ width at the breaking moment (see figure 10(b)). These two rods diuse until 
they collide and annihilate in one of the two possible ways shown in panels (b) and 
(c) of figure 10. In the replicated system, the center of rod 1 moves between positions 
x1 = x2 −∆xb (panel (b)) and x1 = x2 − L+∆xb (panel (c)), and thus the dierence 
x = x2 − x1 between the rods’ centers describes the position of a point-like particle that 
moves in the interval [∆xb,L−∆xb] of reduced length L− 2∆xb (panels (d) and (e)).

If we take the average value of ∆xb over many realizations of the dynamics, 〈∆xb〉, 
as the eective distance between the interfaces when they touch for the first time, 
the problem can be reduced to the escape of a particle from an interval of ‘eective 

length’ L = L− 2〈∆xb〉. Then, the mean escape time is L
2
/16DL or, replacing the 

above expression for L and equation (7) for DL, is
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τ IIb =

(
1− 2 〈∆xb〉L−1

)2
L3

16 d
. (9)

Equation (9) represents a second approximation that incorporates the average dis-
tance between interfaces when they meet. To test equation (9) we ran simulations 
and measured the average interface distance 〈∆xb〉 for several values of L (squares in 
figure 11(a)). The interface breaking moment of a given realization was taken as the time 
for which all sites of at least one lattice row have either state 2 or  −2 for the first time. 
Empty squares in figure 9 represent the estimation τ IIb  of τb obtained by plugging the 
numer ical value of 〈∆xb〉 into equation (9), which is in good agreement with simulation 
results (filled circles) for L � 15. This shows that the roughness of the interfaces plays a 
very important role in the breaking dynamics, leading to large deviations of τb from the 
L3 scaling law (dashed line in figure 9) as L decreases. These deviations, which become 

very visible for low L, are captured rather well by the prefactor 
(
1− 2 〈∆xb〉/L

)
2 of τ IIb  

in equation (9). We see in figure 11(a) that 〈∆xb〉 grows with L as L0.525 (solid line), and 
thus the ratio 〈∆xb〉/L vanishes as L increases, leading to the expression equation (8) 
for τ Ib and confirming the hypothesis that equation (8) is correct in the L → ∞ limit. 
As we show in appendix A, the exponent 0.525 is related to the roughness exponent 
α � 0.5 associated with the saturation value of the interfaces’ width. An interesting 
insight from equation (9) is that a pure power law τ IIb ∼ L2ν = N ν is never obtained for 

a finite value of L. Instead, the correction factor 
(
1− 2 〈∆xb〉/L

)
2 introduces a down-

ward curvature in the τ IIb  versus L curve on a double logarithmic scale, which decreases 
with L and becomes very small for L � 40 (see figure 9). As a result, the data can be 
well fitted by a power law function of N with an eective exponent ν > 1.5, as those 
shown in figure 6 for τ and τ2.

Figure 10. (a) The stripe interfaces break when they are a distance ∆xb apart 
and they touch at a point y for the first time. (b), (c) The interfaces are mapped 
to diusive rod-like particles in the replicated 1D space that annihilate each 
other when they collide. (d), (e) The equivalent point-like particle with position 
x = x2 − x1 diuses in the interval [∆xb,L−∆xb] with absorbing boundaries at 
the ends.
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By plugging the power-law approximation 〈∆xb〉 � L0.525 into equation (9) we obtain 
the following approximate expression for the mean breaking time:

τ IIIb =
(1− 2L−0.475)

2
L3

16 d
. (10)

As we can see in figure 9, equation (10) represented by a solid line fits the numerical 
data (filled circles) very well for L � 15. Finally, using equation (5) we arrive at the 
approximate expression

τ � 0.34 (1− 2N−0.2375)
2
N1.5

16 d
 (11)

for the mean consensus time. Equation (11) is plotted by a solid line in figure 7(b). 
We see that, even though there are some discrepancies with numerical results (circles), 
equation (11) captures rather well the behavior of τ with the system size for almost the 
entire range of N values.

We can now exploit the approximate functional form of τb given by equation (10) 
to analyze the scaling of τb for a wide range of L. The factor L−0.475 introduces a down-
ward curvature in τ IIIb —when plotted in log-log scale—that vanishes as L increases. 
Therefore, we can approximate the shape of τ IIIb  around a given value L0 as a power 
law of L (see appendix B for calculation details)

τ IIIb (L,L0) � A(L0)L
α(L0), (12)

where

A(L0) =
1

16 d

(
1− 2L−0.475

0

)2
L

1.9

(2−L0.475
0 )

0 and (13)

α(L0) = 3 +
1.9

(L0.475
0 − 2)

. (14)

Figure 11. (a) Average distance between interfaces when they break 〈∆xb〉 (squares) 
and average maximum interface deviation 2〈dmax〉 (diamonds) as a function of L. 
The solid line is the best power-law fit L0.525 to 〈∆xb〉. (b) Growth of the average 
interface width 〈W 〉 with time. The width and the time were rescaled by L0.5 and 
L2, respectively, to obtain a data collapse for the linear sizes indicated in the 
legend. The dashed line indicates the initial power law growth t0.25.
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We can check that in the thermodynamic limit L0 → ∞ the exponent α(L0) approaches 
the value 3.0 as previously suggested, while A(L0) approaches 1/(16 d), recovering 
the approximation τ Ib � L3/(16 d) from equation (8). The exponent α(L0) from equa-
tion (14), which measures the slope of the log[τ IIIb (L)] versus log(L) curve at some point 
log(L0), is plotted by a solid line in the inset of figure 9 and compared to the numerical 
value (filled circles) obtained by calculating the local slope of the τb data points from 
the main figure. We can see that the slope decreases very slowly with L0, and thus for 
the values of L measured in simulations α stays nearly constant and can be approxi-
mated by a clean power law. Then, we can use equation (14) to approximate the mean 
breaking time as τb ∼ Lα = Nα/2 in the range of system sizes used in simulations, and 
compare α with the numerical exponents obtained from figure 6 by fitting the numer-
ical data with a power law. For instance, the slope at N  =  2000 (L � 45) from equa-
tion (14) is α/2 � 1.73, which agrees quite well with the numerical slope 1.71 for τ2 in 
the range 4× 102 � N � 104. The theoretical value α/2 is also a fair approximation of 
the numerical exponent 1.64 obtained from the τ versus N data (only 5.5% o), even 
though we expect that this approximation improves for larger values of N. Finally, we 
also note that it becomes very dicult to reach a slope close to 1.5 in simulations of the 
model, because of the very slow decrease in α with L0. For instance, to achieve a slope 
smaller than 1.545 (less than 3% dierence with 1.5) equation (14) predicts that we 
would need to run simulations in systems with linear dimension L � 750, whose con-
sensus times are of order τ ∼ 109 (equation (10)), which is almost impossible to achieve 
in reasonable computation times.

6. Summary and conclusions

We studied an agent-based model on a 2D lattice that explores the competition 
between persuasion and compromise in opinion formation. We found that nearest-
neighbor interactions between agents induce a very rich domain coarsening dynamics, 
which plays a fundamental role in the evolution of the system and the approach to 
consensus. The properties of the coarsening strongly depend on the relative frequency 
between persuasion and compromise events, measured by the ratio r  =  p/q between 
persuasion and compromise interaction probabilities. When the compromise process 
dominates over the persuasion process the dynamics is akin to that of the VM during 
an initial short transient, in which domains are formed by moderate agents and the 
coarsening is without surface tension. This is associated with a centralized opinion state 
where most agents adopt moderate opinion values. Domain growth eventually leads to 
a state where all agents have the same opinion orientation (positive or negative). Then, 
moderate agents start to become extremists and the system displays a slow exponential 
approach to consensus in an extreme opinion that is achieved in a time that scales as 
r−1 lnN  with the population size N. In the opposite case scenario where persuasion 
dominates over compromise, the coarsening is driven by surface tension and moderate 
agents are located at the interface between domains formed by extremists. This corre-
sponds to a polarized opinion state in which the population is divided into two groups 
that adopt extreme and opposite opinions (positive and negative). The final approach 
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to consensus can be very long if the system falls into a striped metastable configuration, 
where the two interfaces that define a stripe diuse until they meet and annihilate. 
The mean consensus time of this type of realization scales as N1.71. When the average 
is done over all realizations, which include short-lived realizations with lifetimes that 
scale as N, the scaling of the overall mean consensus time is τ ∼ Nν, with ν = 1.64.

An insight into the approach towards consensus of striped configurations was 
obtained by mapping the dynamics of stripes into the problem of two rods that freely 
diuse in 1D and annihilate when they collide for the first time. This method takes into 
account the width of stripe interfaces, which becomes relevant when interfaces meet 
and break. An analytical estimation of the mean collision time using known results on 
first-passage problems allowed us to obtain the approximate expression equation (10) 
for the mean lifetime of stripes, which is in good agreement with results from simula-
tions of the model. Also, equation (11) for the mean consensus time shows that the 
scaling τ ∼ Nν is an approximation obtained by fitting with a power-law the numer-
ical data over a finite range of N, given that the eective exponent ν around a given N 
decreases and approaches the value 1.5 in the thermodynamic limit (N → ∞). These 
results show that analytical deviations from the scaling exponent ν = 1.5, obtained by 
assuming that interfaces behave as point-like particles, are due to the roughness of the 
interfaces.

In summary, the 2D spatial topology of interactions has a large impact on the 
behavior of the M-model with respect to the MF case. Opinion bi-polarization is much 
more stable in lattices than in MF, due to the existence of long-lived metastable states 
with a spatial pattern of opinions that consists of two stripes composed of both types 
of extremists. This dynamics leads to consensus times in lattices that are much lon-
ger than those obtained in an MF setup. The width of the interfaces between stripe 
domains plays an important role in the dynamics close to consensus, when interfaces 
are about to annihilate each other. Taking into account the scaling properties of the 
interface width allows us to derive an expression for the behavior of the mean consen-
sus time with the system size, in good agreement with simulations. This expression 
provides an explanation for the non-trivial numerical exponent ν = 1.64, and also for 
similar exponents observed in related models where consensus is reached by curvature 
driven coarsening. Another observation is that the bi-polarization is found for p  >  q in 
MF, while in lattices is found for much lower values of persuasion, approximately for 
p  >  q/3. Therefore, a small level of homophily is enough to induce bi-polarization in a 
population that interacts in lattices. Thus, the lattice topology seem to intensify the 
eect of homophily and PAT on the emergence of bi-polarization. This result resembles 
that obtained in the Schelling model for racial segregation [36], where even a small 
preference to have neighbors of the same race on a lattice is able to induce a large spa-
tial segregation of the population into same-race domains.

It would be worthwhile studying the dynamics of the M-model on complex networks 
of dierent kinds, which are more realistic descriptions of the topology of social interac-
tions among people. It would also be interesting to investigate the role of the network 
connectivity in the propagation and ultimate dominance of an extreme opinion [26]. 
Finally, a natural extension of the model would include variations in the persuasion 
and/or compromise rules that could enhance bi-polarization in lattices or in general 
topologies.
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Appendix A. Analysis of the mean interface breaking distance 〈∆xb〉

We can gain an insight into the scaling 〈∆xb〉 � L0.525 by relating the distance between 
interfaces at the breaking moment with the properties of the interface roughness, as we 
illustrate in figure 10(a). More precisely, the interfaces touch at a height y (x1,y = x2,y = xy) 
where the respective interface deviations from x1 and x2 reach their maximum values 

d1,max = |xy − xb
1| and d2,max = |xy − xb

2|. Therefore, the distance between interfaces can 

be approximated as ∆xb � d1,max + d2,max. Given that the height y of the touching point 

varies among realizations, we calculated the average value of the maximum deviation 
〈dmax〉 at both sides of each interface over many realizations of the dynamics. Results are 
shown in figure 11(a) (diamonds). We see that 2 〈dmax〉 agrees very well with 〈∆xb〉 for 
L � 20, and that follows the power-law scaling 〈dmax〉 ∼ L0.525 (solid line). We speculate 
that this scaling is related to the scaling properties of the width of the interfaces, defined 
as the standard deviation of the interface positions xi,y along the y-axis [37, 38]

Wi =


 1

L

L∑
y=1

x2
i,y −

(
1

L

L∑
y=1

xi,y

)2



1/2

=

[
1

L

L∑
y=1

(xi,y − xi)
2

]1/2

. (A.1)

The time evolution of the average interface width calculate over many realizations 〈W 〉 
(see figure 11(b)) has an initial stage in which 〈W 〉 grows as tβ, followed by a second stage 
where 〈W 〉 reaches a saturation value (plateau) that increases with L as 〈W 〉sat(L) ∼ Lα, 
where α � 0.5 is the roughness exponent and β � 0.25 is the growth exponent. These 
exponents are consistent with those of the Edwards–Wilkinson universality class of 
surface growth [38]. Indeed, by an appropriate rescaling of the x and y axis the data 
can be collapsed into a single function (figure 11(b)) showing that the interface growth 
obeys the Family–Vicsek scaling relation 〈W 〉(L, t) = Lαf(t/Lz) with z = α/β � 2, and 
f(x) ∼ xβ for x � 1 and f(x) = constant � 0.22 for x � 1. We note that the same scal-
ing behavior of the interface dynamics was reported in [24] for a broad family of VMs 
with intermediate states, as the present M-model. We have checked that the width 
has already reached its saturation value at the mean breaking time τb, given that τb 
is much longer than the ‘crossover time’ that separates the growth and the satur ation 
stages. Therefore, one expects that the maximum deviation of the interface should be 
proportional to the saturation value of the interface width, leading to the approximate 
scaling 〈dmax〉 ∼ L0.5. We do not know how to explain the small discrepancy with the 
scaling 〈dmax〉 ∼ L0.525 obtained from simulations.

Appendix B. Approximation of τ III
b  as a power law

To obtain the coecient A(L0) and the exponent α(L0) of the power-law approximation
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τ IIIb (L,L0) � A(L0)L
α(L0) (B.1)

of τ IIIb  from equation (10) it proves useful to work on a double logarithmic scale, where 
equation (B.1) becomes a straight line

y(x, x0) � log[A(x0)] + α(x0) x (B.2)
in the variable x ≡ log(L), with x0 ≡ log(L0) and y(x, x0) ≡ log[τ IIIb (L,L0)]. Then, 
rewriting equation (10) in terms of the variables x and y(x)

y(x) = 2 log
(
1− 2e−0.475x

)
+ 3 x− log(16 d),

and Taylor expanding y(x) to first order in x  −  x0 we obtain

y(x) � 2 log
(
1− 2e−0.475x0

)
+

1.9 (x− x0)

(e0.475x0 − 2)
+ 3x− log(16 d)

= log

[
(1− 2e−0.475x0)

2

16 d

]
− 1.9 x0

(e0.475x0 − 2)
+

[
3 +

1.9

(e0.475x0 − 2)

]
x.

 

(B.3)

Matching the coecients of equation (B.3) with those of equation (B.2) and trans-
forming back to the variable L0 = ex0 we arrive to the expressions for A(L0) and α(L0) 
quoted in equations (13) and (14), respectively, of the main text.
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