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Abstract A finite element methodology for simulating the
failure of high performance fiber reinforced concrete com-
posites (HPFRC), with arbitrarily oriented short fibers, is pre-
sented. The composite material model is based on a micro-
morphic approach. Using the framework provided by this
theory, the body configuration space is described through
two kinematical descriptors. At the structural level, the dis-
placement field represents the standard kinematical descrip-
tor. Additionally, a morphological kinematical descriptor,
the micromorphic field, is introduced. It describes the fiber–
matrix relative displacement, or slipping mechanism of the
bond, observed at the mesoscale level. In the first part of this
paper, we summarize the model formulation of the micromor-
phic approach presented in a previous work by the authors.
In the second part, and as the main contribution of the paper,
we address specific issues related to the numerical aspects
involved in the computational implementation of the model.
The developed numerical procedure is based on a mixed finite
element technique. The number of dofs per node changes
according with the number of fiber bundles simulated in the
composite. Then, a specific solution scheme is proposed to
solve the variable number of unknowns in the discrete model.
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The HPFRC composite model takes into account the impor-
tant effects produced by concrete fracture. A procedure for
simulating quasi-brittle fracture is introduced into the model
and is described in the paper. The present numerical method-
ology is assessed by simulating a selected set of experimental
tests which proves its viability and accuracy to capture a num-
ber of mechanical phenomenon interacting at the macro- and
mesoscale and leading to failure of HPFRC composites.

Keywords High performance fiber reinforced concrete
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1 Introduction

Cementitious materials such as mortar or concrete are brittle
and have an inherent weakness in resisting tensile stresses.
The addition of discontinuous fibers leads to a dramatic
improvement in their toughness.

In conventional fiber reinforced concrete (conventional
FRC), the fiber content is usually low and the tensile response
is characterized by the opening of a single crack, similar to
an unreinforced concrete [9]. While, high performance fiber
reinforced cement composites (hereafter denoted as HPFRC
composite) are highly ductile and characterized by pseudo-
strain hardening in tension. Consequently, strain hardening
and multiple cracking constitute the main phenomenological
differences between FRC and HPFRC composite.

Cement fracture is the mechanism that triggers the failure
of HPFRC composites. However, the subsequent chain of
events leading to the complete HPFRC failure is completely
modified by the relative contents of fibers in the composite,
and much more important, by the bond characteristic at the
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fiber–matrix interface and all the phenomena associated with
this effect.

Then, numerical modeling of failure of HPFRC compos-
ites involves the consideration of a number of intimate inter-
actions arising between a number of phenomena taking place
at different scales of lengths.

In a previous work of the authors, see Oliver et al. [18],
a micromorphic model, particularly designed to simulate
numerically the failure of HPFRC composites has been pre-
sented. One of the main features of the model is that phe-
nomena observed at different scales of length are taken into
account by introducing the concept of kinematical morpho-
logical descriptors, which can describe the above mentioned
meso or microscopic interactions. The theoretical framework
of materials with morphological descriptors has been pre-
sented in Capriz [3], Mariano [11] and Frémond and Nedjar
[6], where more fundamental details of the present approach
can be found.

In the present work, we detail several issues related to
the numerical implementation and algorithmic aspects of the
model that are specifically adopted for adequately solving
large HPFRC composite problems with arbitrary directions
of reinforcement fibers.

The remaining of this paper is structured as follows: Sect.
2 summarizes the micromorphic model. Section 3 shows its
variational formulation. In Sect. 4, and based in this varia-
tional formulation, we describe the numerical implementa-
tion of the model, as well as, the most salient algorithmic
issues characteristic of this problem. Section 5 presents a
number of validation tests and finally, in Sect. 6, the conclu-
sions of the work are presented.

2 Description of the HPFRC micromorphic model

This section is devoted to summarize the HPFRC micromor-
phic model that has been presented in Oliver et al. [18].

2.1 Deformation, morphological descriptor and strain
measures

The fundamentals of the model kinematical description are
sketched in Fig. 1. We denote B0 the reference configuration
of the body in the Euclidean space, and x̃ is the map:

x = x̃(X, t), (1)

specifying the current placement, of the particle X in the
body configuration at time t. In order to take into account the
mesoscopic phenomena related to the sliding mechanisms of
the fiber–matrix bond, we introduce a continuous microfield:

β = β̃(X, t), (2)

Fig. 1 Kinematical description of the HPFRC mechanical model

representing the relative displacement between the fiber and
the matrix, as sketched in Fig. 1. According with the material
multifield theory [3,6,11], β can be thought as a substructural
morphological descriptor.

Considering a local coordinate system (r, s) where r is
parallel to the fiber direction, see Fig. 2a, the relative fiber–
matrix displacement is supposed to have only one compo-
nent, parallel to r, i.e. an axial component. Then, the sub-
structural descriptor is defined as: β = β(r, s)r. While the
matrix undergoes a displacement ūr , relative to the original
position, the fiber displacement is given by: ur = ūr + β.

Subindex r denotes the component of the vector.
Under these conditions, the displacement field u in the

composite can be defined as:

u(X, t) = ū(X, t)+ μ f (X)β(X, t); (3)

where μ f is a spatial collocation function given by:

μ f (X) =
{

0 if X ∈ the concrete domain
1 if X ∈ the fiber domain.

The displacement field (3) characterizing the composite
deformation is sketched in Fig. 2. Figure 2b shows the case
when β = 0 (i.e., the fiber is rigidly attached to the matrix),
and Fig. 2c describes the case when β �= 0 (i.e., the fiber
slides with respect to the matrix).

Considering plane problems in infinitesimal strains, the
strain field can be expressed as:

ε = ∇su = ∇s ū − δΓ β
(
r ⊗s s

)
+μ f

(
β,r (r ⊗ r)+ β,s(r ⊗s s)

)
, (4)

where the supra-index (·)s denotes the symmetric open tensor
product and subindices (·),r and (·),s denotes the derivatives
respect to the coordinates r and s, respectively. The second
term in the right hand side is obtained after using the gen-
eralized gradient: ∇μ f = −δΓ s, with δΓ being the Dirac’s
delta function shifted to the surface Γ (Γ is the fiber–matrix
interface shown in Fig. 2b). Thus, the overall strain ε can be
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(a)

(b) (c)

Fig. 2 HPFRC mechanical model at the mesostructural level. a The section A − A′ of an undeformed unit cell, which includes a fiber with the
surrounding concrete, moves to the position called “section after deformation” depending on whether the fiber–matrix interface remains rigidly
attached (b) or slides (c)

interpreted as the addition of strain terms that corresponds to
different components of the composite, such as: the matrix
strain εm, the fiber strain ε f and the shear strain concentrated
in the interface γ , each one being written as follows:

εm = ∇s ū; (5)

ε f = ∇s ū + (
β,r (r ⊗s r)+ β,s(r ⊗s s)

) ; (6)

γ = −δΓ β
(
r ⊗s s

)
. (7)

2.2 Generalized forces and balance equations: structural
and substructural interactions

The momentum balance equations arising from the micro-
morphic material theory, see Mariano [11], are given by:

∇ · σ + b = 0; ∀ X ∈ B0; (8a)

∇ · S − z = 0; ∀ X ∈ B0, (8b)

with σ being the conventional Cauchy stress tensor and b
the body forces (per unit of volume) externally applied.
Equation (8a) is the standard Cauchy equation, while (8b)
represents the microscopic momentum balance equation pro-
vided by the multifield theory. The microstress S is thermody-
namically conjugate to ∇β̇, and z are internal microforces,
thermodynamically conjugate to β̇ which should necessar-
ily exist to satisfy the framework invariance condition of
the mechanical model (see Mariano and Stazi [12]). In this
case, we have considered that any possible externally applied
microforce is null.

Boundary conditions should be imposed on the complete
body boundary, ∂B, such as schematized in Fig. 1. They
can be imposed by prescribing the displacements: u� (on the
boundary ∂Bu) and substructural kinematical descriptors: β�

(on the boundary ∂Bβ ). Alternatively, tractions: σ ·ν = t� and
S · ν = 0 can be prescribed on a part of the boundary ∂Bσ
or ∂BS, respectively. Such as happens in the conventional
continuum, ∂B = ∂Bu ∪ ∂Bσ and ∅ = ∂Bu ∩ ∂Bσ , as well
as: ∂B = ∂Bβ ∪ ∂BS and ∅ = ∂Bβ ∩ ∂BS .

2.3 HPFRC composite free energy

The set of fibers oriented in an identical direction is here
called a fiber bundle. First, let us consider a HPFRC com-
posite having only one fiber bundle oriented in the direction
provided by the constant unit vector r. The free energy of
the composite, ψ, is defined by adopting the mixture theory.
By denoting ψm, ψ f and ψ̄Γ the free energies of the matrix,
fiber and interface components, respectively, and k f , km the
volume fractions of the fiber and cement matrix, and such
that: k f + km = 1; then, ψ is defined as follows:

ψ
(∇s ū, β, ∇β, α

) = kmψm
(
εm

(∇s ū
)
, rm

)
+ k fψ f

(
ε f

(∇s ū, ∇β
)
, α f

)
+ k f δΓ ψ̄Γ (β, αΓ ); (9)

where we have made explicit the dependence of ψ with the
kinematical variables, as well as, with the set of internal vari-
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ables α = (rm, α f , αΓ ). Note the specific dependence of ψ
with ∇β.

A detailed description of the free energies and the adopted
internal variables of each component are given in Sect. 2.5.

2.4 Constitutive constraints

After defining the very basic assumption of the free energy
function, the Coleman’s method can be applied to the micro-
morphic material model. This provides the following consti-
tutive model constraints:

σ = ∂ψ

∂∇s ū
= kmσm + k f σ f ;

S = ∂ψ

∂∇β ;

z = ∂ψ

∂β
, (10)

where we identify σm and σ f as the matrix and fiber stresses:

σm = ∂ψm

∂∇s ū
; σ f = ∂ψ f

∂∇s ū
. (11)

2.5 Constitutive model for the components of the HPFRC
composite

2.5.1 Damage model for cement with distinct tensile and
compressive strengths

The cementitious matrix is described using a standard
isotropic damage model with distinct tensile and compres-
sive strengths. The equations describing the model are sum-
marized in Table 1.

Equation (12) defines the free energy of this component.
The term dm denotes the standard scalar damage variable. It
is defined in Eq. (13) by introducing two additional internal
variables: the stress-like internal variable qm, which evolu-
tion equation is given in (19) in terms of the rate of the strain-
like internal variable rm and the softening modulus Hm < 0.
The internal variable rm is defined in (16). The Hooke elastic
tensor is denoted Cm .

In Eq. (14), the stress–strain relation (σm versus εm) is
given. The effective stress σ̄m is defined in Eq. (14b). Expres-
sions (15) and (16), jointly with the complementarity con-
ditions (20), defines the evolution equation for the internal
variable rm . Following the classical description of dissipa-
tive materials, λm plays the role of a damage multiplier. The
initial condition (16b) is given in terms of the ultimate tensile
strength σ ut

m and the Young modulus Em .

The damage criterion is defined in Eq. (17) where τε,
defined in (18), represents a norm of the strains, with Cm

working as a metric tensor. The functional dependence of

Table 1 Tensile-compressive concrete damage model

Free energy

ψm(εm(∇s ū), rm) = 1
2 (1 − dm)(εm : Cm : εm) (12)

Damage

dm = 1 − qm (rm )
rm

(13)

Stress–strain relationship

σm = qm
rm

σ̄m; (14)

where σ̄m = Cm : εm

Internal variable evolution

ṙm = λm (15)

rm = max
s∈[0,t][r0, τε(εm(s))]; rm |t=0 = r0 = σ ut

m√
Em

(16)

Damage criterion

fm(εm , rm) = τε − rm; (17)

τε = (θ + 1−θ
n )

√
σ̄m : (Cm)−1 : σ̄m; (18)

θ =
∑3

i=1〈σ̄ i
m 〉∑3

i=1 |σ̄ i
m |

Stress-like internal variable and isotropic hardening law

q̇m = Hm(rm)ṙm; 0 ≤ qm ≤ r0; qm |t=0 = r0 (19)

Complementarity conditions

fm ≤ 0; λm ≥ 0; λm fm = 0 (20)

Tangent constitutive operator

Cm = qm
rm

Cm; unloading conditions (21a)

Cm = qm
rm

Cm + Hmrm−qm
(rm )3

(
(rm )

2

θ
[σ̄ m ⊗ (Cm : ∂σ̄ θ) (21b)

+ θ2(σ̄m ⊗ σ̄m)]) loading condition

τε with θ introduces an unequal behavior of the material
in tensile or compressive stress regimes. The ith princi-
pal effective stress value is σ̄ i

m and the symbol 〈·〉 denotes
the MacAulay brackets. The ratio between the compressive
(σ uc

m ) and tensile (σ ut
m ) uniaxial ultimate strengths is denoted

n = σ uc
m /σ ut

m . In the Haigh–Westergaard stress space, the
trace of the damage criterion with the plane (σ̄ 1

m, σ̄
2
m) is

shown in Fig. 3a. The interior points of the domain bounded
by the trace represents the elastic domain. In the same figure
(right), it is shown the possible evolution of an uniaxial load-
ing/unloading process displaying distinct ultimate tensile and
compressive strengths.

Equations (21) define the tangent constitutive tensors for
both cases of the matrix damage evolutions: unloading or
loading behavior. The term: ∂σ̄ θ, arising in (21b), has been
described in [10], see also [16].

2.5.2 One-dimensional elasto-plastic model for the fiber

The fiber is characterized using a standard 1D plasticity
model whose equations are summarized in Table 2.

Equation (23) defines the free energy of this component
which is additively decomposed according with the mech-
anisms that activates the free energy change, i.e. elastic or
plastic processes. Also, the fiber strain ε f is assumed to be
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(a)

(b) (c)

Fig. 3 Constitutive model of the components. a Cementitious matrix model, description of the 2D elastic domain in the principal stress space (left)
and uniaxial stress versus strain plot (right), b fiber model and c cohesive interface model representing the fiber–matrix bond response

additively decomposed into an elastic strain: εe
f , and a plastic

strain: ε
p
f , and such that: ε f = εe

f + ε
p
f .

The elastic constitutive tensor is denotedE f , and has only
one component non-zero. This term, E f , is the Young mod-
ulus of the fiber, along the fiber axial direction. Then, the free
energy can be written in terms of the axial component of the
(elastic) fiber strain:

ε f = ε f : (r ⊗ r), (22)

with ε f = (ūr ),r + β,r , where we have also considered the
additive decompositions of the uniaxial fiber strains: ε f =
εe

f + ε
p
f .

The internal variable α f represents the equivalent plastic
strain of the fiber. Then, ψh

f represents the energetic harden-
ing.

The remaining equations are standard, and closely follow
the models presented in classical books of plasticity, see for
example [20]. The only stress component that is significant in
this elasto-plastic model is the axial stress: σ f = σ f : (r⊗r)
and is defined in Eq. (24) in terms of the fiber elastic axial
strain.

Note that the material parameters defining the model are:
the Young modulus E f , the softening/hardening modulus
H f and the yield stress σ y

f . Figure 3b depicts a typical stress–
strain response of this model.

2.5.3 One-dimensional plasticity model for the mechanical
response of the fiber/matrix bond

Similar to the fiber response, we select a 1D plasticity
model for characterizing the fiber–matrix interface response
in terms of the shear stress component τ f versus the slip
displacement β. The fiber–matrix relative displacement β (r
component) is assumed to be additively decomposed into an
elastic part βe and a plastic part β p, respectively.

The equations are summarized in Table 3 which interpre-
tation are similar to that exposed in Table 2.

In Eq. (31), we define a specific (per unit of area) free
energy ψ̄Γ . The term GΓ is a pseudo-shear modulus that is
sufficiently large to avoid large fiber–matrix slips βe with
shear stresses τΓ < τ u

Γ .

The material parameters in this case are: the elastic shear
modulus GΓ N/m3) the ultimate bond strength τ u

Γ , the soft-
ening/hardening modulus HΓ and the residual bond strength
τ R
Γ . A typical response of the fiber–matrix bond model is

depicted in Fig. 3c.

2.6 Generalized stress expressions

From Eq. (11) and Tables 1 and 2, the matrix and fiber stresses
can be expressed as:
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Table 2 Fiber 1D elasto-plastic model

Free energy

ψ f (ε f (∇s ū, ∇β), α f ) = 1
2 (ε

e
f : E f : εe

f )+ ψh
f (α f ) (23)

= 1
2 E f [εe

f ]2 + ψh
f (α f )

E f = E f (r ⊗ r)⊗ (r ⊗ r); ε f = εe
f + ε

p
f

Elastic stress–strain relationship

σ f = E f ε
e
f with ε f = (ūr ),r + β,r (24)

Flow rule

ε
p
f = λ f sign(σ f ) (25)

Internal variable evolution

α̇ f = λ f (26)

Isotropic hardening law

q̇ f = H f (α f )α̇ f (27)

Yield function

f f = |σ f | − (q f + σ
y
f ) (28)

Complementarity conditions

f f ≤ 0; λ f ≥ 0; λ f f f = 0 (29)

Tangent constitutive operator

C f = C f [(r ⊗ r)⊗ (r ⊗ r)] (30)

where C f =
{

E f unloading conditions
E f H f

E f +H f
; loading conditions

Table 3 Fiber–matrix interface 1D plastic model

Specific free energy

ψ̄Γ (β
e, αΓ ) = 1

2 (β
e · GΓ · βe)+ ψ̄h

Γ (αΓ ) (31)

= 1
2 GΓ [βe]2 + ψ̄h

Γ (αΓ );
GΓ = GΓ (r ⊗ r); β = βe + β p

Elastic stress–strain relationship

τΓ = GΓ β
e (32)

Flow rule

β̇ p = λΓ sign(τ f ) (33)

Internal variable evolution

α̇Γ = λΓ (34)

Yield function

fΓ (τΓ , αΓ ) = |τΓ | − (qΓ + τ u
Γ ) (35)

Isotropic hardening law

q̇Γ = HΓ (αΓ )α̇Γ (36)

Complementarity conditions

fΓ ≤ 0; λΓ ≥ 0; λΓ fΓ = 0 (37)

Tangent constitutive operator

CΓ = GΓ ; unloading condition

CΓ = GΓ HΓ
GΓ +HΓ

; loading condition (38)

σm = ∂ψm

∂∇s ū
= (1 − dm)Cm : εm; (39)

σ f = ∂ψ f

∂∇s ū
= σ f (r ⊗ r). (40)

The microstress S are given by:

S = ∂ψ

∂∇β = μ f k f σ f (r ⊗ r), (41)

and the microforce z is:

z = ∂ψ

∂β
= −δΓ

(
k f τΓ

)
r. (42)

Summarizing, the stresses of the different components can
be written as follows:

(i) matrix stress (given in Table 1):

σm = σ̂m
(
εm

(∇s ū, rm
))
,

(ii) fiber stress (Table 2):

σ f = σ̂ f

(
ε f

(
(ūr ),r , β,r

)
, α f

)
,

(iii) interface stress (Table 3):

τΓ = τ̂Γ

(
γ (β), αΓ

)
,

where the symbol (·̂) denotes the respective function.

2.7 The overall constitutive model of a HPFRC composite
having a random distribution of fiber bundles

The mechanical model of a HPRFC having a fiber bundle
in one direction, presented in the previous subsections, can
be generalized to account for a random distribution of fibers.
Let us consider a number n f of discrete fiber bundles in the
plane of analysis with a regular distribution of angles in the
interval: [0, π ].

The Ith bundle, characterized with the supra-index I,
(I = 1, . . . , n f ), has assigned one volume fraction k I

f , one

direction vector rI and one micromorphic field β I = β(I )r(I )

(supra-index in parenthesis indicates no-summation on this
index).

Adopting the mixture theory of Truesdell to account for
the macro/mesoscopic interactions, the free energy of the
HPFRC composite can be written as the linear combination
of the free energies of all its components, weighted by the
corresponding volume fraction:

ψ = kmψm +
n f∑

I=1

k I
fψ

I
f +

n f∑
I=1

k I
f ψ̄

I
Γ . (43)
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Then, the stress equation (10) results:

σ = kmσm (εm; αm)+
n f∑

I=1

k I
f σ

I
f

(
ε I

f

(
ū, β I

)
; α I

f

)
,

(44)

where σ I
f corresponds to the Ith fiber stress, given by Eq.

(11)-b, along the direction rI .

The tangent constitutive tensor of the composite: C =
∂σ/∂ε, is given by:

C = kmCm +
n f∑

I=1

k I
f E I

f

[(
rI ⊗ rI

)
⊗

(
rI ⊗ rI

)]
, (45)

where E I
f is the Young modulus of the Ith fiber bundle.

It is defined one fiber–matrix bond shear stress τ I
Γ for

every fiber bundle I th governed by a constitutive relation
similar to that presented in Table 3.

With this information in hand, one should be able to state
the variational formulation as stated in next section.

3 Variational formulation of the BVP

Let us consider a body made of a HPFRC composite mate-
rial which is modeled such as described in the preceding
section. The governing equations of the BVP are: (i) the
displacement–strain equations (3), (5)–(7), (ii) the consti-
tutive equations, summarized in Tables 1, 2 and 3, and (iii)
the balance equations (8a) and (8b) jointly with the bound-
ary conditions. In the complete boundary of the body ∂B, we
adopt: β I = 0 (I = 1, . . . , n f ).

In order to introduce a variational approach of this prob-
lem, we define the spaces of the kinematically admissible dis-
placements: δū and morphological descriptor: δβ I for every
fiber bundle I, as follows:

V0 = {δū|δū = 0, ∀ x ∈ ∂Bu} ; (46)

Vβ0 =
{
δβ I |δβ I = 0, ∀ x ∈ ∂B; (

I = 1, . . . , n f
)}
.

The variational equations of the BVP are presented in
Table 4. Equation (47) is the variational expression of the
balance equation (8a). And the variational equations (48),
one for every index I, are obtained from the balance equa-
tion (8b) after the following considerations:

(i) we evaluate the average stress σ̃ f (of the term σ f ) in the
cross section of the fiber, and the average shear stress τ̃Γ
(of the term τΓ ) along the fiber circumferential perimeter.
Then, we introduce both average stresses into the balance

Table 4 Variational BVP

∫
B σ : ∇sδū dB− ∫

B b · δū dB − ∫
∂Bσ t∗ · δū d S = 0; (47)

∀δū ∈ V0∫
B (

Π I

AI τ̃
I
f δβ

I + σ̃ I
f (δβ

I ),r ) dB = 0; (48)

∀δβ(I ) ∈ Vβ0 ; (I = 1, . . . , n f )

equation (8b). In Eq. (48), Π I and AI are the perimeter
and area of one representative fiber of the fiber bundle I,
respectively. Both terms arise as a result of the averaging
process of the stresses in the fibers.

(ii) we consider identical models to those presented in Tables
2 and 3, to express the constitutive response of the aver-
aged stresses σ̃ f and τ̃Γ in terms of the averaged strain
quantities: ε̃ f and γ̃ ; and the model in Table 1.

Note that both expressions (47) and (48), in Table 4, have
been derived by weakening the derivative of the stress terms
and imposing the boundary conditions in the boundary inte-
grals.

Additional details of the variational BVP equations can
be seen in Oliver et al. [18].

4 Finite element model

The finite element discretization of the displacement field
ū ∈ H1(B) and micromorphic field β I ∈ H1(B) are now
considered. Both of them are interpolated using a standard
finite element technique:

ū(x, t) =
nnode∑
j=1

N j (x)q j (t); (49)

β I (x, t) =
nnode∑
j=1

N j (x)pI
j (t); (50)

where N j are the shape functions of the finite element and q j

and pI
j are the displacement vector and the I th micromorphic

descriptor of the node j, respectively. The total number of
nodes in the finite element mesh is denoted nnode.While, the
corresponding variations are given:

δu(x, t) =
nnode∑
j=1

N j (x)δq j (t); (51)

δβ I (x, t) =
nnode∑
j=1

N j (x)δpI
j (t). (52)
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Using Eq. (5), the interpolated strain terms in the finite
element e can be written as follows:

[εm]e = [∇s ū
]e = Beqe, (53)

where we have used the symbol [·] to represent the vec-
tor Voigt notation of the corresponding tensor. The standard
strain–displacement matrix Be of the element e is:

Be =
[

Be
1 ,Be

2,. . . ,B
e
ne

node

]
;

Be
j =

⎡
⎢⎢⎢⎢⎣

(
N e

j

)
,x

0

0
(

N e
j

)
,y(

N e
j

)
,y

(
N e

j

)
,x

⎤
⎥⎥⎥⎥⎦ ,

(54)

with ne
node being the number of nodes in element e, and the

nodal displacement vectors of the same element e is denoted
qe.

From Eq. (6), the fiber strain vector, of the fiber bundle I,
is:
[
ε I

f

]e = Beqe +
(

T I
1

[
N,r

]e + T I
2

[
N,s

]e
)

pI e
, (55)

where pI e
is the nodal slip displacement vector of the same

fiber bundle:

pI e =
[

pI
1

e
, pI

1
e
, . . . , pI

ne
node

e
]T
, (56)

and [N,r ], [N,s] are the r and s derivatives of the shape func-
tion matrices:

[
N,r

] =
[
(N1),r , . . . ,

(
Nne

node

)
,r

]
;

[
N,s

] =
[
(N1),s , . . . ,

(
Nne

node

)
,s

]
,

(57)

where considering N j (x), then: (N j ),r = (N j ),x x,r +
(N j ),y y,r . Also, matrices T I

1 and T I
2 in Eq. (55), are the

Voigt vector notation of the tensors: (rI ⊗ rI ) and (rI ⊗s sI ),

respectively:

T I
1 = [

r2
x , r2

y , 2rxry
]T

I
, (58a)

T I
2 = [

rx sx , rxry,
(
rx sy + rysx

) ]T
I . (58b)

The axial component of the fiber strain I th can be written
as follows:

[
ε I

f

]e =
(

T̂
I
1

)T [
ε I

f

]e =
(

T̂
I
1

)T
Beqe + [

N,r
]e

[
pI

]e
,

(59)

where the projection operator: T̂
I
1 is:

T̂
I
1 =

[
r2

x , r2
y , rxry

]
, (60)

which satisfies: (T̂
I
1)

T T I
1 = 1 and (T̂

I
1)

T T I
2 = 0.

Finally, from Eq. (7), the strain vector representing the Ith
fiber–matrix slip mechanisms, is written:

[
γ I

]
= T I

2[N]epI e
. (61)

After introducing the finite element discretization into the
balance equations (47), (48) jointly with the constitutive rela-
tions in Tables 1, 2 and 3; the balance equations can be rewrit-
ten as a system of equations in the variables q, pI :

Ru

(
q, pI

)
= nelem

Λ
e=1

∫
Be

(
Be)T

(
kmσm +

n f∑
I=1

k I
f σ

I
f

)
dBe

− Fext = 0;
(62)

Rβ I

(
q, pI

)
= nelem

Λ
e=1

k I
f

∫
Be

(
Π I

AI
[N]eτ̃ I

Γ + [N]e
,r σ̃

I
f

)
dBe

= 0; (∀I = 1, . . . , n f
)
,

(63)

where Fext is the vector of external forces, the symbol Λ
denotes the standard finite element assemblage operator,
nelem is the number of finite elements and Be identifies the
finite element domain of the element e.

4.1 Time integration scheme

The time integration problem consists of finding, at the time
step n + 1, the nodal displacements, qn+1, and micromor-
phic descriptors, pI

n+1, verifying the equations of the dis-
crete variational BVP (62), (63). We denote pn+1 the vector
collecting the slips pI

n+1 of all fiber bundles. In those expres-
sions, the stresses: σm, σ I

f and τ̃ I
Γ are explicit functions of

(qn+1, pn+1). Fext is evaluated at time (n + 1).

4.1.1 Solution of the coupled system of equations

Two general strategies can be adopted for solving the coupled
problem (62), (63): monolithic and fractional step methods
(also known as staggered techniques). The following items
describe both strategies.

(i) Monolithic scheme Solution of the nonlinear equations
(62), (63) are found using a Newton–Raphson algorithm,
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which consists of, iteratively and simultaneously, determin-
ing the increment of variables: (Δq; Δp) by solving the lin-
earized equation system derived from (62), (63):

K
[
Δq
ΔpI

]
= −

[
Ru

Rβ I

]
, (64)

where K is the Jacobian of the residuals (62), (63):

K = ∂([Ru; Rβ I ])
∂([q; pI ]) = nelem

Λ
e=1

[
K e

uu K e
uβ I

K e
β I u

K e
β I β I

]
. (65)

The expression for K is obtained by introducing the strains
(53), (59), (61) into the constitutive Tables 1, 2 and 3, deriving
the corresponding stresses and then, introducing them into
the derivatives of the residual terms defined in (62), (63).
Following this procedure, every submatrix in (65) can be
written as follows:

Ke
uu =

∫
Be

(
Be)T

(
kmCm

+
n f∑

I=1

k I
f C I

f

(
T I

1 ⊗ T I
1

) )
BedBe,

(66)

Ke
uβ I =k I

f

∫
Be

((
Be)T

(
T I

1C I
f

[
N,r

]e
))

dBe, (67)

Ke
β I u =k I

f

∫
Be

([
N,r

]eT
C I

f T I
1Be

)
dBe, (68)

Ke
β I β I =k I

f

∫
Be

(
Π I

AI
[N]eT C I

Γ [N]e+[
N,r

]eT
C I

f

[
N,r

]e
)

dBe,

(69)

whereCm is the matrix constitutive tangent tensors defined in
Eq. (21). And, C I

f and C I
Γ are the constitutive tangent tensor

of every fiber bundle defined in (30) and (38), respectively.
In order to preserve the notation as simple as possible, we

do not specify the fact that, at step n + 1, expressions K and
R in (64) are evaluated in every iteration k of the Newton–
Raphson procedure.

(ii) Staggered scheme In the second procedure, and taking
advantage of the physical nature of the problem, the equa-
tion system (62), (63) is partitioned into smaller and simpler
subsystems. The solution of each subsystem determines one
set of variables at a time, keeping fixed the remaining ones.

For this specific problem, a natural partition consists of
taking as many set of equations as families of fiber bundles
exists: Rβ I = 0, for: I = 1, . . . , n f plus the equation of:
Ru = 0.

Then, given a prediction of the slip field (pI )P
n+1, which

are the linear extrapolations of values obtained in previous
time steps:

(
pI

n+1

)P = pI
n +

(
pI

n − pI
n−1

) Δtn+1

Δtn
, (70)

whereΔtn andΔtn+1 are the time increments in steps n and
n + 1, respectively; the equation system:

Ru

(
qn+1,

(
pI

n+1

)P
)

= 0, (71)

is solved to find: qn+1. And this value is substituted, and
fixed, in each set of Eq. (63):

RβI

(
qn+1, pI

n+1

)
= 0, (72)

which solution provides the slip values pI
n+1.

After replacing (pI
n+1)

P by pI
n+1 in Eq. (71), the sequence

of operations to solve (71) and (72) are repeated iteratively
until obtaining the convergence of the equation system (62),
(63) at time step: n + 1.

The complete procedure is summarized in Table 5.
This scheme has two advantages with respect to the mono-

lithic one: (i) the staggered scheme provides a reduction in
the size of the matrices involved in the solution of each sub-
system, then, a significant saving in computational cost can
be expected, being more important when the number of fiber
bundles increase; and (ii) the computational treatment (han-
dling of dofs) of problems with a variable number of fiber
bundles is simpler.

Prediction (70) has shown to be successful to increase the
accuracy of the scheme. This effect can be seen in Fig. 4 that
represents the structural response of the beam in Sect. 5.2
when the effect of the interface zone vanishes (τ u

Γ = 0). The
plots depicted in the figure are the load versus vertical dis-
placement of the load application point. Two solutions were
obtained with a staggered integration scheme using either:
(i) the extrapolation defined in (70), or (ii) without includ-
ing the extrapolation. Both curves have been evaluated using
the algorithm in Table 5 by removing the iterative proce-
dure (loop on the index k in the table). Thus, Eqs. (74) and
(75) have been evaluated only once per time step. In the last
case, when the predictor equation (73) is removed from the
algorithm, (pI

n+1)
P is assumed to be (pI

n+1)
P = pI

n . Both
curves are compared with the monolithic procedure, which
solution has been evaluated using a full Newton–Raphson
procedure until convergence has been reached. All of those
solutions have been obtained with an identical time step
interval.

From the plots in Fig. 4, we conclude that the prediction
step defined in (70) introduces a significant improvement
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Table 5 Staggered time
integration scheme using a
predictor step

LOOP over time steps: (n + 1)

(i) Prediction:(
pI

n+1

)P = pI
n +ΔpI Δtn+1

Δtn
∀I = 1, . . . , n f ; (73)

Initialize:(
pI

n+1

)(0) = (
pI

n+1

)P

(
pI

n+1

)(−1) = (
pI

n
) ;(

qn+1
)(0) = qn;

WHILE NOT CONVERGED: iteration k

(ii) Solve nodal displacements: Given
(

q(k−1)
n+1 , pI (k−1)

n+1

)
Compute: Kuu; KuβI ; Ru and:

q(k)n+1 = q(k−1)
n+1 + (Kuu)

−1
(

− Ru − ∑n f
I=1 Kuβ I

(
pI (k−1)

n+1 − pI (k−2)
n+1

))
(74)

(iii) Solve nodal slip displacements: Given
(

q(k)n+1, pI (k−1)
n+1

)
DO: I = 1, . . . , n f (loop on fibers)

Compute: KβIβI ; KβI u ; RβI and:

pI (k)
n+1 = pI (k−1)

n+1 + (
Kβ I β I

)−1
(

− Rβ I − Kβ I u

(
q(k)n+1 − q(k−1)

n+1

) )
(75)

END DO (loop on fibers)

END WHILE

END LOOP over time steps
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(with predictor)
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Fig. 4 Structural response of the beam bending test (Sect. 5.2), com-
parison of different integration schemes. Two solution with a staggered
scheme (both of them: without global iteration) are depicted: (i) using
the predictor step of Eq. (70), and (ii) without using the predictor step.
For comparison, the solution of the monolithic procedure with full con-
vergence is also depicted

of the accuracy whenever only one evaluation of Eqs. (74)
and (75) is performed (i.e., removing the loop k in Table
5). In this case, we also note that the staggered scheme with
extrapolation, during the strain softening regime, provides an
slightly oscillatory response. The amplitude of these oscilla-

tions decreases with the reduction of the time step length in
the time integration procedure.

4.1.2 Impl-Ex scheme

By adopting either of the two approaches presented in the pre-
vious subsection, it becomes necessary to solve non-linear
equation systems of the type Ru(σ (q, pI , α)) = 0 and
Rβ I (σ (q, pI , α)) = 0 simultaneously (monolithic scheme)
or sequentially (staggered scheme) as the time evolves. In
both cases, we remark the explicit dependence of these equa-
tions with the vector of internal variables: α.

The so-defined problem can be discretized in time by
assuming a standard implicit technique. Then, the variables
at step (n + 1), qn+1, pI

n+1αn+1 and σ n+1, must be solved,
typically by means of a Newton–Raphson scheme.

However, it is well known that, when dealing with mate-
rial failure problems, the nonlinear equation systems result-
ing from a fully implicit discretization methodology show a
marked lack of robustness.

In Oliver et al. [15] and [14] an alternative algorithm, the
so called Impl-Ex algorithm, has been presented to reduce
the nonlinearity of the resulting equations without losing the
stability of the computed solution, which is very convenient
because it demands a very reduced computational cost. Here,
we describe a summary of this methodology that can be easily
adapted for modeling HPFRC composite.
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At the time step (n+1), the internal variables of the model
are evaluated through two integration procedures:

(i) an implicit standard procedure, which determines, from
Tables 1, 2 and 3, αn+1 and σ n+1;

(ii) a predictor (explicit) procedure, here called Impl-Ex
variable and denoted with the symbol (·̃), such as fol-
lows:

α̃n+1 = αn +Δα̃n+1;
Δα̃n+1 = (αn − αn−1)

Δtn+1

Δtn
.

(76)

After replacing these Impl-Ex internal variables into the
constitutive equations, Tables 1, 2 and 3, the incremen-
tal (rate) stress term, Δσ̃ n+1, is determined from these
equations, and the Impl-Ex stress at time n + 1 is given
by:

σ̃ n+1 = σ n +Δσ̃ n+1. (77)

The Eqs. (62) and (63) are then solved with the Impl-Ex
stresses σ̃ n+1 :

Ru (σ̃ n+1) = 0;
Rβ I (σ̃ n+1) = 0.

(78)

It can be shown, see Oliver et al. [14], that, even during the
material softening regime, the consistent tangent matrices,
arising from this integration algorithm, are constant (during
a time step) and positive definite. As a result of this property,
only one iteration per time step is required to get convergence
when the solution of Eq. (78) are searched through a Newton–
Raphson procedure.

Summarizing, the combination of: (i) a staggered scheme
with the prediction stage of the previous subsection and
removing global iterations for convergence, plus, (ii) the
Impl-Ex procedure for solving each partition of the equation
systems; defines a very robust algorithm for solving problems
involving HPFRC composites with arbitrary distribution of
fibers, which results in a very efficient methodology.

4.2 Concrete fracture model

The loss of the linear mechanical response in HPFRC com-
posites depends on the crack phenomena happening in
the cementitious component and its interaction with fibers
through the fiber–matrix bond. Establishing a satisfactory
constitutive model of a HPFRC composite material display-
ing failure, then requires a concrete crack model that is
strongly coupled with the fiber–matrix bond-slip mechanism.

It is known that local constitutive models with strain soft-
ening, such as the damage model presented in Table 1, leads to

theoretical and numerical difficulties which reflect into spuri-
ous numerical solutions. The goal of a well-posed numerical
simulation tool is then to adopt a methodology providing
objective results respect to the finite element mesh, avoiding
the typical mesh size and bias dependence.

In the present approach, the mesh size dependence is
removed through the regularization of the softening model
of concrete. We reach this objective by introducing a model
characteristic length related to the finite element mesh size
and the fracture energy of the component. Thus, the soft-
ening modulus Hm in Table 1 is redefined, and replaced
in the table by the intrinsic softening modulus defined by:
H̄m = −(G f Em/(σ

ut
m )

2)he, where G f is the concrete frac-
ture energy, Em and σ ut

m have been defined in Table 1 and
he is a representative finite element size consistent with the
crack orientation (see additional details in [13]).

As for removing the spurious mesh orientation depen-
dence, constants strain localization modes are injected, via a
mixed finite element formulation, such as proposed by Dias
et al. [5] and Dias [4], and summarized in the following sub-
section.

4.2.1 Strain injection method for computational modeling
of material failure

Let us consider standard irreducible quadrilateral finite ele-
ments, which are defined as the underlying elements. It is
well-known the flaws that this classical element shows for
capturing and simulating evolution of cracks.

In order to remove these flaws, we adopt a technique that
is mathematically consistent, based on a mixed (assumed
strain) variational formulation. This procedure is adopted
because it has been shown that mixed formulations, in gen-
eral, have much better abilities to capture and propagate
localizations modes if compared to irreducible formulations.

Assumed strain mixed formulation: the injection domain Let
us consider the material bifurcation analysis that is based on
detecting the singularity of the acoustic tensor:

det ([n · C (tB) · n]) = 0, (79)

where C(tB) is the constitutive tangent tensor of the overall
response given by Eq. (45). Equation (79) provides the bifur-
cation time tB, as well as, the normal vector n to the possible
crack surface. The numerical resolution of the discontinuous
material bifurcation problem has been solved in an effective
and accurate way, using a numerical algorithm, based on the
iterative resolution of a coupled eigenvalue problem in terms
of the localization tensor. This algorithm has been presented
in Oliver et al. [17].

After the criterion (79) has been satisfied in a given finite
element, we equip the element with an assumed strain model
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that is formulated in the context of a mixed two-field (ū−εm)
variational approach. The interpolated displacement field
remains the same as that of the irreducible quadrilateral finite
element model presented at the beginning of this section, see
Eq. (49). While, the strain field, εm, is interpolated with func-
tions taken from Vε, where Vε is the space of element-wise
constant functions. Then, strains εm are associated with dis-
placements through the following variational equation:

∫
B

(
εm − ∇s ˙̄u) : δεdB = 0; ∀δε ∈ Vε. (80)

From where, the strain matrix (53) in the element e can be
written as:

[εm]e = B̄
e
qe;

B̄
e = 1

Be

∫
Be

BedBe = 0, (81)

and Eq. (59) is consequently evaluated by using the modified
strain–displacement matrix B̄

e
instead of Be.

The variational equilibrium expression (47), of Table 4, is
rewritten as follows:

∫
B

σ
(
εe) : δεdB −

∫
B

b · δudB −
∫
∂Bσ

t∗ · δu d S = 0;

∀δu ∈ V0; ∀δε ∈ Vε,

(82)

and after replacing the interpolation of displacement and
strain fields and changing the matrix Be by: B̄

e
, this equation

can be identically written to the expression (62), (63).
The domain where the constant strain mode is injected, is

defined as the geometrical locus of the points satisfying:

Bin j (t) := {X ∈ B|t ≥ tB(X); ṙm(X, t) > 0} , (83)

where the last condition (ṙm(X, t) > 0) means that the con-
crete component of the composite should be evolving in a
loading condition. It is a well known fact that the Assumed
Strain Mixed formulation, given by (80) and (81), is unsta-
ble if it is applied to the entire discrete domain. Then, it is
important to inject the mixed formulation only in the reduced
domain of the finite elements satisfying (83) (Fig. 5).

For the numerical implementation of the injection proce-
dure, it is selected the four node quadrilateral element with
the standard four Gauss points with one additional Gauss
points, placed in the central point of the element.

Fig. 5 Domain Bin j where the assumed strain mixed finite element
formulation is injected

5 Assessments of the numerical model

In order to ascertain the suitability of the proposed formula-
tion for describing the structural response of the composite,
a selected set of experimental results is taken from the litera-
ture. Elastic, hardening and localization stages are examined.

The HPFRC composite model should reproduce two rele-
vant and influential mechanisms, namely, the fiber pullout
phenomenon and the subsequent fiber plasticity. In order
to show these model features, some tests are particularly
addressed in the following sections.

Physical observations of the HPFRC composite behavior
show that their failure modes primarily depends on the dis-
tribution, content and type of fibers within the specimen. In
the next numerical simulations, we show that the model pre-
dicts reasonably well the expected failure modes of HPFRC
composite with different contents of fibers.

The main concern in this section is to examine: (1) the
validation of the model, as well as, its predictive ability, (2)
evaluation of the injection procedure in order to improve the
finite element mesh-bias dependence during the strain local-
ization process, (3) the effect that the fiber–matrix interface
has on the failure mode description and the structural perfor-
mance.

In the following three cases, we adopt fibers having diam-
eters equal to: 3 mm. Then, the ratio Π/A = 1.33 mm−1.

Also, in all cases we have taken a residual bond strength:
τ R
Γ = 0 MPa.

5.1 Notched strip under uniaxial loading

A notched strip (in plane strain) undergoing uniaxial loading
is simulated. The strip and loading conditions are shown in
Fig. 6a. It is clamped at its left end and pulled at the right
end. The notches are situated in the middle of the specimen to
ensure damage localization in this area. The region of concern
is the area close to the notch, where the pullout process is
expected.

In this test, the complex interaction between the meso-
scopic phenomenon such as: the cement fracture, the fiber–
matrix debonding and the fiber plasticity, can be more easily
comprehended and evaluated.

123

Author's personal copy



Comput Mech (2013) 52:1243–1264 1255

(a)

(a) 

Fig. 6 Notched strip under uniaxial loading: a test setup, b comparison
between load versus displacement curves using different ultimate bond
shear stresses

The fiber pullout mechanism is analyzed when the fibers
are parallel to the principal stretch direction.

5.1.1 Tensile behavior of the specimen with aligned steel
fibers

Numerical simulations with identical mechanical and geo-
metrical characteristics are carried out, but varying the bond
properties of the fiber–matrix interface. The set of parameters
is summarized in Table 6. In order to investigate the sensi-
tivity of the model with the ultimate matrix–fiber bond shear
strength, τ u

Γ , six different values of this parameter are con-
sidered. While, only one horizontally oriented fiber bundle
is assumed (θ = 0◦).

Figure 6b compares the load P versus displacement δ
response of the specimen for the six values τ u

Γ . Included
in the plots are the structural response of the plain concrete.

The ascending behavior of the responses are characterized,
as we will explain later, by bonded, or partially debonded,
matrix–fiber interfaces. As it may be surmised, the hardening
behavior is related to the debonding process.

To understand these numerical results, we recall from
experimental tests that the HPFRC composites, in tension,

Table 6 Material parameters of the notched specimen under uniaxial
loading

Matrix Fiber Bond (fiber–matrix)

σ ut
m = 2.0 MPa σ

y
f = 210 MPa τ u

Γ = 0.001, 0.1, . . .

. . . 0.6, 1, 5, 50 MPa

Em = 15.0 GPa E f = 200 GPa GΓ = 1.e8 GPa/m

νm = 0.2 H f = 0 MPa HΓ = 100 MPa/m

G f = 100 N/m θ = 0◦ k f = 0.75 %

displays three stages: linear elastic (that ends when the first
crack in the specimen arises), multicrack or hardening stage
(that ends at the peak point), and the strain localization
stage. Also we recall that, in the tensile load–displacement
response, the main difference between the HPFRC compos-
ite and the conventional FRC is the multicrack stage after
finalizing the linear response. The multicrack stage may not
exist in the conventional FRC.

The response for the smallest value of the ultimate bond
shear stress considered in this example, τ u

Γ = 0.001 MPa,
closely resembles the curve displayed by the plain concrete
case. As expected, the numerical results show brittle behav-
ior for the plain concrete material. After the peak load has
been reached, the material softens and ductility is barely evi-
denced.

The load–displacement curves for increasing values of τ u
Γ

display increasing hardening, as well as, increasing peak load
values. However, with τ u

Γ > 5 MPa, the response of the
material no longer change significantly. Then, in the present
specific problem, we could assert that τ u

Γ = 5 MPa represents
a limit bond strength.

Figure 7 depicts the iso-color maps of damage distribution
in cement at the end of analysis. Different cases, depending
on τ u

Γ , are shown. Figure 7a displays the tendency of the plain
concrete response showing a highly concentrated damage
pattern. With increasing τ u

Γ , according with Fig. 7b:f, the
zone affected by damage grows, suggesting that an increasing
number of fibers are subjected to the pullout effect, and, in
consequence, the material toughness increases.

Analysis of the interaction effects between matrix, fiber and
interface debonding For identical time steps, sequential por-
traits of plasticity in fibers, matrix damage and matrix–fiber
interface debonding distributions can be superimposed to
visualize the failure characteristics of each compound. The
analysis, at the microstructural level, reveals various failure
mechanisms which synergistic interaction accounts for the
larger strength and higher toughness properties. The analysis
is performed with four values of τ u

Γ = [0.001, 1, 5, 50 MPa.
In concordance with these values, we distinguish three differ-
ent failure mechanisms, depending on the fiber–matrix bond
responses: (i) fully debonded fibers, (ii) partially debonded
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Fig. 7 Damage distribution in cement matrix with different matrix–
fiber bond strength parameters

fibers and (iiii) fully bonded fibers. They are specifically ana-
lyzed in the following items.

(i) Fully debonded fibers: (τ u
Γ = 0.001 MPa)

Weak fiber–matrix interfaces are generally associated to
a low fracture toughness of the composite. A weak inter-
face posses low fiber–matrix stress transfer capacity and,
therefore, the fiber strengths are not fully utilized. Accord-
ing to the results in Fig. 6b, low ductility is associated with
τ u
Γ = 0.001 MPa. Under tensile loads, the model shows a

sudden debonding in the whole domain, as it is observed in
the debonding distribution of Fig. 8 with a consequent loss of
the material composite effect. In this case, we verify that for
enough small values of the ultimate bond strengths, the model
is able to represent weak fiber–matrix interfaces. In fact, this
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Fig. 8 Results for τ u
Γ = 0.001 MPa. a Distribution portraits of fiber

plasticity, fiber–matrix interface debonding and matrix damage at the
end of analysis. The fiber–matrix interface debonding map is repre-
sented with only two states: 0 is no-debonding (τΓ < τ u

Γ ), 1 is debond-
ing meaning that in some loading stage (τΓ = τ u

Γ ). Damage map ranges
between 0 and 1, b load versus displacement curve, c ūx displacement
plot along the specimen horizontal direction (numbers are in correspon-
dence with the loading stages shown in b), d plots of the fiber–matrix
slip β along the specimen horizontal direction (numbers are in corre-
spondence with the loading stages shown in b)

is a consequence of the Capriz balance equation, which gov-
erns the microstructural behavior. When using τ u

Γ ≈ 0 MPa,
the fiber strain also approaches to zero, and therefore, the
fiber is pulled out from the matrix immediately after the load
is applied. Also, this implies that the slip β can take any arbi-
trary value after the bond strength is exhausted. Certainly,
the value of the slip is of the same order of magnitude than
the displacement ūx , as shown in Fig. 8c, d, where the slip β
and ūx displacement are plotted along the length of the strip
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(a)

(b)

1

2)
N(

P

(mm)

Fig. 9 Results for τ u
Γ = 1 MPa. Distribution portraits of fiber plastic-

ity, fiber–matrix interface debonding and matrix damage at the end of
analysis: a stage 1 at the softening regime onset. b Stage 2 in the end
of the loading process

in different stages of the loading curve as indicated in Fig.
6b. Damage concentration in the notch section is due to the
inability of the fiber–matrix interface to transfer the stresses.
According with the damage and debonding results in Fig. 7,
small axial strain in the fibers is developed due to the sud-
den debonding, and consequently, yielding is not achieved,
as confirmed in the fiber plasticity distribution.

(ii) Partially debonded fibers: (τ u
Γ = 1 MPa)

In the case simulated with τ u
Γ = 1 MPa, which in accor-

dance with the Fig. 6 displays semi-ductile behavior, rep-
resents a partially debonded example. The results obtained
in this case are shown in two different instants indicated in
Fig. 9. The first instant, Fig. 9a, represents a stage during the
hardening process. The second instant, Fig. 9b, represents a
stage at the end of the localization process.

The assumed perfect plastic material behavior adopted for
the matrix–fiber bond slip relationship gives rise to the slip
when the ultimate bond shear strength is reached, and subse-
quently the shear deformation is increased. In the first instant,
depicted in Fig. 9a, it is noticeable that fiber–matrix interface

(a)

(b)

Fig. 10 Distribution portraits of fiber plasticity, fiber–matrix interface
debonding and matrix damage at the end of analysis: a results for τ u

Γ =
5 MPa. b Results for τ u

Γ = 50 MPa. Scales of the iso-colour maps for
the plasticity, damage and debonding distributions are similar to the
description given in the legend of Fig. 9

debonding evolves as a consequence of the increase in the
slip. Fiber–matrix interface debonding and matrix damage
may be triggered because of their weakness to resist shear
stresses. This behavior indicates that the matrix damage and
sliding frictional resistance of fiber pullout largely determine
the composite toughness and the hardening properties (Bey-
erlein and Phoenix [2]). Inspection of the plots for damage
and plasticity in the second stage, Fig. 9b, indicates that the
crack opening in the notch, due to cumulative damage, is
accompanied with loss of adhesive bond in the matrix–fiber
interface and plastic strain in fibers.

After comparing the debonding maps of stage 2 in Fig. 9
with those of stage 1, we note that only few more points in
the specimen achieve the ultimate bond shear strength at the
end of analysis.

(iiii) Fully bonded fibers to the matrix: (τ u
Γ = 5 −

−50 MPa)
High adhesive interfaces can be achieved by improv-

ing, at microstructural level, the properties of fiber surface.
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Fig. 11 Notched three point beam bending test with randomly distrib-
uted fibers. a Specimen geometry, b numerical and experimental load F
versus vertical displacement δ of the loading application point in three
point notched beam test, c crack pattern obtained in the experiment

Table 7 Material parameters adopted in the model to simulate the
notched beam specimen test under flexural loading

Matrix Fiber Bond (fiber–matrix)

σ uc
m = 21.25 MPa σ

y
f = 2100 MPa τ u

Γ = 5.1 MPa

Em = 13.89 GPa E f = 210 GPa GΓ = 1.e8 GPa/m

νm = 0.2 H f = 100 MPa HΓ = 100 MPa/m

G f = 100 N/m θ = [0◦, 10◦, 20◦, k f = 1 %

30◦, 45◦, 60◦,
70◦, 80◦, 90◦]

However, a strong interface may result in lower toughness,
because this effect does not allow interfacial debonding,
which is one of the main mechanisms to relieve stress concen-
trations produced by the oncoming crack (Jiang et al. [7]).
With a view towards investigating this possibility, simula-
tions were performed for τ u

Γ = 5 and 50 MPa.

(b)(a)

(c)

Fig. 12 Experimental and numerical crack pattern in the three point
notched beam test. a Experimental, b numerical, c deformed finite ele-
ment mesh

Observing the corresponding load–displacement curves in
Fig. 6b, the model predict similar structural responses. Even
more remarkable is the fact that plasticity and damage exhibit
similar distribution patterns at the end of the loading process.
It seems reasonable to propose, based on these results, that
in both situations, the dominant failure mechanism at the
mesoscale is the fiber plasticity. Although the debonding dis-
tribution is distinctively different, this effect does not seem
to affect significantly the structural response. Experimental
results corroborate that if the fiber–matrix interface strength
is much higher than the matrix strength in shear, then, the
matrix damage will occur instead of fiber–matrix debonding.
This experimental fact is also supported through numerical
simulation by observing results for τ u

Γ = 50 MPa in Fig. 10.
Although the matrix multicracking is much more significant
in this case, plastic deformation in fibers occurs in the path
of the critical crack. In summary, the pullout process, and in
consequence the failure mechanism for high adhesives inter-
faces, involves essentially matrix damage and plasticity.

5.2 Notched three point beam bending test with a random
distribution of fibers

The numerical analysis of degradation mechanisms in beams
bending tests, built of HPFRC composites with fiber oriented
in only one direction, such as that presented in Oliver et al.
[18], are illustrative because the results of these kind of tests
are simpler to interpret. Nevertheless, reinforced composites
with randomly orientated fibers are much more frequent in
practical cases.

The present numerical simulation is addressed to analyze
a notched beam with randomly distributed short fibers. The
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Fig. 13 Evolution of the matrix–fiber debonding process in the notched beam test for three fiber bundles directed along 0◦, 45◦ and 90◦ respect
to the horizontal direction. Stages 1, 3, 4, 6 and 7 correspond to the points marked in Fig. 11b

(a) 0ο (b) 45ο (c) 90ο

1
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Fig. 14 Evolution of fiber plasticity in three point notched beam test for three fiber bundles directed along 0◦, 45◦ and 90◦ respect to the horizontal
direction. Stages 1, 3, 4, 6 and 7 correspond to the points marked in Fig. 11b

experimental test corresponding to this case has been pre-
sented by Bencardino et al. [1], and has been carried out
according to the RILEM specification [19]. The beam geom-
etry is shown in Fig. 11a.

In Table 7, we define the mechanical properties adopted in
the numerical model for the matrix, fiber bundles and fiber–
matrix interface. Also, we assumes that nine fiber bundles
represent sufficiently well the random distribution of fibers.
The finite element model, assumed as a plane stress condi-
tion, consists of 3,938 quadrilaterals with 4,032 nodes.

The experimental load versus displacement curve, of a
FRC specimen with fiber fraction volume equal to 1 %, is

presented in Fig. 11b, (taken from Bencardino et al. [1]). In
the same plot, we compare the numerical solution. Experi-
mental and numerical curves agree quite well up to the peak
load. However, after this point, the numerical model slightly
overestimates the postcritical response. Also, in the same
plot, the experimental unreinforced (plain concrete) speci-
men is shown. A brittle behavior is observed.

5.2.1 Mesostructural behaviour

In the experimental test, a complete separation of the speci-
mens into two parts has occurred, as shown in Fig. 11c. The

123

Author's personal copy



1260 Comput Mech (2013) 52:1243–1264

1
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Fig. 15 Damage evolution in three point notched beam test

Fig. 16 Double-notched dogbone specimen tensile test (Suwannakarn
[21])

finite element simulation also predicts a single crack, see Fig.
12a:b. However, the specimen does not split abruptly in two
parts as for the unreinforced beam. The deformed configura-
tion of the beam after loading is scaled by 10 in Fig. 12c.

Figures 13 and 14 display the evolution of the simulta-
neous capacity loss of matrix–fiber bound, as well as, the
plastic strains of fibers, respectively. Three bundles of fibers

(b)(a)

Fig. 17 Double-notched dogbone specimen tensile test: a test layout,
b finite element mesh

Table 8 Material parameters

Matrix Fiber Bond (fiber–matrix)

σ ut
m = 1.25 MPa σ

y
f = 2100 MPa τ u

Γ = 5.1 MPa

Em = 13.89 GPa E f = 210 GPa GΓ = 1.e8 GPa/m

νm = 0.2 H f = 100 MPa HΓ = 100 MPa/m

G f = 100 N/m θ = [0◦, 10◦, k f = 0.75 %

20◦, 30◦, 45◦,
60◦, 70◦, 80◦,
90◦]

Fig. 18 Numerical and experimental structural response in double
notched dogbone test. Average stress versus δ displacement. (a) Numer-
ical. (b) Experimental (Suwannakarn [21])

(oriented to 0◦, 45◦ and 90◦) and different stages along the
load deflection curve are specifically analyzed. According to
these results, the evolution of both mechanisms are concen-
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(3)(2)(1)

(a)

(b)

(c)

Fig. 19 Tensile response in double notched test: a typical crack propagation and strain localization in HPFRC composites as described in Suwan-
nakarn [21], b damage distribution (d ≥ 0.98), c iso-displacement curves displaying the macrocrack formation and evolution

trated in the region near the notch, where crack propagation is
expected to occur. The attention is addressed initially to ana-
lyze the debonding distribution of the fiber bundles oriented
0◦ and 45◦ respect to the horizontal direction (Fig. 13a, b,
respectively). These results suggest that the loss of the adhe-
sion in the interface zone starts during the initial loading
stages. However, for the bundle fiber oriented 90◦, Fig. 13c,
the distribution of the same variable displays that the process
begins later and it does not affect the area located near the
notch.

5.2.2 Damage evolution and localization process

Microcracking in the cement matrix occurs simultaneously
with debonding and plasticity of fibers during the fracture
process. Figure 15 displays the iso-color damage maps in six
different stages that are identified in the load versus displace-
ment plot of Fig. 11b.

In the stages 1 and 2, few elements around the notch are
damaged. As loading progresses, the damage region spreads
over beyond the notch section. In the stage 3, some elements
in the bottom part of the beam begin to damage. From stage

3, the damaged region covers the middle third and remains
almost unaltered until the end of the loading process. Darker
red color stands for completed damage material. According
to the iso-color map in the stage 7, severe degraded material is
presented in the notch proximity. However, comparing this
result and the iso-displacement contours in Fig. 12b only
a single vertical macrocrack, initiated in the notch root, is
developed.

5.3 Double-notched dogbone specimen tensile test

According with Suwannakarn [21], from where we take the
experimental results of this test, the dogbone-shaped notched
specimen is well adapted to control the location of the crack
position. To ensure an adequate propagation path, the speci-
men has symmetrical notches at their mid section. Addition-
ally, this test setup is useful to measure the composite fracture
properties of HPFRC composites and estimate the size of a
pseudo-plastic zone which corresponds to the cracked area
of the matrix.

The geometric details of the specimen are shown in Fig.
16. Dimensions are given in Fig. 16b, c for the longitudinal
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(3)(2)(1)

(a)

(b)

(c)

(d)

Fig. 20 Main stages of debonding and plasticity evolution of the loading process in the dogbone test. a Debonding distribution (fiber bundle:
θ = 0◦). b Plasticity distribution (θ = 0◦). c Debonding distribution (fiber bundle: θ = 90◦). d Plasticity distribution (θ = 90◦)

and cross section, respectively. The loading process consists
of imposing displacements at the specimen top, while fixing
the bottom, as indicated in Fig. 17a.

The material parameters for this example are summarized
in Table 8. The specimen is reinforced with hooked end fibers
and has a fiber volume fraction of 0.75 %. The test is simu-
lated using 1,639 quadrilateral finite elements in plane stress
condition. In order to capture the concrete fracture phenom-
ena, we adopt the formulation presented in the previous sec-
tion based on the injection of constant strain localized modes.
The finite element mesh is shown in Fig. 17b.

Figure 18 plots the stresses versus crack opening displace-
ments obtained with the numerical simulation. This result is
compared with the envelope of the experimental tests which
were obtained with a small number of specimens (only 3).
In both, numerical and experimental results, can be observed
that after the initial elastic response, the structural behav-
ior displays a hardening effect even when a multiple crack
phenomena is developing. The numerical result follows this
trend and lies within the experimental envelopes. However,

after crossing the peak load value, the numerical solution
deviates from the experimental data.

5.3.1 Crack propagation analysis in the notched hooked
end fiber specimen

In Fig. 19, we analyze the crack propagation phenomenon.
The numerical solution displays a fracture process starting
in the roots of the specimen notches, such as observed by
Suwannakarn. And cracks evolve in a similar manner to that
described in Fig. 19a.

There are three main stages represented in Fig. 19 corre-
sponding to: the onset of the first crack (column 1 of pictures),
multiple cracks, associated with strain hardening (column 2),
and (3) the strain localization stage, associated with strain
softening (column 3).

As the specimen is subjected to tensile loads, damage con-
centration arises mostly at the notch root proximity, as it is
shown in the first stage of Fig. 19b. After initiation, the dam-
age extends in several directions (stage 2 of Fig. 19b). A large
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Fig. 21 Failure mode in the
double notched test. a
Numerical. b Experimental
(Suwannakarn [21])

(a) (b)

damage zone is observed during this stage, but the macro-
cracks formed at the notch roots do not propagate, proba-
bly arrested by the fibers. According to Suwannakarn, the
first crack does not necessarily propagates across the sec-
tion, prior to the formation of other cracks. The numerical
results have captured this effect.

Figure 19c shows iso-displacement contours plot in the
three considered stages. As can be seen in the contour
plots, the macrocrack propagates from the notch roots to
the specimen center, nonetheless, branching at the notches
is observed in the initial stages, so that more than one crack
are competing.

Pictures in Fig. 20 compares the debonding and plastic
evolution in the fiber bundles oriented at angles: θ = 0◦
and 90◦ respect to the loading direction. Observing Fig. 20b,
c, they suggest that the pullout process involves initially, a
debonding action, which provides several alternative paths
for the crack propagation. And second, fiber plastic defor-
mation, which contributes directly to the total deformation
of the composite. According with these results, the debond-
ing action is preceded by the formation of new surfaces at
the fiber–matrix interface; therefore, reduction of composite
strength may be significantly related to the loss of interface
resistance. Figure 20d also reveals that plastic deformation
is not observed in horizontally placed fiber bundles. How-
ever, debonding plots in Fig. 20c predict loss of adhesive and
frictional capacity in the interface zone.

Iso-displacement contours for total displacements (‖ū‖),
in Fig. 21a, shows a single macrocrack between the two sym-
metrical notches. This crack pattern agrees with the exper-
imental observation of the three specimens depicted in Fig.
21b. The fractured specimens are depicted on the right hand
side of the Fig. 21. Since the presence of the notches in the

specimen was designed to induce stress concentration in the
central region and, in turn, an easy predictability of the crack
pattern, nevertheless, experimental findings partially reflect
this assertion and show in one case (according to Suwan-
nakarn) a deviated crack path respect to the desired trajectory
(Fig. 21b, left).

6 Conclusions

Considering the numerical solutions of problems solved in
Sect. 5, as well as, those complementing the set of valida-
tion tests that were presented in the paper of Oliver et al.
[18] using the identical micromorphic model; we conclude
that, the numerical approach developed for simulating fail-
ure of HPFRC composites is able to capture important effects
induced by the concrete fracture and the mechanical interac-
tion between fiber and matrix.

Some parameters that are explicitly considered in the
model, and which dramatically affect the composite response
leading to the complete failure, are: quantity of fibers, yield
strength of fibers and strength of cement. Other important
parameters, such as the fiber shape, roughness of the fiber
surface, fiber aspect ratio, etc., have been implicitly consid-
ered through a phenomenological law describing the shear–
slip interaction in the fiber–matrix interface. The numerical
assessments have highlighted the influence of some of these
parameters in the structural responses.

The model introduces as many slip displacement fields,
and microscopic balance equations, as fiber bundles are con-
sidered in the composite. Therefore, a variable number of
dof’s per node have to be managed. We have proposed a very
efficient numerical procedure to handle this specific feature
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of the problem. It is based on a partitioning of the macro- and
microforce balance equations, a predictor step of the slip dis-
placement fields, one for every fiber bundle, and the Impl-Ex
integration scheme.

The concrete fracture model included in the numerical
procedure uses a technique that is not affected by the finite
element mesh [4].

The notched strip results obtained with the simulation
model in Sect. 5.1, exemplifies the use of this computational
tool. The conclusions obtained from this test, and particu-
larly those obtained in the analysis of the three main cases of
bonding in cementitious composites, can be extended to the
analysis of more complex situations.

In the tests presented in Sects. 5.2 and 5.3, we have ana-
lyzed the effect of fiber plasticity and debonding as a function
of the inclination angle of the fiber respect to the load direc-
tion. However, there is one mesoscopic effect that the model
do not address specifically. In fact, we have assumed that the
shear stress-slip law characterizing the mechanical response
of the bond, in the fiber–matrix interface, does not changes
with the direction of the fiber. According to Lee at al. [8],
due to the mechanisms of snubbing, matrix spalling and
fiber straightening, these law changes notably with the fiber
direction. Future research should be addressed to include this
important phenomenon in the numerical model.
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