
Accepted Manuscript

Glacial-related morphology and sedimentary setting of a high-latitude lacustrine basin:
The Lago Chepelmut (Tierra del Fuego)

Jorge G. Lozano, Alejandro Tassone, Donaldo M. Bran, Emanuele Lodolo, Marco
Menichetti, María E. Cerredo, Federico Esteban, Juan P. Ormazabal, José Ísola,
Luca Baradello, Juan F. Vilas

PII: S0895-9811(18)30179-2

DOI: 10.1016/j.jsames.2018.06.020

Reference: SAMES 1960

To appear in: Journal of South American Earth Sciences

Received Date: 23 April 2018

Revised Date: 27 June 2018

Accepted Date: 27 June 2018

Please cite this article as: Lozano, J.G., Tassone, A., Bran, D.M., Lodolo, E., Menichetti, M., Cerredo,
Marí.E., Esteban, F., Ormazabal, J.P., Ísola, José., Baradello, L., Vilas, J.F., Glacial-related morphology
and sedimentary setting of a high-latitude lacustrine basin: The Lago Chepelmut (Tierra del Fuego),
Journal of South American Earth Sciences (2018), doi: 10.1016/j.jsames.2018.06.020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jsames.2018.06.020


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Glacial-related morphology and sedimentary setting of a high-latitude 1 

lacustrine basin: The Lago Chepelmut (Tierra del Fuego) 2 

 3 

 4 

Jorge G. Lozano1,2, Alejandro Tassone1,2, Donaldo M. Bran1,2, Emanuele Lodolo3, Marco Menichetti4, 5 

María E. Cerredo1,2, Federico Esteban1,2, Juan P. Ormazabal1,2, José Ísola1,2, Luca Baradello3, Juan F. 6 

Vilas1,2 
7 

 8 

(1) Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Depto. De Ciencias Geológicas. Buenos Aires, 9 

Argentina 10 

(2) CONICET-Universidad de Buenos Aires. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires 11 

(IGeBA). Buenos Aires, Argentina 12 

(3) Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS). Trieste, Italy 13 

(4) Dipartimento di Scienze Pure ed Applicate, Università di Urbino, Italy 14 

 15 

 16 

Abstract 17 

Lago Chepelmut is a relatively small lake in size, of ellipsoidal shape, located in the outer fold-and-18 

thrust belt of the Fuegian Andes (southernmost South America). High-resolution single-channel 19 

seismic profiles, integrated with geological information in the surrounding area, have allowed to 20 

reconstruct for the first time a bathymetric map of the lake and the architecture, distribution and 21 

thickness of the sedimentary cover. Two main seismic units were identified in the seismic records: (i) 22 

a Lower Unit of glacial nature, likely associated to the Last Glacial Maximum (LGM), and irregularly 23 

distributed through the basin, and (ii) an Upper Unit of lacustrine origin which drapes the entire basin. 24 

Submerged moraine deposits within the lake were also found from seismic data, and correlated with 25 

moraine arcs widespread distributed in the surroundings of the basin. These morphologies represent 26 

the recessional deposits left by the Ewan glacier lobe, one of the easternmost fronts of the Tierra del 27 

Fuego glaciers during the LGM. The lacustrine sedimentary record shows that the lake level was not 28 

constant through the recent history of the lake. Moreover, data analyses has shown that there is also 29 

an important structural component that has conditioned the evolution of the basin, in addition to that 30 

linked to glacial activity. 31 

 32 

Keywords: Tierra del Fuego, Lago Chepelmut, single-channel seismic profiles, sedimentary sequences, 33 

glacial morphology, Quaternary evolution 34 

 35 

 36 

1. Introduction 37 

Lago Chepelmut is located in the southernmost Andes, in Isla Grande de Tierra del Fuego (Figure 1), 38 

an area where superposed tectonic phases occurred since the Mid Cretaceous, in combination with 39 
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repeated glacial events, have significantly shaped the landscape (see Menichetti et al., 2008, and 40 

references therein). The basin lies just to the north (12 km) of Lago Fagnano, the largest freshwater 41 

lake in the entire island, interpreted as a pull-apart basin developed within the principal deformation 42 

zone of the Magallanes Fagnano Fault System, which marks the western segment of the South 43 

America-Scotia transform boundary (Lodolo et al., 2002, 2003; Esteban et al., 2012, 2014, among 44 

others). Several kilometers to the west of Lago Chepelmut, the Deseado Fault Zone appears as a 45 

subsidiary structure associated with the Magallanes-Fagnano Fault System (Klepeis, 1994b). 46 

 47 
Figure 1. Physiographic and structural provinces in Isla Grande de Tierra del Fuego. Magallanes fold 48 

and thrust belt corresponds to the external fold and thrust belt; Fuegian Andes corresponds to 49 

the internal fold and thrust belt. The red dashed line is the thrust front of the Magallanes fold 50 

and thrust belt (MFB). Magallanes-Fagnano Fault System (MFFS), Canal de Beagle Fault System 51 

(CBFS) and Deseado Fault Zone (DFZ) are also indicated in red lines. FGAbA: Fagnano glacier 52 

ablation area; FGAcA: Fagnano glacier accumulation area; FL: Fuego ice lobe; EL: Ewan ice 53 

lobe. The inset box shows the current plate tectonic frame of the southern tip of South 54 

America and Scotia Sea. NP: Nazca Plate; CHT: Chile Trench; TdF: Tierra del Fuego; NSR: North 55 

Scotia Ridge. The black dashed box bounds the studied area.  56 

 57 

The Lago Chepelmut, which displays an ellipsoidal shape (average major and minor axis of 8 58 

and 5 km, respectively), is located in a low altitude zone (between 900 and 50 m.a.s.l.) within the 59 

“Corazón de la Isla” Provincial Reserve. The lake, along with the Lago Yehuin, are the two main 60 

freshwater lacustrine bodies within the reserve and in the Fuegian steppe. Río In connects both basins 61 

and provides the water input from Lago Chepelmut to Lago Yehuin (Figure 2).  62 

 A series of geophysical surveys have been conducted in Tierra del Fuego region since 2001, 63 

primarily focusing in deciphering the tectonic evolution of the South America-Scotia plate during the 64 

Cenozoic (Esteban et al., 2011, 2014; Lippai et al., 2004; Lodolo et al., 2002, 2003, 2007; Menichetti et 65 

al., 2001, 2007a and b, 2008; Tassone et al., 2005, 2010, 2011; Waldmann et al., 2008, 2009, 2010a, 66 
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b). Several works, mainly of geophysical nature, have been devoted to other Fuegian lakes, i.e. Lago 67 

Fagnano (Lippai et al., 2004; Zanolla et al., 2011; Waldmann et al., 2008, 2010, 2011; Esteban et al., 68 

2014), Lago Roca (Lodolo et al., 2010) and, more recently, Lago Yehuin (Lozano et al., 2018).  69 

 The main objective of this work is to reconstruct the genesis of Lago Chepelmut basin and 70 

analyze the nature, depositional architecture and thickness of the sedimentary infill from the 71 

interpretation of high-resolution seismic records acquired within the lake. This represents the first 72 

geophysical survey performed in the lake. Almost 23 km of profiles were acquired and used to present 73 

a new bathymetric map of the lake, to reconstruct the geometry and morphology of the cover, and 74 

analyze the possible relationship between pre-existing structures and the recent sedimentary setting.  75 

This study contributes to the knowledge of the lake evolution during the Quaternary and 76 

analyzes its depositional history in an environment that was strongly affected by glacial activity, 77 

within a complex geological setting presently dominated by strike-slip tectonics.  78 

 79 

2. Regional and geologic framework of Lago Chepelmut  80 

2.1. The Fuegian Andes 81 

The regional geologic history of the Fuegian Andes is the product of a succession of contrasting 82 

tectonic regimes. A widespread extensional regime in the Late Jurassic was established along the 83 

southern Patagonian and Fuegian continental margin which resulted in the formation of the Rocas 84 

Verdes marginal basin and the silicic volcanic deposition of Lemaire or Tobífera Formation (Dalziel et 85 

al., 1974; Suárez and Pettigrew, 1976; Hanson and Wilson, 1991; Calderón et al., 2007). An extended 86 

fault array consisting of N- to NW-oriented grabens and half-grabens and E- to NE-oriented transfer 87 

faults were developed within this Jurassic stage (Ghiglione et al., 2013). Since the Late Jurassic to Early 88 

Cretaceous, the stretching produced oceanic floor in the Rocas Verdes basin (Mukasa and Dalziel, 89 

1996; Calderón et al., 2007), which was filled by Early Cretaceous marginal marine to arc-derived 90 

sequences, such as the Yaghan, Beauvoir, Zapata, Erezcano and Hardy formations (Olivero and 91 

Martinioni, 2001; Fildani and Hessler, 2005, Torres Carbonell et al., 2014). During the Late Cretaceous, 92 

a compressive tectonic regime in the Pacific margin of the South America Plate (i.e., the Andean 93 

Orogeny) led to the closure and inversion of the Rocas Verdes basin and to the development of the 94 

fold and thrust belt (Dalziel et al., 1974; Bruhn, 1979; Nelson et al., 1980; Wilson, 1991; Klepeis, 95 

1994a; Diraison et al., 2000; Kraemer, 2003; Menichetti et al., 2008; Klepeis et al., 2010; Torres 96 

Carbonell et al., 2011, 2013). 97 

During the Paleocene – Early Eocene, an extensional period characterized the area (Dalziel and 98 

Brown, 1989; Galeazzi, 1998; Ghiglione et al., 2008, 2010), with the development of extensional 99 

structures recognized near Canal de Beagle (Dalziel and Brown, 1989) and offshore in the Malvinas 100 

Basin (Galeazzi, 1998; Baristeas et al., 2013). Later, during the Late Eocene, the tectonic regime 101 

changed to a further compressive period and the propagation of the fold and thrust belt (Ghiglione, 102 

2016). 103 

Finally, a strike-slip tectonic regime was established during the Cenozoic in the central and 104 

southern area of the Tierra del Fuego, coeval with the formation of the Scotia Plate and its northern 105 
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boundary with the South America Plate, represented by the Magallanes-Fagnano fault system (Klepeis 106 

and Austin, 1997; Diraison et al., 2000; Lodolo et al., 2002, 2003; Ghiglione and Ramos, 2005). Since 107 

then, this transform boundary accommodates the relative movement between South America and 108 

Scotia plates. The associated structures are mainly transtensional in nature, with the development of 109 

pull-apart basins along the main wrench faults (Lodolo et al., 2003; Menichetti et al., 2008). The 110 

Deseado Fault Zone (Figure 1) is one of the secondary structures associated with the plate boundary 111 

and with the Magallanes-Fagnano Fault System. The Deseado Fault Zone is a linear structure about 50 112 

km long with a left-lateral movement and associated extensional component which runs across Lago 113 

Deseado, in the Chilean territory, outside the studied area (Klepeis, 1994b). 114 

 115 

2.2. Geology and morphology of the Lago Chepelmut area 116 

The main structural features of the Lago Chepelmut area are represented by NE-verging thrusts, with 117 

a morphology characterized by elongated NW valleys (Figure 2; Buatois and Camacho, 1993). The 118 

landscape surrounding the lake displays a smooth relief of elongated mounds, crossed by small and 119 

mostly rectilinear valleys. These valleys run parallel to the mounds with an N direction and parallel to 120 

the lake margin. The area, located in the central part of Isla Grande de Tierra del Fuego, exposes a 121 

succession of Lower Cretaceous to Eocene units outcropping along WNW-oriented belts (Figure 2; 122 

Malumián and Olivero, 2006; Olivero and Malumián, 2008; Martinioni et al., 2013). The Lower 123 

Cretaceous Beauvoir Formation is found along the northern margin of Lago Fagnano; it is part of the 124 

fill of the former Rocas Verdes marginal basin, and is composed of slates, mudstones and subordined 125 

sandstones of hemipelagic deep-marine environment. The Upper Cretaceous formations of Arroyo 126 

Castorera, Río Rodríguez and Policarpo are mudstone-dominated, with an upward increase in coarse 127 

sand material and represent the transition to the Late Cretaceous Austral foreland basin evolution. 128 

This transition is interpreted as a turbiditic deposits that were progressively accumulated in front of 129 

the rising Fuegian Andes (Martinioni et al., 2013). The exposures of Policarpo Formation in the vicinity 130 

of Lago Chepelmut display a fairly constant WNW strike and are often affected by thrusting (Buatois 131 

and Camacho, 1993, Torres Carbonell et al., 2013). The Paleocene Tres Amigos Formation (known as 132 

Cerro Apen Beds in Martinioni et al., 2013) consists of conglomerates, sandstones and siltstones from 133 

fan delta deposits. Leticia and Cerro Colorado formations, both from Eocene of La Despedida Group 134 

(Martinioni et al., 2013), crops out in the northeast area, near the Lago Chepelmut. These formations 135 

consist of grey to green sandstones of SW dip, intercalated with yellow mudstones and sandstones of 136 

a coastal environment (Malumián and Olivero, 2006).  137 
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 138 
Figure 2. Geologic map of the Lago Chepelmut and its surroundings. Location is displayed in Figure 1. 139 

The bathymetry of the Lago Chepelmut (from this paper), Lago Yehuin and Lago Fagnano are 140 

also shown. Map adapted from Buatois and Camacho (1993), Menichetti et al. (2008), 141 

Martinioni et al. (2013), Torres Carbonell et al. (2013) and Esteban et al. (2014). Red dots 142 

show the position of some of the studied outcrops in the area, with the reference to the 143 

respective figure. The purple dashed lines enclose the area of the Fagnano palaeo-glacier, 144 

Fuego and Ewan glacier lobes after Coronato et al. (2009).  145 

 146 

A significant proportion of the surrounding area of Lago Chepelmut is dominated by 147 

Quaternary deposits, mostly of glacial origin. During the Late Pleistocene, glaciers originating from the 148 

Cordillera Darwin ice sheet flowed to the east (Caldenius, 1932; Meglioli, 1992; Bujalesky et al., 1997). 149 

During the Last Glacial Maximum (LGM), ca. 25 ky B.P., multiple tributary glaciers flowed from the 150 
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northern and southern sides of the Fagnano glacier (Coronato et al., 2009; Rabassa et al., 2011) which 151 

drained into the Atlantic Ocean through four main lobes (Figure 1). Among these, two ice-tongues 152 

(i.e., Fuego and Ewan), flowed through the studied area (Figure 2), as evidenced by the presence of 153 

frontal moraines along the valleys of Fuego and Ewan rivers (Coronato et al., 2008a, b). The 154 

Chepelmut moraine (Figure 3A) is located at the eastern side of the lake, and it represents the most 155 

proximal onland moraine of the Ewan valley. Its elevation is between 100 and 200 m.a.s.l. and is 156 

distributed along the northern margin of Lago Chepelmut. An inner arc of the moraine with an 157 

elevation between 70 and 100 m.a.s.l. is observed next to the eastern margin of the lake.  158 

The Lago Chepelmut, together with Lago Yehuin and Lago Fagnano, were included in an older 159 

moraine-dammed lake known as Paleolago Fueguino, which drained their waters to the Atlantic. 160 

Progressively, this lake drained and decreased their water level, and left evidence in the sedimentary 161 

deposits within the lakes (Del Valle et al., 2007). The most notable features are the fluvial terraces in 162 

the Ewan river valley and the lake terraces along the eastern margin of Lago Chepelmut (Figure 3B).  163 

Near the eastern margin of Lago Fagnano, the basal till that overlies the glacio-lacustrine and 164 

glacio-fluvial deposits is composed by sedimentary breccia which includes boulder of siltstone, 165 

sandstone and fossil peat. In other locations, laminated clayey-sandy silts overlie gravel beds, and 166 

yellowish grey, fine sands with planar-parallel bedding are also recognized (Bujalesky et al., 1997). At 167 

the eastern margin of the Lago Chepelmut, cross-bedded sands with some gravel layers compose the 168 

post-glacial deposits (Figure 3C).   169 

 170 
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 171 
Figure 3. Landscape details and outcrops in the Lago Chepelmut area (location in Figure 2). A) An east-172 

view of the inner arc of the Chepelmut moraine, pointed with an arrow. B) Lake terraces 173 

located at the eastern margin of the Lago Chepelmut. The terraces represent older stages of 174 

the lake shoreline. C) Deposits of a dissected lake terrace at a river meander with cross-175 

bedded sands.   176 

 177 

3. Data acquisition 178 
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In the period March-April 2014, four high-resolution, DGPS-navigated single-channel seismic profiles 179 

were acquired in the Lago Chepelmut (Figure 4). The acquisition, performed on board a Zodiac boat, 180 

was carried out with a Boomer as a seismic source and a 10-m-long streamer (see Donda et al., 2008, 181 

Baradello and Carcione, 2008, Lodolo et al., 2012, for technical details of the H-R system used). 182 

Sampling rate was 50 μs, and the recording length 400 ms. Along-track horizontal resolution of 1 trace 183 

every 1.0 m was achieved shooting at 0.5 s interval (at an average speed of 4 knots). Data were first 184 

edited for noise traces, and a time-variant filtering and spike deconvolution were applied to improve 185 

the signal/noise ratio. To obtain the final version of the profiles for interpretation, we applied on 186 

traces the spherical divergence correction and an automatic gain (10 ms). The seismic profiles have 187 

been uploaded, displayed and interpreted using the Kingdom Suite®software package (version 8.3). 188 

To convert the two-way travel time of the high-resolution profiles to depth, we have assumed 189 

different sound velocities based on the observable characteristics of each defined seismic unit and 190 

according to the glacial deposits studied by Pugin et al. (1999). A water sound velocity of 1432 m/s 191 

was used to produce the lake bathymetry, following Zanolla et al. (2011). Grids were created applying 192 

a Kriging method. In order to remove incoherent data, minor editing was applied to these grids. 193 

Considering that it has not been possible to create a regular grid of seismic lines to completely and 194 

evenly cover the lake due to the often severe weather conditions, the construction of the bathymetric 195 

map has required some interpolations. One of them was made assuming certain uniform bathymetry 196 

between the beginning of each line and the shoreline, and smoothing significantly the automatic 197 

contour produced by the algorithm from one line to the adjacent. For the thicknesses grids, data were 198 

also interpolated between the four lines, assuming a virtual absence of sedimentary thickness in the 199 

proximity of the lake margins. However, to verify the coherence between the thickness maps of the 200 

two interpreted seismic units and the total sedimentary infill, a stacking of the grids was made to 201 

check that no incoherent values exist between the stacked lower and upper units and the directly 202 

calculated total sedimentary infill. Finally, the GMT software (Wessel and Smith, 1991) was used to 203 

generate all the maps presented in this work. 204 
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 205 
Figure 4. The Lago Chepelmut area with the main geographic references and settlements. The 206 

location of the acquired seismic lines is displayed in red dashed lines. The drainage net in this 207 

sector includes both Lago Yehuin and Lago Chepelmut. The blue dashed line is the 208 

Atlantic/Pacific water divide. In addition, the bathymetric map of the Lago Chepelmut is 209 

displayed, showing the deepest zone of the lake near the center of the basin. The lake 210 

shoreline is located at 52 m.a.s.l.; contour lines are every 5 meters.     211 

 212 

4. Seismic record of Lago Chepelmut 213 

4.1. Bathymetry and acoustic basement 214 

The high-resolution seismic lines provided the information to produce the bathymetric map of the 215 

Lago Chepelmut (Figure 4). This map shows a deepest zone of almost 40 m located near the center of 216 

the lake. The margin slopes are relatively smooth, mainly in the western part (0.7° in the western and 217 

1.7° in the eastern margin, respectively). The northern and southern margins are slightly steep (0.9° 218 
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and 1.4°, respectively). Some mound-shaped structures are located near the southern and eastern 219 

side at 15 to 20 m water depth, respectively.  220 

The substratum of the Lago Chepelmut is represented by the acoustic basement, which is 221 

characterized by low-amplitude, discontinuous reflectors with no internal arrangement or particular 222 

reflector termination. Figure 5A shows the topography of the basement top. The depth increases 223 

progressively from the margins to the center of the lake, in concordance with the bathymetric map. 224 

The maximum depth reached is almost 110 m near the mid part of the seismic line 03. The western 225 

slope is gently sloping (1.4°), while the northern and southern slopes are steeper, with angles of 1.8° 226 

and 3.2°, respectively. The eastern slope is the steepest, with angles between 3.8° to 4.2°.  227 

 228 
Figure 5. A) Topographic map of the acoustic basement beneath the Lago Chepelmut, with a contour 229 

interval of 10 m. B) Map of the sedimentary thickness of the Lower Unit. The dashed red line 230 

indicates the NE orientation of the mounds. C) Sedimentary thickness of the Upper Unit. The 231 

dashed red line indicates the orientation of the deposits of the Upper Unit. D) Total 232 

sedimentary thickness.  233 

 234 

4.2. Seismic stratigraphy 235 

The sedimentary infill of the Lago Chepelmut has been differentiated into two seismic units on the 236 

basis of geometric patterns and internal architecture of the seismic reflectors: The Lower Unit, which 237 

can be well recognized in the seismic lines 01 (Figure 6) and 04 (Figure 8) by their particular mound-238 

like geometry; the Upper Unit, which covers the entire basin and smooth the topography (Figure 7).  239 

  240 
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 241 
Figure 6. Above, uninterpreted N-S high resolution single-channel seismic profile 01. Below, interpreted sketch with the reflector 242 

configuration and lineaments. Depth is given in two-way traveltime (TWT) and converted -only for this figure and as a qualitative 243 

measure - to sub-lake level depth (m) based on a P-wave velocity of 1432 m/s. The vertical exaggeration is shown in the lower 244 

left side of the interpreted section. The black lines are interpreted as normal faults. Numbers show the group of the faults 245 

according to the affected units; LU is the Lower Unit; UU is the Upper Unit. Details of the seismic sections are shown in the 246 

Figure 9. 247 
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 248 
Figure 7. Above, un-interpreted N-S high resolution single-channel seismic profile 02. Below, interpreted sketch with the reflector 249 

configuration and lineaments. References same as Figure 6.  250 

 251 
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 252 
Figure 8. Above, un-interpreted N-S high resolution single-channel seismic profile 04. Below, interpreted sketch with the reflector 253 

configuration and lineaments. References same as Figure 6. 254 
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 255 

The Lower Unit (Figure 9A) rests over the acoustic basement and is chiefly developed in the 256 

eastern half of the basin reaching a thickness of up to ~80 m in the central basin. For the time-depth 257 

conversion, a sound velocity of 2600 m/s was assumed (see Pugin et al., 1999). Overall the Lower Unit 258 

displays a mound-like geometry, grouped in three small mounds (Figure 5B). It is composed by seismic 259 

reflectors which include low-amplitude, high to medium intensity, discontinuous with a parallel to 260 

subparallel configuration, sometimes chaotic and with transparent intervals. 261 

The Upper Unit (Figure 9B) comprises the sedimentary record between the lake bottom and 262 

the top of the Lower Unit. For the time-depth conversion, a sound velocity of 1600 m/s was assumed 263 

for this unit. It is mainly characterized by layered and continuous reflectors with a draped distribution 264 

which fills the depressions of the underlying unit. The maximum thickness of almost 40 m is reached 265 

near the southern margin; the center of the basin has an average of 40 m. The Upper Unit becomes 266 

thinner towards the eastern and northern margins. In addition, there is a poorly defined NE trend for 267 

the distribution of this unit in the southern margin (Figure 5C). 268 

There are a few variations in the reflector geometries within this unit. The parallel intervals 269 

sometimes appear to be truncated by erosive unconformities. In other cases, the reflectors become 270 

chaotic with no internal arrangement, evidencing disturbed zones. The upper parts of the unit show 271 

wedging reflectors to the margins.  272 

Both seismic units make up a total sedimentary package within the Lago Chepelmut basin of 273 

almost 90 m of thickness in the deepest part of the basin (Figure 5D). The deposits appear to be 274 

distributed along a NE direction. 275 

 276 

4.3. Unconformities 277 

Several unconformities were recognized in the seismic profiles. Some of them are recognized in the 278 

whole basin while others are of limited extension, mostly restricted to basin margins. The identified 279 

unconformities are six. From the base to the top, the first one is located at the top of the acoustic 280 

basement, and is defined by a continuous and high amplitude reflector, U0 (Figure 9D) corresponding 281 

to an erosive surface extended in the entire basin. Upwards, another unconformity, U1, of regional 282 

extension within the Lago Chepelmut basin is defined by an erosive truncation of the underlying 283 

reflectors and onlap configuration of the overlying seismic reflectors (Figure 9D). It separates the 284 

Lower Unit from the Upper Unit. The other four unconformities are located within the Upper Unit, 285 

affecting the parallel reflectors. The U2 unconformity is an erosive truncation restricted to Lago 286 

Chepelmut margins which becomes a paraconformity in the central basin (Figure 9D). A clear erosive 287 

truncation is found along the southern margin of Lago Chepelmut basin, U3, which separates folded 288 

underlying reflectors from the downlap overlying reflectors (Figure 9E). A local angular unconformity, 289 

U4, is identified by an acoustic fabric characterized by the overlying reflectors downlapping against 290 

the underlying reflectors (Figure 9F). U4 is located only in the shallower zones of the northern and 291 

southern margins. The uppermost unconformity, U5, is a slight angular unconformity located through 292 
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the entire basin. The overlying reflectors wedge through the deepest zones, while the underlying 293 

reflectors are strongly parallel (Figure 9F).  294 

 295 
Figure 9. Lake level curve including the correlation with the seismic units and the main reflector 296 

patterns between the unconformities. Except U4, the unconformities were assigned with a 297 

qualitative lake level fall based on the extent and depth reached by each erosional surface. The 298 

location of the inset is displayed in the Figures 6, 7 and 8; the continuous lines represent the 299 

discontinuities interpreted as normal faults; colored lines are the six recognized 300 

unconformities. 301 

 302 

4.4. Interpretation of structure from seismic images  303 

Several sub-vertical to oblique discontinuities were recognized in the seismic records (Figure 9C). 304 

These discontinuities of seismic reflectors show an average time shift of 0.002 TWT s (an offset of 1.5 305 

m) and affect mainly the sedimentary infill. The slip of the reflectors is downslip; therefore, they are 306 

interpreted as normal faults.  307 

 The faults can be divided in four groups based on the affected seismic unit. The first group (see 308 

faults in Figure 6) is composed by a few short normal faults that affect only the Lower Unit. The angles 309 

of the fault planes vary from 4° to 9°. The second group includes normal faults that are affecting only 310 

the Upper Unit. This group is composed by faults with an average dip of 15°, extended from the top of 311 

the Lower Unit to the upper part of the Upper Unit (Figure 7). A few faults are vertical to sub-vertical 312 

(Figure 9C). The third group is characterized by a few faults only found in the center of the lake basin 313 

(Figure 8), affecting the entire sedimentary package (Lower and Upper units). The angles of these 314 

faults are low, between 10° and 13°. The fourth group is composed by vertical to sub-vertical faults 315 

that are affecting the acoustic basement. Mainly found in the southern margin (Figure 6, 8) these 316 
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faults are associated with a stepped morphology of the substratum. In this group of faults, the time 317 

shift reaches 0.007 TWT s (almost 5 m offset).  318 

 319 

5. Interpretation of the data  320 

5.1. Seismic units 321 

Lower Unit 322 

This seismic unit includes layered strata and continuous internal reflectors. These types of units have 323 

been interpreted in other periglacial lakes (Eyles et al., 2000; Waldmann et al., 2008, 2010a, 2010b; 324 

Pinson et al., 2013) as till deposits. The geometry of the Lower Unit (Figure 5B) suggests mound-like 325 

morphology, which can be interpreted as a moraine deposit, based on the similarity with glacier 326 

deposits studied, for example, in Bahía Inútil and Estrecho de Magallanes (Chile), or Oak Ridges 327 

Moraine, in Canada (Pugin et al., 1999; Fernández et al., 2017). The distribution of the deposits in top 328 

view shows a NE orientation (Figure 5B). The onland moraine arcs (i.e. Chepelmut, Indiana or Hantuk 329 

moraines) along with this new submerged moraine ridge complete the recessional path of the Ewan 330 

ice lobe along the Ewan river valley (Figure 2). Therefore, we interpret the mound shaped deposits of 331 

this unit as part of the Ewan ice lobe terminal moraines.  332 

 333 

Upper Unit 334 

The Upper Unit is essentially composed by layered and continuous reflectors of varied reflectivity. The 335 

well-defined geometry, continuity and extension of the reflectors suggest lacustrine sedimentation. 336 

However, a detailed analysis of the geometries and their terminations, supported by a comparison 337 

with other studies (i.e. Lyons et al., 2011; Scholz et al., 1998), indicates variations in the 338 

sedimentation rate and local presence of erosion. A sequential stratigraphic analysis was made by the 339 

observation of the geometric patterns of the reflectors.  340 

 341 

5.2. Seismic sequence stratigraphy of the Upper Unit 342 

The stratal architecture of the Lago Chepelmut as revealed from seismic data analysis reflects 343 

changing rates between the accommodation space and the sedimentation rate of the basin. Following 344 

the principles of seismic sequence stratigraphy (Vail et al., 1977; Vail 1987; van Wagoner et al., 1987; 345 

Scholz, 2001), the deposits of the Upper Unit within the Chepelmut basin can be divided into four 346 

seismic stratigraphic sequences. These sequences are defined and separated on the basis of erosional 347 

surfaces and angular unconformities, interpreted to have been formed during major drops in the lake 348 

level.  349 

S1 (Figure 9D), the oldest sequence, begins with a lowstand marked after the deposits of the 350 

seismic unit interpreted as glacier till (Lower Unit). The general retreat of the glacier lobe resulted in 351 

an increase in the water input to the system. Then, a transgressive system tract due to the lake level 352 

rise is represented by the first lacustrine deposits of the base of Upper Unit, with onlap terminations. 353 

No high-stand system tract is recognized after the transgression as no progradational pattern is 354 
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observed in the reflectors. The upper boundary of the sequence is marked by an erosive truncation 355 

(U2), and may represent a falling stage of the lake level.  356 

S2 (Figure 9E) represents the lake change level after the first lake-level fall. Near the 357 

lowermost part of this sequence, the Upper Unit is composed by chaotic reflectors with a lenticular 358 

geometry, which may represent a small delta or fan sedimentation located in the southwestern and 359 

northeastern basin margins. The presence of these deposits is the result of the sedimentation after 360 

the erosive conditions which generated the boundary between sequence I and sequence II. Over the 361 

fan sedimentation, the continuous, layered and medium to high reflectivity reflectors with onlap 362 

terminations, are interpreted as a transgressive system tract marked by a lake level rise.  363 

The sequence S3 (Figure 9F) is bounded at the base by another erosive truncation (U3). The 364 

erosional relief of U3 is the most notable and accentuated in comparison with the other 365 

unconformities. Therefore, it represent the highest lake level fall. The lower part of this sequence is 366 

interpreted as a transgressive system tract, while the upper part represents a high-stand system tract 367 

composed by wedged and downlap reflectors. The base of these reflectors, therefore, are interpreted 368 

as a maximum flooding surface (U4), which marks the highest lake level during the lifetime of the 369 

sedimentation of the S3.  370 

The sequence S4 (Figure 9F), the youngest sequence of the Chepelmut basin, is bounded at the 371 

base by an important erosive truncation (U5) which can be recognized at the northern and southern 372 

margins of the lake. The continuous, layered, high reflectivity and, slight-wedged reflectors may be 373 

interpreted as a lowstand system tract. The wedged reflectors and the progradational lobes on the 374 

southern margin suggests that the lake level was low enough to give this type of depositional 375 

structures, with a sediment bypass towards the deepest sectors of the basin.  376 

The described sequences reflect changing conditions in the lacustrine sedimentation within 377 

the basin. The Figure 9 shows a schematic qualitative curve with the inferred lake level changes and a 378 

correlation with the main events in the zone and with the previously defined seismic units.  379 

 380 

6. Discussion 381 

The glacial history of the central region of Tierra del Fuego has been documented both near the Lago 382 

Fagnano (Bujaleski, 2011; Caldenius, 1932; Coronato et al., 2008a, b; 2009; Meglioli, 1992; Waldmann 383 

et al., 2008; 2010 a, b) and near the Lago Yehuin and Chepelmut (Meglioli, 1992). Fuego and Ewan 384 

glacier tongues, which were two diffluent ice lobes of the Fagnano glacier (Waldmann et al., 2010), 385 

flowed northward and north-eastward, traversing both the Yehuin and Chepelmut basins (Lozano et 386 

al., 2018). The exposed moraine deposits were mapped and dated in the Fuego and Ewan river 387 

valleys. In the Fuego river valley, the Buenos Aires, Miramonte and Penny moraines can be correlated 388 

with the stage B of the LGM (Coronato et al., 2008a), dated at 25.2 – 23.1 kyr B.P (McCulloch et al., 389 

2005). The Yehuin moraine is correlated with the stages C or D, of 21.7 – 20.3 kyr B.P. or older than 390 

17.5 kyr B.P. In the Ewan river valley, the Indiana and Hantuk moraines are also correlated with the 391 

stage B, while the Chepelmut moraine (Figure 3A) is correlated with the stages C or D (Coronato et al., 392 

2008b). Multiple advances/stillstands of the Fagnano glacier lobe were evidenced by moraine crests 393 
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preserved in the Fagnano lake basin (Waldmann et al., 2010). These oscillations probably had an 394 

effect on the retreat of the Ewan lobe. However, the final retreat of the glaciers from Tierra del 395 

Fuego’s lowlands towards the Cordillera Darwin occurred during later stages of the Younger Dryas, at 396 

11 to 10 kyr B.P. (Boyd et al., 2008).    397 

 398 
Figure 10. Geomorphologic map of the Lago Yehuin and Lago Chepelmut area. The moraine arcs are 399 

displayed through the Fuego and Ewan river valleys. Additionally, the moraines within both 400 

lakes are also displayed. The blue dashed lines show the boundary of the drainage basin which 401 

is mainly controlled by the moraine arc at the western and eastern sides. The northern part is 402 

limited by a structural relief. The waters of the entire system output through the south, 403 
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toward Lago Fagnano. The glacial activity modeled the landscape and at present day, the 404 

glacial deposits control the drainage. 405 

 406 

A map with the geomorphology and the position of the moraines is presented in Figure 10. As 407 

in the case of the Lago Chepelmut, submerged moraine ridges were interpreted in the sedimentary 408 

record of the Lago Yehuin (Lozano et al., 2018). The Lago Yehuin shows thick deposits of glacial origin 409 

located mainly in the western side, while in the eastern side are scarce. The differences in thickness 410 

between the two sides of the Lago Yehuin are related with the two glacier lobes that move through 411 

the area: the Fuego glacier lobe to the west and the Ewan glacier lobe to the east. In addition, the 412 

difference in thickness could be due to the fact that the two glaciers (Ewan and Fuego) were different 413 

in size and in sediment load, or maybe that the two glaciers melted in different times (Lozano et al., 414 

2018). The thickness of the glacial till of Lago Chepelmut is comparable with the glacial till of the 415 

western side of Lago Yehuin. 416 

The evidence of glacier dynamics and their deposits are mirrored in the sedimentary infill of 417 

the Lago Chepelmut. The seismic analysis of the acquired profiles and the sedimentary architecture of 418 

the lake fill suggests that the origin of the lake is due by the ice-carving of the Ewan glacier. However, 419 

a primary control in the morphology could be due by the pre-existing structural setting of the area. 420 

The Late Cretaceous compressive tectonics of the Magallanes fold and thrust belt developed a system 421 

of W-NW thrust faults which is well represented in the relief and river valleys, mainly in the Sierra de 422 

Beauvoir and Sierra Las Pinturas (Figure 2). It is well recognized that glaciers preferentially use already 423 

formed structures as corridors for the ice flow. As an example, some studies show that there is a close 424 

relationship between the structures related to wrench tectonics and the orientations of the fjords in 425 

the southern Andes (Glasser and Ghiglione, 2009; Breuer et al., 2013). In other zones of Tierra del 426 

Fuego, like the Lago Fagnano or the Canal de Beagle, a structural control is reported for the glacier 427 

discharge patterns (Bujaleski, 2011; Lodolo et al., 2002, 2003). In the Ewan and Fuego river valleys, 428 

existing structures related with the Jurassic transfer faults (Ghiglione et al., 2013) seem to be related 429 

with the glacier path of the two glacier lobes. The strike-slip tectonics reactivated these older NE 430 

Jurassic transfer faults and left their imprint in form of NE valleys like Fuego and Ewan river valleys 431 

(Lozano et al., 2018). Finally, the glacier activity modeled the relief and later deposited the moraine 432 

arc, locally changing the drainage net. The geomorphological map shows that there is a quite close 433 

relationship between structural lineaments and the general trend of the rivers and valleys. A sub-434 

parallel to sub-dendritic drainage pattern is recognized in the area. The drainage basin observed in 435 

Figure 10 shows that there is a main control from the glacier forms with the boundaries located in the 436 

western and eastern areas of the lake. These depositional forms separate Ewan and Fuego river 437 

valleys from the Lago Yehuin and Chepelmut.  438 

The sedimentary patterns in lakes are controlled by allogenic factors such as tectonics and 439 

climate through interactions of four main variables: sediment supply, water supply, basin-sill height 440 

(spill point), and basin-floor depth (Bohacs et al., 2000; 2003). Erosional surfaces are best developed 441 

on areas where relatively slow rates of subsidence limit accommodation space (Scholz et al., 1998). 442 
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The lake level curve (Figure 9) shows a progressive increase in the lake water level, which can be 443 

inferred as the result of the enormous water input due to the melting of ice lobes and permafrost 444 

during the climate warming after the LGM (Del Valle et al., 2007). The record of the changing lake 445 

level is also evident from lake terraces located in the eastern margin of the Lago Chepelmut (Figure 446 

3B). The decrement of the lake level, which left an evidence of three erosive unconformities (U2, U3 447 

and U5) within the lacustrine deposits (Upper Unit) can be correlated with the three terraces levels 448 

recognized along the Fuego river valley (Coronato et al., 2008a) and the three to four terraces levels 449 

in the Ewan river valley (Coronato et al., 2008b). However, at present day, the Lago Chepelmut is 450 

disconnected from the valley due to the low lake level (Figure 10). The youngest sequence IV, 451 

therefore, represents a stage where the hydrology was characterized by drainage to the south, 452 

through the Lago Fagnano. The change in the hydrology of the Lago Chepelmut from the Atlantic 453 

water drainage to a drainage to Seno Almirantazgo (Estrecho de Magallanes, Chile) was established 454 

7.8 kyr B.P., when the Paleolago Fueguino – a water body which includes the present day Lago 455 

Fagano, Yehuin and Chepelmut – decreased their water level after the LGM. This decrease could be 456 

associated to a seismic event in the area, which caused the broke of the moraine barriers of the lakes 457 

and led to a loss of the water of the system (Del Valle et al., 2007). The unconformity U5 can be 458 

correlated with this event and may be assigned an age of 7.8 kyr B.P.  459 

The several faults recognized within the seismic sections, in particular, groups 1 to 3, are 460 

characterized by low angles of 5° to almost 20° with a low offset. This deformation within the 461 

sedimentary record can be treated as a result of a gravity collapse, given its low angle, low offset and 462 

their presence confined only within the sedimentary package. However, it cannot be excluded that 463 

these may have been generated by earthquakes. Seismological data of the Tierra del Fuego show a 464 

great variety of seismic events that comprise earthquakes of low to medium magnitude, with the 465 

majority of the events between 2 and 4 Mm, with 50% of them located in the uppermost 10 km. In 466 

addition, seismicity shows that the zone is active at the present day (Buffoni et al., 2009; Sabbione et 467 

al., 2007, 2016) and recent GPS studies conducted along the Magallanes-Fagnano Fault System 468 

indicate that the principal strain components define two deformation styles: a zone with predominant 469 

shortening of the crust to the west, and significant stretching to the east (Mendoza et al., 2011). NW-470 

SE extensional components and a subordinate contraction component with a SW-NE trend have been 471 

reported for the Lago Yehuin area (Mendoza et al., 2011, 2015). Therefore, the Yehuin and Chepelmut 472 

basins are located within an area dominated by transtensional, left-lateral deformation.  473 

The fault group 4, characterized by vertical to sub-vertical normal faults which affect the 474 

basement of the lake, could have a tectonic origin, so we cannot exclude a priori the occurrence of 475 

tectonic factors which partly influenced the genesis and evolution of the Lago Chepelmut. A fault zone 476 

analogous to the Deseado Fault Zone but located between Lago Yehuin and Chepelmut (Lozano et al., 477 

2018) could be the responsible of the normal faulting of the basement and the trigger for the gravity 478 

collapse of the lacustrine sediments. 479 

 480 

7. Conclusions 481 
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• Analysis and interpretation of single-channel seismic records, coupled with information 482 

derived from outcrops, have allowed to produce for the first time a bathymetric map of the 483 

Lago Chepelmut and analyze the sedimentary architecture of the depositional cover.  484 

• The Lago Chepelmut, a small basin located in the central part of Tierra del Fuego Island, is 485 

filled with sediments grouped into two units: a Lower Unit, consisting of glacial deposits, is 486 

found in the deepest part of the lake, near the eastern margin. These till deposits were 487 

correlated with onland moraine ridges to reconstruct the recessional path of the Ewan ice 488 

lobe. The Upper Unit, interpreted of lacustrine origin, drapes the entire basin and represents 489 

the sedimentation which occurred after the glacier retreat. 490 

• After the moraine deposition in the Lago Chepelmut basin, the lacustrine stage was marked by 491 

variations in the lake water level. At least three lake level falls were recognized from the 492 

analysis of the sedimentary infill. However, the exact magnitude and the age constraints of 493 

these variations remain difficult to determine.  494 

• Data suggest that the origin of Lago Chepelmut basin is mostly due to ice-carving by glacier 495 

lobes dynamics. However, the presence of a few vertical to sub-vertical faults affecting both 496 

the basement of the Lago Chepelmut and part of the sedimentary cover testify that tectonic 497 

activity has contributed to shape the lake.   498 

• There is a tight correspondence between structural lineaments and ice flow paths of the Ewan 499 

and Fuego glacial lobes. These structural-controlled corridors of ice discharge were later 500 

reshaped by glacier activity. 501 

• Several low-angle normal faults occur in the sedimentary infill of the Chepelmut basin which 502 

can be related to gravity collapses. The Lago Chepelmut zone is located in a seismically active 503 

area, where a complex array of left-lateral, strike-slip lineaments is developed. A fault zone 504 

analogous to the Deseado Fault Zone, located between Lago Yehuin and Chepelmut, could be 505 

the responsible of the normal faulting of the basement and possibly the trigger for the gravity 506 

collapse of the sediments.  507 

 508 
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• We present a study of a seismic survey in Lago Chepelmut basin, located in Tierra del 

Fuego.  

• Two seismic units are recognized within the basin, a glacial-related lower unit and a 

lacustrine upper unit.  

• The basin is interpreted mainly as an ice-carved basin by the glacier lobes. 

• We suggest that three major drops in the lake levels are evidenced in the stratigraphic 

record. 


