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Graphical abstract 

 

 

Highlights: 

 We applied microcalorimetric techniques to a series of chemically activated carbons 

 GCMC simulation was used to aid the interpretation of adsorption enthalpy profiles  

 We also investigated the existing surface oxygen groups using TPD experiments 

 Microcalorimetry measurements allowed discriminating between pore filling regimes 

 

Abstract 

In this work, the microporous structure of a series of H3PO4 chemically activated carbons 

from peach stones with increased activation degree were investigated. CO2 Adsorption 

equilibrium isotherms and differential enthalpy curves were simultaneously measured at 300 

K using a Tian-Calvet microcalorimeter coupled to an adsorption manometric setup. 
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Temperature programmed decomposition experiments were used to assess density of oxygen 

functional groups and determine the impact of surface chemistry on CO2 adsorption capacity. 

Computer based theoretical calculations were also performed to attempt to predict the 

adsorption enthalpy profiles. The most activated sample (Xp=0.90) has an average adsorption 

enthalpy which is approximately 8 kJ/mol lower than that of the non-activated samples 

carbonized under the same conditions. The combination of techniques enabled a better 

understanding of the pore filling regimes with increasing coverage, since the use of CO2 as a 

probe gas allows accessing small pores, which otherwise would not be identified from N2 

isotherms at 77 K. The oxygen content on the carbon surface decreased almost 80% with the 

increasing degree of activation and did not influence in the CO2 adsorption. Besides 

providing information about carbon chemistry, CO2 adsorption calorimetry can also be 

successfully applied to the screening of carbons intended for CO2 capture.  

 

Keywords: Activated carbon, adsorption microcalorimetry, PSD 
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1. Introduction 

Calorimetric methods, with appropriate probe molecules, are especially useful to characterize 

the chemical nature of surfaces, providing direct and reliable energy data, which is normally 

required for a complete understanding of the surface phenomena. When applied to the study 

of the adsorption processes, it has the advantage of revealing useful information about the 

mechanisms of adsorption (pore filling and phase transitions) (Llewellyn and Maurin, 2005). 

In the case of amorphous materials, like activated carbons, calorimetry can help unveil details 

of the adsorbate-adsorbent interactions in the micropore region (Llewellyn, 2000). It is 

possible to sense the heterogeneities related to surface chemistry, e.g. oxygenated functional 

groups, that may change adsorbate-adsorbent interactions, leading to more or less intense 

heats of adsorption as compared to a pure carbonaceous surface with the same porous texture 

(Pikunic et al., 2005). Despite these noticeable advantages of calorimetry, the amount of 

experimental and theoretical work dedicated to the determination of adsorption isotherms far 

exceeds that dedicated to heats of adsorption. This can be explained by the fact that the 
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measurement of the heat of adsorption is significantly more difficult and expensive than the 

measurement of adsorption isotherms (Llewellyn, 2003). 

We note that calorimetry has scarcely been directly applied to the issue of investigating the 

development of microporosity, which is an essential feature in activated carbons for gas 

adsorption. Most studies in the literature focus on the application of calorimetry in the 

analysis of carbon chemistry. A typical study was performed by Menendez et al. (Menendez 

et al., 1996) to explain why H2- and N2-treated carbons have very different O2 uptakes. 

Calorimetry revealed an unexpected high adsorption heat (> 100 kcal/mol) suggesting 

chemisorption. By matching the heat released by proposed oxygen surface groups, the 

authors could develop a model to explain the dramatic O2 adsorption difference.  Similar 

studies were performed by Zarifyanz et al. (Zarifyanz et al., 1967), Davini (Davini, 1993), 

Rychlicki and Terzyk (Rychlicki and Terzyk, 1995) and Duisterwinkel and Bokhoven 

(Duisterwinkel and van Bokhoven, 1995) with NO, SO2, methane and water respectively. 

Few studies used calorimetry with CO2 as probe-molecule. We believe this situation is about 

to change due to the renewed interest in CO2 capture. An example is the recent study by 

Djeridia and co-workers (Djeridi et al., 2016) which correlated N2 isotherms at 77 K, 

micropore volume, CO2 adsorption isotherm and CO2 microcalorimetric measurements with 

carbon electrical conductivity. 

In this paper, as a contribution to the investigation on microporosity development in activated 

carbons, we applied calorimetric techniques to a series of chemically activated carbons from 

peach stones (activated at different H3PO4/precursor ratios). To the better of our knowledge 

it was the first time that CO2 adsorption enthalpy was performed in a complete activated 

carbon series with increasing development of porosity. Molecular simulation was used to aid 

the interpretation of adsorption enthalpy profiles and to confirm the proposed adsorption 

mechanism. In order to measure simultaneously the adsorbed phase concentration and the 

respective released heat, a manometric setup was coupled to the microcalorimeter (Rouquerol 

et al., 1999; Sing, 1998). In the experiments, CO2 at 300 K and 1 bar was used as a probe gas 

in order to achieve several purposes. CO2 at 300 K has no diffusivity problems as those found 

in N2 at 77 K, in which case a fraction of the pore volume is often inaccessible to 

characterization (Silvestre-Albero et al., 2012). Also, CO2 at 300 K interacts strongly with 
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the activated carbon surface resulting in optimum resolution in the calorimeter signal. Taking 

advantage of this good resolution, we also investigated the influence of the existing surface 

oxygen groups on the adsorption of the CO2 molecule (quadrupolar character), for which 

purpose temperature programmed decomposition (TPD) experiments were performed. 

Finally, in view of the great interest of adsorption in CO2 capture, the temperature and 

pressure of the experiments were compatible with those found in industrial streams. 

 

2. Experimental 

2.1 Samples Preparation 

The activated carbon (AC) samples used in this study were prepared by chemical activation 

with phosphoric acid using peach stones (particle size 2-3 mm) as precursor (Molina-Sabio 

et al., 1995; Soares Maia et al., 2010). The precursor was impregnated with increasing 

amounts of phosphoric acid (85% v/v in water). The impregnation degree was defined as the 

mass ratio between the amount of phosphorus and the amount of precursor, Xp (grams of 

phosphorus/grams of precursor) (Prauchner and Rodríguez-Reinoso, 2008). The 

impregnation was carried out by immersion for two hours at 358 K (Muñoz-González et al., 

2009), until complete evaporation of the solution. After impregnation, the samples were 

submitted to a one-step carbonization in a muffle furnace at 723 K for 2 h (heating rate of 10 

K.min-1) with no controlled gas flux in air atmosphere. This carbonization temperature has 

been found to be the optimal one to maximize the development of porosity and achieve high 

surface area (Molina-Sabio et al., 2003; Rios, R.B. et al., 2009). After carbonization, the 

samples were rinsed with distilled water up to pH 7 in order to thoroughly remove the 

remaining phosphoric acid. Finally, the samples were dried at 373 K for 2 h. Five samples 

were prepared from Xp=0 to Xp=0.90. AC samples were labeled as Xp=0, Xp=0.16, 

Xp=0.40, Xp=0.70, Xp=0.90, according to the respective phosphorus/precursor mass ratio 

used in the activation of each sample. 

2.2 Textural characterization. 
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Textural analysis of all samples was carried out by nitrogen adsorption/desorption at 77 K in 

an Autosorb-1 MP (Quantachrome, U.S.A.) volumetric adsorption apparatus. Specific 

surface areas were determined according to the BET method and the micropore volumes were 

estimated using the Dubinin-Radushkevich (DR) equation (Dubinin, 1967; Rouquerol et al., 

2014). The micropore volume by the DR equation was also calculated using CO2 adsorption 

isotherms at 300 K, as measured in the microcalorimetric system.  

2.3 Temperature-Programmed Decomposition (TPD).  

The surface oxygen groups have an important role on the surface chemistry and adsorption 

behavior of activated carbons. These groups are usually placed on the edges of the basal 

planes of the carbon structure. These sites are associated with high concentrations of unpaired 

electrons and may play a significant role in oxygen chemisorption (Zawadzki, 1989). The 

activated carbon samples with different degrees of activation were subjected to heat treatment 

under helium flow (10 K.min-1), in order to decompose the oxidized functional groups formed 

by carbonization at ambient air until 1173 K. This analysis was carried out on CHEMBET 

3000 (Quantachrome, U.S.A.) TPD apparatus. A Thermal Conductivity Detector (TCD) 

detected the gases released during heat treatment.  

2.4 Adsorption Microcalorimetry. 

The activated carbon samples were also characterized using adsorption microcalorimetry, 

which provides a direct measurement of the adsorption enthalpy as a function of coverage. 

In order to simultaneously measure the adsorbed concentration and the respective heat 

released, a manometric setup was coupled to the microcalorimeter. The manometric setup 

was built in stainless steel with Swagelok VCR connections, as shown in Figure 1. The 

adsorption setup includes a vacuum pump (model E2M1.5; Edwards, UK), gas inlets, a 

pressure transducer (model 204; Setra System, Boxborough, MA) in the range from 10−5 to 

133 kPa, pneumatic diaphragm valves, a calibrated cylinder and two microcalorimetric cells. 

The sample cell is identical to the reference cell, as a ‘‘twin like’’ calorimeter (Calvet and 

Prat, 1963). The volume of each part of system was determined by gas expansion experiments 

using helium and a calibrated volume (10 cm3, Swagelok). This system is an improvement of 
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the system reported previously (da Silva et al., 2012), that was already tested with a reference 

material. 

 

Figure 1: Manometric system of the adsorption microcalorimetric setup that mainly 

comprises pneumatic diaphragm valves (1-7) and two microcalorimetric cells (below valve 

7). 

 

Prior to each adsorption experiment, the samples were outgassed and heated up to 423 K for 

12 h. The adsorption experiments were carried out at 300 K. The heat evolved during each 

adsorption step was measured using a Tian-Calvet microcalorimeter (model CA-100; ITI, 

Del Mar, CA) (da Silva et al., 2012). This apparatus comprises two identical calorimetric 

chambers inside an aluminum block to accommodate the reference and the adsorption cells. 

The aluminum block provides a large thermal sink for rapid heat dissipation and small 

temperature rise (less than 0.1 K). There are hundreds of thermopiles in the sample chamber 

connected in series to the thermopiles of the reference chamber with reversed polarity to 

reduce background noise. Each set of thermopiles was electrically calibrated by Joule effect, 

as described elsewhere (García-Cuello et al., 2009), in order to determine the calibration 

constant K of the equipment, which converts the areas of voltage peaks into thermal energy 
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units. This microcalorimetric system has the sensitivity of 0.15 V.W-1 and the accuracy of 

each experimental point is ± 7%.  

 

3. Results and Discussion 

3.1 N2 and CO2 adsorption isotherms 

The adsorption-desorption isotherms of nitrogen at 77 K for the activated carbons 

synthesized from peach stones by chemical activation with H3PO4are shown in Figure 2 (a). 

Samples with different degrees of impregnation (Xp) clearly show a different development 

of porosity. The presence of a "plateau" in the samples with low or no chemical activation 

(Xp=0 and Xp=0.16) indicates that mesopores are not developed. In such samples, the small 

interval of relative pressure required to achieve the "plateau" is an evidence of a narrow range 

of pore sizes. Molina-Sábio and co-workers (Molina-Sabio et al., 1995) observed, by SEM 

(Scanning Electronic Microscopy) images, the effects of depolymerization and re-

polymerization of cellulose produced by phosphoric acid activation. They report that the 

morphology of carbons activated with low acid/precursor ratio was almost identical to that 

of the simply calcined sample with no chemical activation and increasing the concentrations 

of acid leads to a clearly etched surface. A similar effect is observed in Figure 2 (a). Even 

though the isotherms are parallel to each other for the two lowest activation degrees (Xp), 

the other isotherms have quite different shapes. Those authors explain that, at higher 

concentrations of activating agent, the original cell morphology of the precursor is lost 

because most of the cellulose structure is degraded and extracted from the particle. This 

reorganization changes the initial characteristics of the precursor to produce a new porous 

structure, now including micro and mesopores. Samples Xp=0.40, Xp=0.70 and Xp=0.90 

showed H4 hysteresis which is typical of activated carbons and other materials having "slit" 

shaped pores or parallel plates. The fact that the sorbate evaporation responsible for the 

closure of the desorption branch occurs at relative pressures between 0.4 and 0.5 has been 

associated to a process of cavitation (Thommes et al., 2012). The presence of hysteresis is 

also clear evidence of the existence of mesopores (Rouquerol et al., 2014), which is consistent 

with the pore size distributions presented in Figure 3. 
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Figure 2:N2 (a) and CO2 (b) adsorption isotherms at 77 K and 300 K, respectively. 

 

In figure 2(b), CO2 adsorption isotherms at 300 K are observed, as measured in the 

microcalorimetric system. Sample Xp=0.70 has the highest CO2 uptake in the range of 

pressures under study, followed by samples Xp=0.40 and Xp=0.16.The uptake at 1 bar 

(between 1.5 and 2 mmol/g) is comparable to the values reported in the literature for low 

pressures (Hedin et al., 2010; Lozano-Castello et al., 2005; Toso et al., 2013). Low-pressure 

CO2 isotherms are not a good parameter to study the storage capacity of the samples, since 

the isotherms are measured at a condition very far from the saturation pressure, similar to 

CO2 isotherms at 273 K up to 1 bar. However, it is useful for the purpose of investigating the 

narrow micropore structure (below 9 Å) (Rouquerol et al., 2014). It is well known that N2 at 

77 K often does not access smaller pores due to diffusion restrictions, thus CO2 isotherms 

with calorimetric tracking can be used to investigate this range of micropores. Based on a 

kernel of CO2 isotherms at 300 K (Silvino et al., 2013), we calculated the pore fraction from 

3 to 9 Å and present these along with other textural parameters in Table 1. We observed that, 

on average, the volume of micropores not accessed by N2 is approximately 30% of the 

previously N2 accessed micropore volume. 
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A significant increase in specific surface area (ABET) is observed for higher degrees of 

activation. Likewise, calculated micropore volumes from N2 isotherms (from 9 to 20 Å) also 

increase with activation, confirming the fact that, in the chemical activation with phosphoric 

acid, the porosity is closely related to the degree of impregnation (Molina-Sabio and 

Rodrı́guez-Reinoso, 2004). The specific surface area was determined by the BET method, 

which is also an important parameter for the characterization of porous materials, although 

the assumptions of the BET model do not strictly apply to the filling of micropores 

(Rouquerol et al., 2007). To reduce the error in these determinations, which are very 

susceptible to variations according to the pressure range considered for data regression, 

recommendations by Rouquerol et al. (Rouquerol et al., 2014) were followed. The total pore 

volume was calculated by the Gurvich rule. A characteristic feature of chemical activation is 

the maintenance of the volume of narrow micropores (as measured by N2 at 77 K) as the 

values of Xp increase (Molina-Sabio et al., 1995). Our samples reproduce this behavior 

presenting almost no changes in the amount of micropores (samples Xp = 0.40 0.70 and 

0.90), while the volume of mesopores increases significantly (Table 1 and Figure 3). 

 

 

Table 1: Summary of the textural parameters for AC samples from peach stones by chemical 

activation with phosphoric acid. Xp indicates phosphorus/precursor mass ratios 

Sample 

ABET 

(m2/g) 

Vmicro 

DR N2 

(cm3/g) 

(9 to 20 Å) 

Vmicro 

GCMC CO2 

(cm3/g) 

(3 to 9 Å) 

V0,95 

Gurvich 

(cm3/g) 

Xp=0 388 0.16  0.13 0.18 

Xp=0.16 856 0.36  0.16 0.36 

Xp=0.40 1744 0.56  0.19 0.84 

Xp=0.70 1943 0.58  0.21 1.08 

Xp=0.90 1922 0.55 0.16 1.31 

 

ACCEPTED M
ANUSCRIP

T



NLDFT model was used to calculate the Pore Size Distributions (PSD) for perfect slit pores 

between 5 to 60 Å. Figure 3 shows that the PSDs reflect the large differences in porosity of 

the samples. For the sample without chemical activation (Xp=0), the micropores are formed 

only by the pyrolysis of lignocellulosic structure. For more activated samples, a wider pore 

size distribution is observed, and the amount of pores greater than 2 nm increases 

proportionally to the degree of impregnation. This was also evidenced by the presence of 

hysteresis type H4 in the isotherms, as discussed above. 

 

Figure 3: Pore Size Distribution calculated from N2 isotherms at 77 K of the AC samples 

using slit model NLDFT 

 

3.2 Microcalorimetric measurements 
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In order to extract additional information about the micropore structure of the activated 

carbon samples, Figure 4 shows the curves of CO2 adsorption enthalpy. Differential 

adsorption enthalpies vary from −38 down to −24 kJ.mol-1 and become roughly constant at 

high loadings, particularly for the sample Xp=0. The behavior of the experimental curves 

suggests that the interaction of carbon dioxide with the AC surface at low loadings occurs in 

sites of higher energy (narrowest pores).The magnitude of this initial enthalpy is closely 

related to the volume of micropores with sizes below 20 Å, as observed in the micropore 

volumes on Table 1. These narrow micropores, which act as active sites that attract the gas 

molecules, are also the ones that prevent a sharper fall of the enthalpy curve. As loading 

increases, adsorption occurs on wider pores, which involve weaker interactions. This 

decreasing behavior is frequently observed in heterogeneous adsorbents (Llewellyn, 2000). 

 

Figure 4:CO2 adsorption enthalpies at 300 K for AC samples 

 

Even though the sample with Xp=0 did not undergo chemical activation, its adsorption 

enthalpy did not match the one calculated by Bottani et al. (Bottani et al., 1994) for graphite 

samples. They state that the isosteric enthalpy of adsorption on graphitic surfaces varies from 
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-14 kJ/mol to -19 kJ/mol, depending on the degree of surface coverage. The mean adsorption 

enthalpy of -33 kJ/mol of the Xp=0 sample confirms the small amount of micropores found 

in N2 PSD (Figure 3). Sample Xp=0.90 has the lowest value of “zero coverage” enthalpy. 

This sample has a high total pore volume, but the N2 PSD shows a considerable fraction of 

larger pores with sizes from 20 to 40 Å (Figure 3). Hence, it is to be expected that the enthalpy 

curve had lower values than those of the other samples in the whole loading range under 

study.  

The theoretically calculated energy contributions (Figure 5) help explain the decreasing 

enthalpy evolution of samples Xp=0.16, Xp=0.40 and Xp=0.90 where two pore filling 

regimes are clearly discriminated (Figure 4). These theoretical calculations of adsorption heat 

are shown in two typical pores of the carbon series under study. We observed that the 

adsorption heat drops dramatically between the 4 Å and the 15 Å pore (from 28 to 16 kJ/mol). 

The pore filling regime at high energy correlates well with the microporous region, followed 

by an energy drop corresponding to the filling of the larger pores. Sample Xp=0 has a flat 

enthalpy profile resulting from its narrow pore size distribution. Finally the sample Xp=0.90 

differs from the others by the low values of heat of adsorption indicating a very small volume 

of micropores (< 9 Å) as a consequence of the high severity of H3PO4 attack, at which 

condition the carbon microstructure begins to degrade. The adsorption enthalpy 

measurements clearly identify sample Xp=0.70 as the most suitable for CO2 capture, which 

is readily confirmed by the CO2 isotherm obtained from the simultaneous microcalorimeter 

experiment (Figure 2b). 

The results of Figure 5 was based in the carbon slit pore model and unit atom parameters. 

The interaction energy parameters between two CO2 molecules was calculated from the 

classical 12–6 Lennard–Jones potential equation (Alexandre de Oliveira et al., 2011). The 

interaction energy between a fluid particle and a single pore wall at a distance z (measured 

between the centers of the fluid atom and the atoms in the outer layer of the solid) was 

described by the Steele’s 10-4-3 potential (Steele, 1974). Due to the small pores, adsorption 

of CO2 using the slit pore model was investigated by biased Grand Canonical Monte Carlo 

simulations (Lucena et al., 2008). The following values for the molecular parameters were 

used: σ = 3.65 Å and ε/k =246.15 K (Alexandre de Oliveira et al., 2013). 
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Figure 5: Theoretical calculation of adsorption enthalpy in two typical pores of the carbon 

series studied (a) 4Å and (b) 15Å. For the smaller pore the main energy comes from the gas-

solid interaction at low pressures; close to pore filling, a substantial contribution also comes 

from the fluid-fluid interaction. In the larger pore, gas-solid interaction predominates at all 

pressure range. 

 

3.3 Temperature-Programmed Decomposition (TPD).  

The surface chemistry of activated carbons was essentially determined by the amount of 

oxygen surface complexes. Figure 6 shows the TCD signal per gram carbon of the effluent 

gas from our samples subjected to thermal decomposition under helium flow (TPD). The 

profiles are characterized by the evolution of decomposition gases: CO2 at low temperatures 

and CO appearing at about 873 K. Samples with peaks shifted towards high temperatures (> 

1073 K) suggest the presence of stable oxygen groups such as ethers, carbonyls or quinones 

(Belhachemi et al., 2014). The amount of oxygen as determined by this technique provides 

the bulk content, unlike other techniques, such as XPS (X-ray Photoelectron Spectroscopy), 

which determines only the surface concentration (Figueiredo et al., 1999). 
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Figure 6: Temperature-Programmed Decomposition results 

 

TCD detection does not distinguish between CO and CO2, but it can be used as a comparative 

tool to illustrate the differences of total gases evolved upon thermal decomposition of each 

sample. The results show that the highest amount of decomposition gases evolve from sample 

Xp=0. Generally speaking, the amount of evolved gas upon thermal decomposition is 

inversely proportional to the degree of impregnation, that is, less activated samples possess 

more oxygen functional groups (Molina-Sabio et al., 1995). Furthermore, the decomposition 

temperature increases continuously for more activated samples. This may be evidence that 

most oxygen groups are originally due to the chemical composition of the precursor itself 

and its carbonization. The activation with H3PO4 tends to remove those oxygen groups, which 

are less thermally stable, and the final AC tends to have a more apolar and hydrophobic 

surface. 

TPD is a reliable technique to assess the oxygen content of a carbon sample. Basai et al. 

(Bansal et al., 1977) verified that the amount of oxygen evolved as function of the heat 
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treatment temperature agrees well with the total oxygen obtained by ultimate analysis. The 

surface groups from which CO2 evolve are less stable and begin to decompose at 350 ºC 

whereas CO evolves only above 773 K.  Figueiredo et al. (Figueiredo et al., 1999) also studied 

the surface chemistry of oxidized activated carbons using Temperature-Programmed 

Desorption coupled to a mass spectrometer to discriminate between CO and CO2  released 

upon the thermal decomposition of each sample. They show a gradual increase in CO and 

CO2 released as the degree of oxidation of samples increases. Similarly, a gradual behavior 

is observed in Figure 6, with the signal decreasing for higher degrees of chemical activation. 

It seems that the increase of phosphorus concentration largely prevents the creation of 

oxygenated groups on the surface.  

Although the chemical characteristics of the surface of the samples is expected to be a 

relevant issue in the discussion of the adsorption enthalpy results, no particular correlation 

associated with surface oxygen concentration was observed in the enthalpy values calculated 

with the microcalorimeter. In particular, we observed that although sample Xp=0.40 

presented higher oxygen percentage than sample Xp=0.70, it resulted in lower CO2 

adsorption performance. 

 

4. Conclusions 

A set of AC samples from peach stones was prepared by chemical activation with H3PO4 and 

characterized by N2 and CO2 isotherms at 77 K and 300 K, respectively. Differential CO2 

adsorption enthalpic curves as a function of loading were measured by microcalorimetry, in 

order to investigate the pore filling regimes in the carbonaceous material. By means of 

temperature-programmed decomposition (TPD) experiments under inert atmosphere, it was 

also possible to rule out the influence of surface oxygen groups on CO2 adsorption. 

It was found that a higher phosphorus/precursor impregnation ratio (Xp) leads to an 

increasing fraction of micropores and mesopores, and the micropore volume (below to 20 Å) 

is maximal at Xp=0.70. Higher Xp also leads to adsorbents with a lower density of 

oxygenated functional groups. In the samples with pores in the micropore and mesopore 

range, the adsorption enthalpy profile progressively decrease giving rise to two different pore 
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filling regimes. In the samples where the pore size distribution was narrower, the enthalpy 

profile became more flat. We have not noticed any interference in the enthalpy profiles that 

can be attributed to oxygen surface groups. For the series of activated carbons under study, 

adsorption microcalorimetry were well correlated with the pore size distribution, allowing 

for a clear screening between samples aimed at CO2 adsorption. A theoretical validation of 

the pore filling regime was obtained through molecular simulation calculations where the 

solid-fluid and fluid-fluid interaction energy were discriminated for typical pore sizes found 

in the activated carbon samples. 

This study confirms that CO2 microcalorimetry measurements in this series of carbons 

coupled to Monte Carlo simulations allowed discriminating between micropore and 

macropore filling regimes. By comparison of the density of surface oxygen group with 

differential enthalpy data, we ruled out that surface chemistry heterogeneities play a 

significant role in the adsorption enthalpy of CO2. 
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