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Abstract We examine the local geometry of affine surfaces which are locally symmet-
ric. There are six non-isomorphic local geometries. We realize these examples as type A,
type B, and type C geometries using a result of Opozda and classify the relevant geometries
up to linear isomorphism. We examine the geodesic structures in this context. Particular
attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere.
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1 Introduction

We introduce the following notational conventions:

Definition 1 An affine manifold M := (M,∇) is a pair where M is a connected
m-dimensional manifold, and ∇ is a torsion free connection on the tangent bundle of M .
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An affine morphism between two affine manifolds M and M̃ is a diffeomorphism � from
M to M̃ which intertwines the two connections ∇ and ∇̃; M is said to be locally homoge-
neous if given any two points P and P̃ of M; there is the germ of an affine morphism from
a neighborhood of P to a neighborhood of P̃ .

Definition 2 Let R(x, y) := ∇x∇y − ∇y∇x − ∇[x,y] be the curvature operator. If ∇R = 0,
then M is said to be locally symmetric. Let ρ(x, y) := Tr{z → R(z, x)y} be the Ricci
tensor. Although ρ is symmetric in the Riemannian setting, this need no longer be the case
in the affine setting. Consequently, we introduce the symmetric Ricci tensor ρs(x, y) :=
1
2 {ρ(x, y) + ρ(y, x)}.
Theorem 1 LetM be a connected locally symmetric affine manifold.

1. M is locally affine homogeneous.
2. If ρs has maximal rank, then ∇ is the Levi-Civita connection of the locally symmetric

pseudo-Riemannian manifold (M, ρs).

Proof We establish Assertion (1) as follows. There exists an open neighborhood O of 0 in
TP M such that the exponential map expP is a diffeomorphism from O to an open neighbor-
hood Õ of P in M . We may assume that −O = O without loss of generality and define the
geodesic symmetry σP (Q) := expP (− exp−1

P (Q)) for Q in Õ. The work of Nomizu [4] (see
Theorem 17.1) shows that σP is an affine morphism. One can compose geodesic symme-
tries around various points to show that M is locally homogeneous. We refer to Koh [3] for
subsequent related work. We also note that if M is locally symmetric, then M is k-affine
curvature homogeneous for all k, and this result follows from the work of Pecastaing [7]
on the “Singer number” in a quite general context. Finally, it follows from the work of
Opozda [5] in the analytic setting.

If ρs has maximal rank, then (M, ρs) is a pseudo-Riemannian manifold. Since ∇ρs =
0 and ∇ is torsion-free, ∇ is the Levi-Civita connection of ρs, and (M, g) is a locally
symmetric pseudo-Riemannian manifold.

We shall examine the geometry of locally symmetric affine surfaces using the following
result of Opozda [6]:

Theorem 2 Let M be a locally homogeneous affine surface. Then at least one of
the following three possibilities, which are not exclusive, hold which describe the local
geometry:

(A) There exists a coordinate atlas such that the Christoffel symbols �ij
k are constant.

(B) There exists a coordinate atlas such that the Christoffel symbols �ij
k = (x1)−1Cij

k

for Cij
k constant and x1 > 0.

(C) ∇ is the Levi-Civita connection of a metric of constant Gauss curvature.

We say that M is of type A, type B, or type C depending on which of the possibilities
hold. The Ricci tensor carries the geometry in the two-dimensional setting; M is flat if and
only if ρ = 0, and M is locally symmetric if and only if ∇ρ = 0.

Theorem 3 Let M = (M,∇) be a locally symmetric affine surface. If we cover M by a
typeA (resp. type B or type C) coordinate atlas, thenM is real analytic.

Proof Suppose M is an affine surface which is locally homogeneous and which is modeled
on a type A geometry M̃ = (R2, ∇̃). The transition functions for the coordinate atlas are
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diffeomorphisms from some open subset of R2 to another subset of R2 preserving ∇̃. Let Ã
be the Lie-algebra of affine Killing vector fields for ∇̃. The analysis of [1] shows that the
elements of Ã are real analytic. Since the coordinate vector fields are Killing vector fields,
their image under the transition functions is again real analytic and thus the coordinate atlas
is real analytic.

Let H2 be the Riemannian (+) and L
2 be the Lorentzian (−) hyperbolic upper half plane

defined by the metrics

ds2 = (dx1)2 ± (dx2)2

(x1)2
.

These are type B geometries. We will show presently in Theorem 5 that any type B model
which is locally symmetric is either of type A (which has been dealt with above) or is lin-
early isomorphic to either H2 or L2. By Theorem 1, the germ of an affine morphism � of
one of these two geometries is in fact an isometry of the underlying metric. The orientation
preserving isometries of these geometries are described in Theorem 6; they are linear frac-
tional transformations. The map (x1, x2) �→ (x1,−x2) provides an orientation reversing
isometry. Thus the affine morphisms of H2 and L

2 are real analytic and the coordinate atlas
is real analytic in this framework.

The only type C models are flat space, the sphere, H2 and L
2. The affine morphisms

of flat space are the affine maps; these are real analytic. The affine morphisms of S2 are
provided by O(3) and are real analytic. We have already dealt with H

2 and L
2.

In what follows, we will discuss the three cases separately. There are exactly six distinct
affine classes of locally symmetric affine surface models. However, the distinction between
affine-equivalence and linear equivalence is crucial, as it has great significance for geodesic
completeness, and the question of linear equivalence is therefore more subtle. In Section 2,
we summarize previous results concerning local affine symmetric spaces in the type A
setting. Up to linear equivalence, there are three geometries. Section 3 is the heart of the
paper and presents new material concerning local affine symmetric spaces in the type B
setting. There are two families of geometries which are locally affine equivalent to a type A
geometry. In addition, there are the hyperbolic plane H

2 and the Lorentzian hyperbolic
plane L

2.
The type C symmetric geometries are modeled on flat space, on S2, on H

2 and on L
2 so

these geometries offer nothing essentially new not discussed previously.
The geometry L

2 has many interesting features, and we provide a rather detailed analysis
of this geometry in Sections 4–5. We discuss the pseudosphere S

2, and the associated uni-
versal cover S̃2 in Section 6, as this provides another model of this geometry. In Section 7,
we use geodesic sprays of null geodesics to construct a global isometry between L

2 (which
is geodesically incomplete) and an open subset of S2 (which is geodesically complete).

2 Type A Local Affine Symmetric Spaces

Let M = (R2,∇) where the Christoffel symbols �ij
k of ∇ are constant. The translation

subgroup R
2 of GL(2,R) (x1, x2) �→ (x1 + b1, x2 + b2) acts transitively on M, so this is

a homogeneous geometry. We regard � as an element of the six-dimensional vector space
S2(R2) × R

2. The general linear group GL(2,R) acts on these geometries by the action
(x1, x2) �→ (a11x

1 + a12x
2, a21x

1 + a22x
2) for a = (aij ) ∈ GL(2,R). We say that two

type A models M and M̃ are linearly equivalent if there exists A ∈ GL(2,R) such that
A : R2 → R

2 is an affine morphism from M to M̃.

Author's personal copy



D. D’Ascanio et al.

Definition 3 Let S1, S2, S3, and S̃3 be the locally symmetric affine structures on R
2

obtained by taking non-zero Christoffel symbols:

S1 :=
{
C11

1 = −1, C12
1 = −1

2

}
, S2 :=

{
C12

1 = −1

2

}
,

S3 :=
{
C11

1 = −1, C22
1 = −1

}
, S̃3 :=

{
C22

1 = x1
}

.

S1, S2, and S3 are type A structures, S̃3 is not.

The following result follows from the work of [1, 2].

Theorem 4

1. Any locally symmetric typeA model is linearly isomorphic to S1, S2, or S3.
2. Si is not linearly isomorphic to Sj for i �= j .
3. S1 and S2 are locally affine isomorphic.
4. S3 is not locally affine isomorphic to either S1 or S2.
5. S2 is geodesically complete and the exponential map is a diffeomorphism.
6. S̃3 is geodesically complete and the exponential map is not 1-1.
7. S1 is geodesically incomplete. The map (x1, x2) �→ (e−x1

, x2) is an affine embedding
of S1 into S2 so S1 can be geodesically completed.

8. S3 is geodesically incomplete. The map (x1, x2) �→ (e−x1
, x2) is an affine embedding

of S3 into S̃3 so S3 can be geodesically completed.

The geometry S1 is incomplete. The horizontal axis is a geodesic which exists for all time
to the left but which escapes in finite time to the right (Fig. 1). The vertical axis is a geodesic
that exists for all time. If the initial direction is in the first quadrant, geodesics escape to
the right. If the initial direction is in the third quadrant, the geodesic exists for all time. If
the initial direction is in the second quadrant, the geodesic exists for all time. If the initial
direction is in the fourth quadrant and the angle to the vertical is at most π

4 , the geodesic
exists for all time. If the initial direction is in the fourth quadrant and the angle to the
horizontal is less than π

4 , the geodesic escapes to the right. The geometry of S2 is complete;
geodesics for S2 exist for all time, and the exponential map is a global diffeomorphism.

The geometry S3 is incomplete. The horizontal axis escapes to the right but exists for all
time to the left. All the remaining geodesics are U shaped and escape to the right at both
ends. The exponential map is not surjective; geodesics are confined within the horizontal
strip |x2| < π . The geometry S̃3 is complete. The horizontal axis is in the range of the

Fig. 1 Geodesic structure
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exponential map. But the punctured horizontal lines through the focal points on the vertical
at (0,±nπ) are not in the image of the exponential map. Furthermore, the exponential map
is not 1–1.

3 Type B Local Affine Symmetric Spaces

Let M = (R+ × R,∇) where the Christoffel symbols �ij
k of ∇ take the form �ij

k =
1
x1 Cij

k where the Cij
k are constant. Let G be the ax + b group acting on R

+ × R by

(x1, x2) �→ (ax1, ax2 + b) for a > 0. G preserves this geometry, so this is a homogeneous
geometry. G also acts on R

2 sending (x1, x2) �→ (x1, ax2 + bx1). We say that two type B
geometries are linearly isomorphic if they are intertwined by such a map.

Definition 4 Let S4(c) (for c �= 0) and S5 be the type B locally symmetric structures on
R

+ × R obtained by taking non-zero Christoffel symbols:

S4(c) := {C11
1 = −1, C11

2 = 0, C12
1 = 0, C12

2 = c, C22
1 = 0, C22

2 = 0},
S5 := {C11

1 = −1, C11
2 = 1, C12

1 = 0, C12
2 = −1

2
, C22

1 = 0, C22
2 = 0}.

The remainder of this section is devoted to the proof of the following result:

Theorem 5 A type B modelM is a local affine symmetric space if and only if it is linearly
equivalent to one of the following examples:

1. L
2 := {C11

1 = −1, C11
2 = 0, C12

1 = 0, C12
2 = −1, C22

1 = −1, C22
2 = 0}.

This geometry is the hyperbolic Lorentzian plane with the upper half plane model, it is
geodesically incomplete, and ρ = (x1)−2diag(−1, 1).

2. H
2 := {C11

1 = −1, C11
2 = 0, C12

1 = 0, C12
2 = −1, C22

1 = 1, C22
2 = 0}.

This geometry is the hyperbolic Riemannian plane with the upper half plane model, it
is geodesically complete, and ρ = (x1)−2diag(−1,−1).

3. Either S4(c) for c �= 0 or S5. These geometries are globally isomorphic to the geometry
S2 of Definition 3, they are geodesically complete, and ρ = (x1)−2diag(−(C12

2)2, 0).

The exponential map for all the geometries except the Lorentzian hyperbolic plane is
surjective and 1-1 (Fig. 2). The geodesics for H2 are circles in R

+ × R with center on the
vertical axis. We set c = ±1 in examining S4(c) to give a labor of the situation. We postpone
until the subsequent section a discussion of L2.

Fig. 2 Geodesic structure
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The spaces of type B structures on R
+ × R are preserved by linear transformations

of the form (x1, x2) �→ (x1, δx1 + γ x2). Consider the change of variables w1 = x1,
w2 = δx1 + x2. Let Dij

k := (T ∗C)ij
k be the expression in the w-coordinate system of the

Christoffel symbols in the x coordinate system; Dij
k = C(∂wi , ∂wj , dwk). We have

dw1 = dx1, dw2 = δdx1 + dx2, ∂w1 = ∂x1 − δ∂x2 , ∂w2 = ∂dx2 ,

D11
1 = C11

1 − 2δC12
1 + δ2C22

1, D12
1 = C12

1 − δC22
1, D22

1 = C22
1,

D11
2 = C11

2 + δ(−2C12
2 + C11

1) + δ2(C22
2 − 2C12

1) + δ3C22
1,

D12
2 = C12

2 + δ(C12
1 − C22

2) − δ2C22
1, D22

2 = C22
2 + δC22

1.

We establish Theorem 5 by considering various cases seriatim. We apply the structure
equations given above.

Case 1 C22
1 > 0. We can rescale to ensure C22

1 = 1 and make a linear change of
coordinates (x1, x2) �→ (x1, x2 + δx1) to ensure C22

2 = 0. We compute

∇ρ222 = (x1)−3{2C11
2 + C12

1 − 2C12
1C12

2}.
Set C11

2 = C12
1C12

2 − 1
2C12

1. Since

∇ρ221 = (x1)−32C12
2{−C11

1 + (C12
1)2 + C12

2},
setting ∇ρ221 = 0 yields two subcases:

C11
1 = (C12

1)2 + C12
2 (case 1a) or C12

2 = 0 (case 1b).

Case 1a C11
1 = (C12

1)2 +C12
2, C11

2 = C12
1C12

2 − 1
2C12

1, C22
1 = 1, and C22

2 = 0. We
compute ∇ρ122 = (x1)−32(1 + C12

2) and ∇ρ212 = −(x1)−3(C12
1)2. Setting ∇ρ122 = 0

and ∇ρ212 = 0 yields the model H2:

C11
1 = −1, C11

2 = 0, C12
1 = 0, C12

2 = −1, C22
1 = 1, C22

2 = 0.

Case 1b C12
2 = 0, C11

2 = − 1
2C12

1, C22
1 = 1, and C22

2 = 0. We compute that ∇ρ122 =
(x1)−3{2 − 2C11

1 + 2(C12
1)2} and ∇ρ212 = −(x1)−3(C12

1)2. Setting ∇ρ122 = 0 and
∇ρ212 = 0 yields

C11
1 = 1, C11

2 = 0, C12
1 = 0, C12

2 = 0, C22
1 = 1, C22

2 = 0.

The Ricci tensor vanishes so this is impossible.

Case 2 C22
1 < 0. Rescale to set C22

1 = −1 and make a linear change of coordinates
(x1, x2) �→ (x1, x2 + δx1) to set C22

2 = 0. We compute

∇ρ222 = (x1)−3{2C11
2 + C12

1(2C12
2 − 1)}.

Setting ∇ρ222 = 0 yields C11
2 = 1

2C12
1 − C12

1C12
2. Since

∇ρ221 = (x1)−32C12
2
(
C11

1 + (C12
1)2 − C12

2
)

,

setting ∇ρ221 = 0 yields two subcases:

C11
1 = C12

2 − (C12
1)2 (case 2a) or C12

2 = 0 (case 2b).
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Case 2a C11
1 = C12

2 −C12
1C12

1, C11
2 = 1

2C12
1 −C12

1C12
2, C22

1 = −1, and C22
2 = 0.

We compute ∇ρ122 = −2(x1)−3(1+C12
2) and ∇ρ212 = −(x1)−3C12

1. Setting ∇ρ122 = 0
and ∇ρ212 = 0 yields the model L2:

C11
1 = −1, C11

2 = 0, C12
1 = 0, C12

2 = −1, C22
1 = −1, C22

2 = 0.

Case 2b C22
1 = −1, C22

2 = 0, C11
2 = 1

2C12
1, and C12

2 = 0. We compute that ∇ρ122 =
2(x1)−3{C11

1+(C12
1)2−1} = 0 and ∇ρ212 = −(x1)−3(C12

1) = 0. This implies C11
1 = 1,

C11
2 = 0, C12

1 = 0, C12
2 = 0, C22

1 = −1, and C22
2 = 0. The Ricci tensor is then zero so

this case is impossible.

Case 3 C22
1 = 0 and C22

2 �= 0. We rescale to assume C22
2 = 1. We obtain ∇ρ222 =

2(x1)−3(C12
1 − 1)C12

1 = 0. Consequently we obtain two subcases:

C12
1 = 1 (case 3a) or C12

1 = 0 (case 3b).

Case 3a C12
1 = 1, C22

1 = 0, and C22
2 = 1. We obtain

∇ρ212 = −2(x1)−3(C12
2 + 1) = 0 and ∇ρ122 = −2(x1)−3C12

2 = 0

which is impossible.

Case 3b C12
1 = 0, C22

1 = 0, and C22
2 = 1. We obtain ∇ρ212 = −1. This case is

impossible.

Case 4 C22
1 = 0 and C22

2 = 0. We obtain ∇ρ221 = (x1)−3(C12
1)2 setting ∇ρ221 = 0

shows that C12
1 = 0 so by Theorem 3.11 of [1] this is type A and the analysis of Section 2

pertains. Let ρ̃ = (x1)2ρ; the entries of ρ̃ are constant for a type B geometry. We have

ρ = (x1)−2diag(ρ̃11, 0) and ∇ρ = −2(x1)−3(1 + C11
1)ρ̃11dx1 ⊗ dx1 ⊗ dx1.

Thus C11
1 = −1 and ρ̃11 = −(C12

2)2. Thus, we require C12
2 �= 0. We have

C11
1 = −1, C12

1 = 0, C22
1 = 0, C22

2 = 0.

The structure equations become in this case:

D11
1 = −1, D12

1 = 0, D22
1 = 0,

D11
2 = C11

2 + δ(−2C12
2 − 1), D12

2 = C12
2, D22

2 = 0.

If C12
2 �= − 1

2 , we can use this to normalize C11
2 = 0 and obtain the models S4(c) of

assertion (3a). If C12
2 = − 1

2 , C11
2 is either zero or can be normalized to 1, so we obtain

either one of the models S4(c) of assertion (3a) or the model S5 of assertion (3b).
A direct computation yields the Ricci tensors. The Ricci tensors for L

2 and H
2 are

non-degenerate and symmetric. Thus, by Theorem 1, the connections are the Levi-Civita
connections of these metrics. We can change the sign if necessary. Thus, H2 corresponds to
the metric ds2 = (x1)−2((dx1)2 + (dx2)2) and is the hyperbolic plane; this is known to be
geodesically complete. Similarly, L2 corresponds to the metric ds2 = (x1)−2(−(dx1)2 +
(dx2)2). Consider the curve σ(t) = t−1(1, 1) in L

2. We verify the geodesic equations are
satisfied to see L

2 is geodesically incomplete:

x1ẍ1 + Cij
1ẋi ẋj = t−4{2 − 1 − 1} = 0,

x1ẍ2 + Cij
2ẋi ẋj = t−4{2 − 2} = 0.
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Finally suppose N is as in assertion (3). The geodesic equation for x1 takes the form
x1ẍ1 − ẋ1ẋ1 = 0. We solve this by taking x1(t) = aebt for a > 0. The geodesic equation
for x2 becomes

ẍ2 + 2bC12
2ẋ2 + ab2ebtC11

2 = 0.

Set x2(t) = f (t)ebt . The equations then become

f̈ + 2bḟ + b2f + 2bC12
2{ḟ + bf } + ab2C11

2 = 0.

This is a constant coefficient ordinary differential equation; the solution is defined for all t

with arbitrary initial conditions.

4 The Geodesic Structure of the Lorentzian Hyperbolic Plane

The Lorentzian hyperbolic plane is the only non-complete symmetric space of type B, and
the exponential map is not surjective although it is 1–1. We present the following picture
of the geodesic structure; the line x1 = 0 (which is the vertical axis) is the boundary of
L

2. When making plots of the geodesics, we will take (1, 0) as the base point; since the
geometry is homogeneous, the choice of base point is irrelevant. The symmetric Ricci tensor
is (x1)−2diag(−1, 1). If we use this tensor to give L

2 a pseudo-Riemannian structure, then
the associated Levi-Civita connection is the connection described in Theorem 5 (1). Let
X = ξ1∂x1 + ξ2∂x2 be a tangent vector. X is null if ξ1 = ±ξ2, X is timelike if |ξ1| > |ξ2|,
and X is spacelike if |ξ1| < |ξ2|.

Theorem 6 Adopt the notation given above. The geodesics of L2 have one of the following
forms for some α, β, c ∈ R, modulo reparametrization:

1. σ(t) = (et , α) for −∞ < t < ∞. This geodesic is complete.
2. σ(t) = (t−1,±t−1 + α) for 0 < t < ∞. This geodesic is incomplete at one end and

complete at the other end.

3. σ(t) =
(

1
c sinh(t)

,± coth(t)
c

+ β
)
for t ∈ (0,∞) and c > 0. This tends asymptotically

to the line x1 = 0 as t → ∞ and escapes to the right as t → 0. These geodesics are
incomplete at one end and complete at the other. These geodesics all have infinite (and
negative) length.

4. σ(t) =
(

1
c sin(t)

, ± cot(t)
c

+ β
)
for t ∈ (0, π) and c > 0. These geodesics escape

upwards and to the right as t → 0 and downwards and to the right as t → π . The
geodesic σ is incomplete at both ends and has total length π .

5. The geodesics in (3) and (4) solve the equation (x1)2 − λ

c2 = (x2 + β)2 and are
hyperbolas; the geodesic is “vertical” if λ = +1, “horizontal” if λ = −1, and null if
λ = 0.

We picture the geodesic structure below in Fig. 3 the region omitted by the exponential
map is shaded in the picture. The “vertical” geodesics point up (resp. below) and to the
right and down; they lie above and below the half lines with slope ±π

4 . The “horizontal”
geodesics point to the right and the left and lie between the half lines with slope ±π

4 .
The remainder of this section is devoted to the proof of Theorem 6. The non-zero

Christoffel symbols are given by

�11
1 = − 1

x1
, �12

2 = − 1

x1
, �22

1 = − 1

x1
.
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AllVerticalHorizontal

Fig. 3 Geodesics in L
2

Thus, the geodesic equation becomes, after clearing denominators,

x1ẍ1 − (ẋ1)2 − (ẋ2)2 = 0 and x1ẍ2 − 2ẋ1ẋ2 = 0.

We integrate the relation x1ẍ2 − 2ẋ1ẋ2 = 0 to see ẋ2 = c(x1)2 for some c ∈ R. Since
geodesics have constant speed, we have (ẋ2)2 − (ẋ1)2 = λ(x1)2 for some λ ∈ R. Thus, we
can replace the relations given above by the following system of first order equations:

(ẋ2)2 − (ẋ1)2 = λ(x1)2 and ẋ2 = cx1x1. (1)

Step 1 Suppose c = 0 in (1) so that ẋ2 vanishes identically. We then obtain ẋ1 = αx1

where α2 = −λ. This implies x1(t) = eαt+β and x2(t) = γ . To ensure the geodesic is non-
trivial, we must have α �= 0. These are the horizontal open half lines of assertion (1). The
geodesic is defined for all t ∈ R. We therefore suppose c �= 0 henceforth in (1).

Step 2 Suppose λ = 0 in (1). We have ẋ2 = ±ẋ1 and ẋ1 = c(x1)2. Since c �= 0, the
geodesic is non-trivial. By rescaling the parameter t , we can assume c = −1. The solutions
to the equation ẋ1 = −(x1)2 take the form x1(t) = 1

t+b
. By shifting t , we may assume

b = 0. Thus, σ(t) = ( 1
t
,± 1

t
+ α) for some α ∈ R. These are the half lines with slope ±π

4 .
They approach the vertical axis asymptotically in one direction but explode to the right in
finite time. They are described by assertion (2). We therefore suppose λ �= 0 henceforth in (1).

Step 3 Suppose λ = −1. We can combine the two equations in (1) to obtain

(ẋ1)2 − (x1)2 − c2(x1)4 = 0.

After reparametrization, these geodesics take the form

x1(t) = 1

c sinh(t)
and x2(t) = ±coth(t)

c
+ β for t ∈ (0,∞).

Assertion (3) follows. Let t0 = arcsinh(c−1); then x1(t0) = 1. The geodesics

x1(t) = 1

c sinh(t)
and x2(t) = ±

{
coth(t)

c
− coth(t0)

c

}

parametrize the “horizontal” geodesics through the point (1, 0) (see Fig. 3).
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Step 4 Suppose λ = 1 in (1). We obtain the equation

(ẋ1)2 + (x1)2 − c2(x1)4 = 0.

After reparametrization, these geodesics take the form:

x1(t) = 1

c sin(t)
and x2(t) = ±cot(t)

c
+ β.

Assertion (4) now follows. Let t0 = arcsin (c−1); then x1(t0) = 1. The geodesics

x1(t) = 1

c sin(t)
and x2(t) = ±

{
cot(t)

c
− cot(t0)

c

}

parametrize the “vertical” geodesics through the point (1, 0). We refer to Fig. 3.

Step 5 We suppose that c �= 0 so we are not dealing with the rays of slope ±π
4 . We use (1)

to see:

(ẋ1)2 = c2(x1)4 − λ(x1)2 and ẋ2 = c(x1)2,

∂x1

∂x2
= ±

√
c2(x1)4 − λ(x1)2

c(x1)2
,

dx2 = ± cx1√
c2(x1)2 − λ

dx1 = ±1

c
d

{√
c2(x1)2 − λ

}
,

±c(x2 + β) =
√

c2(x1)2 − λ,

c2(x1)2 − λ = c2(x2 + β)2.

This is the equation of a hyperbola. Furthermore, the slope of this hyperbola at infinity is
±1. Thus, the geodesics are the part of a straight line or the part of a hyperbola lying in the
right half plane.

Remark 1 Let T̃ (x1, x2) := (x1,−x2)

(x1)2−(x2)2 . This map is a geodesic involution about the point

(1, 0). The domain of T̃ is pictured below in Fig. 4 where we have removed the part of L2

not in the domain. It would let us convert horizontal geodesics which escape to the right

Fig. 4 Domain of T̃
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into geodesics which could be completed to the left. For example, we showed previously
that σ±(t) := ( 1

t
,±( 1

t
− 1)). We have

T̃ σ±(t) = (− 1
t
,±( 1

t
− 1))

( 1
t

− 1)2 − ( 1
t
)2

= (− 1
t
,±( 1

t
− 1))

1 − 2
t

= (−1,±(1 − t))

t − 2
= σ±(2 − t).

These are null geodesics through (1, 0) with natural domain (−∞, 2) so we have “removed”
the apparent singularity at zero through analytic continuation.

5 The Exponential Map for the Lorentzian Hyperbolic Plane

Theorem 7

1. The exponential map is an embedding of TP M for any P in M .
2. It is not onto but omits a region in the plane.
3. If, for example, P = (1, 0), the exponential map omits (see Fig. 3), the regions x2 ≥

1 + x1 and x2 ≤ −1 − x1.

The remainder of this section is devoted to the proof of Theorem 7. We take the point in
question to be (1, 0); this choice is inessential as L2 is homogeneous.

Step 1 Let F(ξ) := exp(1,0)(ξ) for ξ ∈ T(1,0)(R
+ ×R) and ξ in the domain of exp(1,0); the

relevant domain is discussed carefully in Section 4. We examine the structure of the Jacobi
vector fields to show that dF(ξ) is non-singular. We have ρ = diag(−1, 1) at (1, 0). Let σ

be a geodesic with initial point (1, 0) and let {e1, e2} be parallel vector fields along σ with
e1(0) = ∂x1 and e2(0) = ∂x2 . As ∇R = 0, the matrix of the curvature operator is constant
on a parallel frame. As {e1, e2} is an orthonormal frame and the sectional curvature of L2 is
constant, one has R(e1, e2)e2 = e1 and R(e2, e1)e1 = −e2. Let Y (t) be a vector field along
σ . We say that Y is a Jacobi vector field along σ if Y satisfies the equation:

Ÿ (t) + R(Y (t), σ̇ (t))σ̇ (t) = 0.

We must show there are no non-trivial Jacobi vector fields along σ with Y (0) = 0 and
Y (t) = 0 for t > 0.

Step 1a Suppose σ is a null geodesic. We suppose σ̇ = e1(t)+e2(t) as the case σ̇ = e1−e2
is similar. Let f1(t) = e1(t) + e2(t) and f2(t) = e1(t) − e2(t). Let Y (t) = a1(t)f1(t) +
a2(t)f2(t). We compute:

R(f2, f1)f1 = R(e1 − e2, e1 + e2)(e1 + e2) = 2R(e1, e2)(e1 + e2)

= 2(e1 + e2) = 2f1,

Ÿ + R(Y, σ̇ )σ̇ = (ä1 + 2a2)f1 + ä2f2.

Thus a2(t) = at + b. To ensure Y (0) = 0, we have b = 0. If Y (t) = 0 for t > 0,
we have a2 = 0. The remaining equation then yields ä1 = 0. A similar argument shows
a1 = 0. Consequently, there are no non-trivial Jacobi vector fields along a null geodesic
with Y (0) = 0 and Y (t) = 0 for t > 0.

Step 1b Suppose σ is not a null geodesic and ρ(σ̇ , σ̇ ) < 0. By rescaling the parameter,
we may assume ρ(σ̇ , σ̇ ) = −1. Let fi(t) be a parallel orthonormal frame along σ with
f1(t) = σ̇ (t). We have R(f2, f1)f1 = −f2 and the Jacobi equation becomes ä1 = 0 and
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ä2 − a2 = 0. Imposing the initial condition Y (0) = 0 means a1(t) = at and a2(t) =
b sinh(t). This does not vanish for t > 0.

Step 1c Suppose σ is not a null geodesic and ρ(σ̇ , σ̇ ) > 0. By rescaling the parameter, we
may assume ρ(σ̇ , σ̇ ) = +1. We have R(f2, f1)f1 = f2 and the Jacobi equation becomes
ä1 = 0 and ä2 + a2 = 0. We impose the initial condition Y (0) = 0 to see a1 = at and
a2 = b sin t . By Theorem 6 (4), the whole geodesic has length π . Thus, starting from (1, 0)

in either direction, 0 ≤ t < π and there are no non-trivial Jacobi vector fields with J (0) = 0
and J (t) = 0 for t > 0 in the parameter range. This shows that d expP (ξ) is non-singular,
and thus, expP is a local diffeomorphism, thereby completing the proof of assertion (1). We
remark that in Section 6 we will consider the pseudosphere; the geodesics do in fact focus
in the vertical directions (see Fig. 6).

Step 2 To establish assertion (2), we must show that any two geodesics intersect in at
most one point; this does not follow from our analysis of the Jacobi vector fields, and we
must give a separate argument. We use the classification of Theorem 6. By (1), we have
ẋ2 = c(x1)2. Thus, if c �= 0, i.e., the geodesic is not parallel to the horizontal axis, x2 is
strictly increasing/decreasing and thus intersects a geodesic parallel to the horizontal axis
in at most one point. If a geodesic intersects a null geodesic in two points, the slope of the
geodesic at some point must equal ±1 by the intermediate value theorem. Since the speed of
the geodesic is constant, the geodesic is in fact a null geodesic. Two distinct null geodesics
either don’t intersect, intersect in a single point, or coincide. Suppose P is a point of a
geodesic σ . The complement of the two null geodesics through P divides R+ ×R into four
open regions. If g(σ̇ , σ̇ ) > 0, then σ is “vertical” and is contained in the upper and lower
of the four regions; if g(σ̇ , σ̇ ) < 0, then σ is “horizontal” and is contained in the left and
right of the four regions (see Fig. 3). Consequently, “vertical” and “horizontal” geodesics
intersect in at most one point.

Let λ = ±1. We consider the family of hyperbolas given by Theorem 6 (5):

γc,β :=
{
(x1, x2) : (x1)2 − λ

c2
= (x2 + β)2 for x1 > 0

}
.

Suppose γc,β contains the point (1, 0) and some other point (a, b). We then have

1 − λ

c2
= β2 and a2− λ

c2
= (b + β)2 so

a2 − 1 = (b + β)2 − β2 = b2 + 2bβ.

If b �= 0, we can solve for β and then solve for c2 to determine γc,β uniquely. If b = 0, we
conclude a2 = 1 so a = 1 which contradicts the hypothesis (a, b) �= (1, 0). Thus, once λ is
fixed, there is at most one geodesic in this family between the point (1, 0) and (a, b) which
completes the proof of assertion (2).

Step 3 We must show that any geodesic through the point (1, 0) does not intersect the rays
x2 = ±(x1 + 1). This is immediate for the horizontal geodesic and for the half lines with
slope ±π

4 that pass through the point (1, 0). Since the “horizontal” geodesics are trapped
to the right and left of the half lines with slope ±π

4 , we need only consider the vertical
geodesics of Theorem 6 (4), so we take λ = 1. By Theorem 6 (5), these solve the equation
(x1)2 − d2 = (x2 + β)2 where we take d = 1

c
. To ensure this goes through the point (1, 0),

we take β = ±√
1 − d2 for 0 < d < 1. We suppose this intersects the line x2 = x1 + 1 as

the case x2 = −(x1 + 1) is similar. This implies (x1)2 − d2 = (x1 + 1 ± √
1 − d2)2 so

(x1)2 − d2 = (x1)2 + 2x1(1 ±
√

1 − d2) + 1 + (1 − d2) ± 2
√

1 − d2 .
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Consequently, 0 = 2(x1 + 1)(1 ± √
1 − d2). Since 1±√

1 − d2 > 0, this implies x1 = −1
which is impossible. This completes the proof of Theorem 7.

6 The Pseudosphere S2

We continue our investigation of this geometry using a different model. Give R
3 the inner

product 〈x, y〉 = x1y1 + x2y2 − x3y3. Let

S := {x : 〈x, x〉 = +1} and S
2 = (S, 〈·, ·〉|S)

be the associated Lorentz manifold, the pseudo sphere. This is pictured above in Fig. 5.

Lemma 1 Adopt the notation established above

1. The Lorentz group O(1, 2) acts transitively on S
2 by isometries.

2. Geodesics in S
2 extend for infinite time.

3. The exponential map is not surjective from TP S to S
2 for any P .

Proof The first assertion is immediate from the definition. Since S
2 is homogeneous, we

may assume that the point in question is P = (1, 0, 0) in proving the remaining assertions.
We note TP S = {ξ ∈ R

3 : 〈S, ξ 〉 = 0} = Span{e2, e3}. Let ξ = ae2 + be3. We distinguish
three cases to establish Assertion (2):

1. Assume ξ is spacelike, i.e., that a2−b2 > 0. We can rescale ξ to ensure that a2−b2 = 1.
Let σ(θ) = cos(θ)e1 + sin(θ)ξ : R → S

2. Since σ̈ = −σ , σ̈ ⊥ Tσ S and thus
σ̈ ⊥ S. This implies σ is a geodesic which is defined for all time. Furthermore, σ closes
smoothly at P .

2. a2 − b2 = 0. This vector is null. We can let σ(t) = e1 + tξ . Since σ̈ = 0, this is a
geodesic which extends for all time.

3. a2 − b2 < 0. This vector is timelike. We can rescale ξ so b2 − a2 = 1. Let σ(t) =
cosh(t)e1 + sinh(t)ξ . Again, σ̈ ⊥ S so this geodesic is defined for all time.

We prove assertion (3) by remarking that the geodesics constructed in the proof of
assertion (2) can never reach −P + tξ for ξ null and ξ ⊥ P nor can they reach
− cosh(t)P + sinh(t)ξ for ξ timelike and ξ ⊥ P .

Fig. 5 The pseudo sphere S
2
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The pseudosphere S
2 is not simply connected since S

2 is diffeomorphic to S1 × R. We
construct the universal cover S̃ as follows. Let

T (u, v) = (cosh(u) cos(v), cosh(u) sin(v), sinh(u))

define a smooth map from R
2 to S; this exhibits R2 as the universal cover of S. We compute:

∂uT = (sinh(u) cos(v), sinh(u) sin(v), cosh(u)),

∂vT = cosh(u)(− sin(v), cos(v), 0),

g11 = −1, g12 = 0, g22 = cosh2(u),

g = −du2 + cosh2(u)dv2.

The non-zero Christoffel symbols are �vvu and �uvv . We use the first Christoffel identity
�ijk = 1

2 (gjk/i + gik/j − gij/k) and then raise indices to see:

�122 = cosh(u) sinh(u), �12
2 = sinh(u)

cosh(u)
,

�221 = − cosh(u) sinh(u), �22
1 = cosh(u) sinh(u).

A brief computation then shows ρ = diag(−1, cosh2 (u)) and ∇ρ = 0. We have the
given above in Fig. 6 a picture of the geodesics where we have shaded the regions not
reached by any geodesic from the origin. The picture on the left of Fig. 6 shows the geodesic
structure through the origin (0, 0). The geodesics with initial direction π

4 from the horizontal
are null geodesics; they are asymptotically horizontal. Geodesics with initial direction less
than π

4 are timelike; they are trapped above and below by the null geodesic and again are
asymptotically horizontal. Geodesics at angle less than π

4 from the vertical focus on the
vertical axis at (0, nπ) for n = 0,±1,±2, . . . . The exponential map omits a large area of
the plane which is shaded. In the picture at the right, we have made the geodesic periodic
with vertical period 2π since T (u, v) = T (u, v + 2π). This gives the geodesic structure
on the pseudosphere; one should make a cylinder by identifying (u, 0) with (u, 2π) in the
second picture of Fig. 6.

Fig. 6 Geodesics in the pseudosphere
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7 Relating L2 and the Pseudosphere: Geodesic Sprays

Let M = (M, g) be a Lorentzian surface. Let σ(s) be a null geodesic. Let ξ(s) be a
parallel null vector field along σ so that g(ξ(s), σ̇ (s)) = 1. We introduce the geodesic spray
T (s, t) := expσ(s){tξ(s)}; it may, of course, only be locally defined.

Lemma 2 Adopt the notation established above.

1. We have g(∂t , ∂s) = 1 and g(∂t , ∂t ) = 0.
2. g(∂s, ∂s) = t2 if and only if g = ρ.

Proof The curves t �→ T (s, t) are geodesics with initial direction ξ(s). Consequently,
g(∂t , ∂t )(s, t) is independent of t so g(∂t , ∂t )(s, t) = g(ξ(s), ξ(s)). This vanishes as ξ is a
null vector field. We show that g(∂s, ∂t )(s, t) is independent of t by computing:

∂tg(∂s, ∂t ) = g(∇∂t ∂s, ∂t ) + g(∂s,∇∂t ∂t ) = g(∇∂s ∂t , ∂t ) = 1
2∂sg(∂t , ∂t ) = 0 .

Consequently g(∂s, ∂t )(s, t) = g(∂s, ∂t )(s, 0) = g(σ̇ (s), ξ(s)) = 1. This establishes
assertion (1). We have g(σ̇ (s), σ̇ (s)) = 0 since σ is a null geodesic. We compute:

0 = g(∇∂s ∂s, ∂t )|t=0 = {∂sg(∂s, ∂t ) − g(∂s,∇∂s ∂t )}|t=0

= −1

2
∂tg(∂s, ∂s)|t=0.

Let ∇∂s ∂t = c∂s + d∂t . To simplify the notation, let g(∂s, ∂s) = 2f (s, t). We have:

f (s, 0) = 0 and ft (s, 0) = 0. (2)

Since g(∂s, ∂t ) = 1 and g(∂t , ∂t ) = 0, we have:

�121 = ft = 2f c + d, �122 = 0 = c, ∇∂s ∂t = ft∂t , ∇∂t ∂t = 0,

R(∂s, ∂t )∂t = −∇∂t ∇∂s ∂t = −∇∂t {ft∂t } = −ftt ∂t .

Express R(∂s, ∂t )∂s = u∂s + v∂t . Then

u = Rstst = −Rstts = ftt , 2f u + v = Rstss = 0,

R(∂s, ∂t )∂t = −ftt ∂t , R(∂s, ∂t )∂s = ftt ∂s − 2fftt ∂t ,

ρ(∂s, ∂s) = 2fftt , ρ(∂s, ∂t ) = ftt , ρ(∂t , ∂t ) = 0.

Consequently ρ = g if and only if ftt = 1. We solve the equation ftt = 1 with initial
conditions f (0, t) = 0 and ft (0, t) = 0 provided by (2) to see f (s, t) = 1

2 t2 so g(∂s, ∂s) =
t2.

Let X2 := (R2, gX) for gX(∂s, ∂s) = t2, gX(∂s, ∂t ) = 1, and gX(∂t , ∂t ) = 0. Let

TS2(s, t) :=
(

1 − ts, s + 1

2
t − 1

2
ts2, s − 1

2
t − 1

2
ts2

)
,

TL2(s, t) :=
(

s2

2
t + s

)−1

(−1, 1) +
(

0,
2

s

)
for s > 0, t > −2

s
.

Theorem 8 Adopt the notation established above.

1. TS2 is an isometry from X
2 to an open subset of S2.

2. TL2 is an isometry from the subset s > 0, 1
2 s2t + s > 0 in X

2 to L
2.

3. L
2 is isometric to an open subset of S2.
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Proof The proof of Lemma 1 shows that null geodesics in S
2 may be expressed in the form

σ(t) = e1 + tξ where 〈e1, e1〉 = 1, 〈e1, ξ 〉 = 0, and 〈ξ, ξ 〉 = 0. Let

σ(s) = e1 + s(e2 + e3) and ξ(s) = −se1 + 1

2
(e2 − e3) − 1

2
s2(e2 + e3).

Then, σ is a null geodesic. We show that ξ satisfies the hypotheses of Lemma 2 by checking:
〈σ(s), ξ(s)〉 = 0, 〈σ̇ (s), ξ(s)〉 = 1, 〈ξ(s), ξ(s)〉 = 0. Thus, taking the map T (s, t) =
σ(s) + tξ(s) yields the defining relations for TS2 :

x1(s, t) = 1 − ts, x2(s, t) = s + 1

2
t − 1

2
ts2, x3(s, t) = s − 1

2
t − 1

2
ts2.

If T (s, t) = T (s̃, t̃), then t = x2(s, t)−x3(s, t) = x2(s̃, t̃ )−x3(s̃, t̃ ) = t̃ . It now follows that
s = s̃. Thus, the parametrization is 1-1, and the range is an open subset of S2. Assertion (1)
follows.

We now consider L2 = R
+ × R with the metric

ds2 = (dx1)2 − (dx2)2

(x1)2
, i.e., g((a, b), (c, d)) = (ac − bd)/(x1)2. (3)

For s > 0, we set σ(s) = s−1(1, 1) and ξ(s) = 1
2 (−1, 1). By Theorem 6, σ(s) is a null

geodesic. We have that ξ(s) is a null vector field. Since σ̇ (s) = −s−2(1, 1) and x1(s) =
s−1, (3) implies gL2(σ̇ (s), ξ(s)) = 1 as desired. Let

T (s, t) = (a(s)t + s)−1(1,−1) +
(

0,
2

s

)
for t > −s.

We then have T (s, 0) = ( 1
s
, 1

s
) as desired. To ensure T∗∂t |t=0 = −a(s)s−2(1,−1) we set

a(s)s−2 = 1
2 or a(s) = s2

2 . Thus T (s, t) = ( s2

2 t + s)−1(−1, 1) + (0, 2
s
). It is immediate by

inspection that the map is 1-1. This proves assertion (2); assertion (3) is now immediate.

Remark 2 If one took σ(s) to be a unit space-like geodesic (vertical spine) and took the
spray of time-like unit geodesics perpendicular to it, one would get the metric ds2 =
cosh2(t)ds2 − dt2. If one took σ(s) to be a unit time-like geodesic (horizontal spine) and
took the spray of unit space-like geodesics perpendicular to it, one would get the metric
ds2 = − cos2(t)ds2 + dt2. The resulting picture in L

2 is given below in Fig. 7. Those with

Fig. 7 Geodesic sprays in L
2: vertical and horizontal spines
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a vertical spine fail to give a 1–1 parametrization; those with a horizontal spine fail to fill
up L

2. The spray from a null geodesic suffers from neither of these defects.
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