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Abstract 

Defective zinc ferrites ZnFe2O4-δ obtained by vacuum annealing bulk Zn-ferrite at different 
temperatures TAnn were investigated by using XANES at Zn-K, Fe-K and XMCD at Fe-L2,3 edges, 
static and dynamic magnetic measurements. The cation inversion that confers to the starting ferrite 
a weak ferromagnetic response is progressively lost when TAnn surpasses 250 ºC. Consequently, 
there is a detriment of the magnetic response that reaches its lower value for TAnn around 370 ºC, 
being the latter coincident with a negligible non-equilibrium occupancy. Above TAnn∼ 450 ºC the 
ferrite progressively enhances its magnetic response. In such case, even though Zn and Fe occupy 
non-equilibrium sites at surface regions, the deficiency of oxygen predominates over inversion and 
the former triggers an increment of the magnetic coupling between Fe3+ at octahedral spinel sites. 
We discuss the magnetic results that account for spin-glass and/or cluster-glass behavior of this 
geometrically frustrated compound as due to the randomness and frustration introduced by local 
defects. 
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1. Introduction 

Zinc ferrite ZnFe2O4 has a spinel structure where in its normal state Zn2+ and Fe3+occupy, 

respectively, 8 tetrahedral (A) and 16 octahedral [B] interstitial sites of an fcc oxygen unit 

superlattice [1]. In spite that ZnFe2O4 is widely identified as an antiferromagnet with a Néel 

temperature (TN ) around 10 K [2], neutron scattering results have cast doubt on whether 
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this compound intrinsically displays a long-range order (LRO) or it is driven by the 

presence of defects [3-5].  While the susceptibility shows a peak near TN, its positive Curie-

Weiss temperature ΘCW ~ +120 K (or higher) and the lack of evidence of a LRO at least 

down to 1.5 K for high-purity single-crystal of ZnFe2O4 suggest the existence of a strong 

spin frustration [4,6]. Actually, ZnFe2O4 can be modeled as a Heisenberg 3D-geometrical 

frustrated system where the B-sites form a network of corner-sharing tetrahedra 

(pyrochlore-type) from neighboring BO6 octahedra [3, 4, 7]. Therefore, its unusual 

magnetic behavior has been interpreted as driven by the third-neighbor antiferromagnetic 

(AF) interactions J3 (paths B-O-B-O-B and B-O-A-O-B) that compete with the 

temperature-dependent first-neighbor ferromagnetic (FM) interactions J1 (B-O-B) [6,8,9]. 

While the FM spin correlations dominate at high temperatures, the AF interactions become 

important below ~ 15 K [9]. At the lowest measured temperatures, the geometrically 

frustrated system is expected to remain in a disordered state due to the degeneracy of its 

ground state [5,10].  

Within this scenario, the broken symmetry generated by localized defects such as cationic 

inversion, impurities or vacancies might give rise to a relief of the geometrical frustration 

and, at the same time, to the emergence of other competing interactions and randomness 

that lead to novel magnetic properties. One remarkable result concerning the presence of 

such defects in the ZnFe2O4 lattice is the appearance of a spontaneous magnetization at 

room temperature [11-15]. This property also encourages developments for potential 

applications of this ferrite as part of chemically stable and low-cost products with 

semiconducting and magnetic properties [15,16].  
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The cation inversion in ZnFe2O4 implies that some Fe3+ replace Zn2+ ions at sites (A) and 

the Zn2+ go to [B] sites. This modifies the superexchange interactions and, depending on 

the degree of inversion (i. e., the fraction of Fe3+ at (A) sites), the ferrite displays a variety 

of spin arrangements, like ferrimagnetism, cluster or spin-glass-like behaviors [3,17,18]. 

One way to obtain partially inverted ferrites at ambient temperature consists of performing 

a quenching from high temperatures [19,20,21]. The state of inversion is mainly a feature 

distinctive of nanosized ZnFe2O4, where the tetrahedral symmetry of Fe3+ is naturally 

broken. However, it is still unclear what the relationship between the degree of inversion 

and the particle size is (see, for instance, [3,11,22]).  

The oxygen deficiency can also be a key factor to alter the ZnFe2O4 intrinsic behavior, 

because gives rise to interrupted superexchange paths and to the rearrangement of the ions' 

positions [12,14,17,20,23].  For instance, the enhancement of the magnetic response 

observed in ZnFe2O4 nanoparticles annealed under vacuum [12, 23] and thin films growth 

at low oxygen partial pressure [14-17] has been attributed to the presence of oxygen 

vacancies (VO). Additionally, the cluster-glass C-G magnetic behavior observed in 

ZnFe2O4-δ films was interpreted as due a random distribution of zinc and iron atoms 

generated by vacancies [17].  However, the influence of VO on the magnetism of zinc 

ferrite is difficult to be discriminated in these nanosystems because their magnetic response 

is usually affected not only by a considerable state of inversion but also by 

superparamagnetic relaxation and surface effects.   

On the other side, density-functional-theory DFT calculations performed on ZnFe2O4  

predict that the VO in BO6 octahedron bring about a local ferromagnetic FM coupling 

between iron ions at [B] sites affecting its magnetic ordering [14].  More recently, 
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additional first-principles calculations performed by Yao et al. [24] showed that the VO in 

ZnFe2O4 induce a distortion of the unit cell structure and significantly weaken the strength 

of Zn-O bonds and increase the Fe-O ones around VO. Consequently, this causes an 

alteration of superexchange integrals that affects the intensity of the competing interactions.  

All the experimental and theoretical findings point toward that the presence of vacancies in 

ZnFe2O4  strongly impacts on its magnetic behavior, hence their effects worthwhile to be 

explored more in deep.  Considering that most of the studies have been performed in 

nanosized ZnFe2O4 whose behavior is affected by size effects and an unavoidable state of 

partial inversion, more studies on bulk material are needed to further understand the 

influence of VO on the magnetic behavior of this geometrically frustrated ferrite. To this 

end, we present here an investigation on zinc ferrite bulk powders that were subjected to 

vacuum annealing at different temperatures up to 620 ºC.  We describe the structural, 

electronic and magnetic behavior of these defective ferrites using x-ray diffraction, near 

edge x-ray absorption spectroscopy (XANES), magnetic circular dichroism (XMCD), static 

and dynamic magnetic measurements.  

2. Experimental 

Polycrystalline ferrite ZnFe2O4 was obtained by conventional solid state reaction from a α-

Fe2O3 and ZnO stoichiometric mixture annealed in air at 1000 ºC during 24 hours. The 

annealing was repeated with intermediate grinding. The as-prepared single phase ferrite 

(ZFO) was divided into several batches that were thermally treated under a vacuum 

pressure (pO=1.5x10-4 Torr). These treatments were performed using a tubular furnace with 

a temperature gradient. This set-up allows annealing several batches simultaneously at 
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different temperatures and keeping the same pO. Two sample series were prepared from 

ZFO: Series I (furnace range temperature from 25 to 450ºC) and Series II (from 240 to 

620ºC). The as-annealed samples of both series were labeled as ZFO-TAnn, where TAnn 

stands for the annealing temperature sensed at the middle point of a sample position.  

X ray diffraction (XRD) patterns of samples of Series I were recorded with a X’Pert 

diffractometer (CuKα, λ=1.5406 Å). The data were collected in the 20º ≤ 2θ ≤ 80º range 

scanned with an angle step of 0.02º. Diffractograms of Series II were collected at the XRD 

beam line of the Brazilian Synchrotron (LNLS). The data were collected with a 

monochromatic X-ray beam, λ = 1.24106 Å in the 8º ≤ 2θ ≤ 90º range scanned with an 

angle step of 0.005º. All these data were indexed and refined using the MAUD program 

[25]. 

X ray absorption near edge spectra (XANES) were collected in transmission mode room 

temperature at the D04B-XAFS1 beam line of LNLS around the Fe and Zn K-edges (7112 

and 9662 eV, respectively). XMCD experiments at the L2,3 edges were performed at room 

temperature in the PGM beamline at LNLS by using the circularly polarized light with the 

degree of circular polarization around 80%. The absorption data were collected in the total 

electron yield (TEY) mode. The photon beam was perpendicular to the sample and a 

magnetic field µ0Hap= 1T was applied normal to the sample plane. The absorption has been 

normalized to the incoming photon beam intensity by measuring synchronously the 

photocurrent at a gold grid. The absorption cross section of the circular polarized x-rays is 

labeled µαβ, where α denotes the helicity of the photon (α=↑ (↓) when the photon are right-

hand (left-hand) polarized) and β denotes the direction of Hap (β=↑ (↓) when the field is 

parallel (antiparallel) to the propagation vector). In the electric dipole approximation 
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reversing Hap is equivalent to changing beam helicity, thus µ↑↑ = µ↓↓and µ↑↓= µ↓↑.  The 

XMCD signal was obtained from µXMCD = (µ↑↑+ µ↓↓ - µ↑↓- µ↓↑)/ 2, and normalized by the 

area of the corresponding XANES spectrum. 

Magnetization (M) as a function of applied magnetic field (H) was obtained using vibrating 

sample magnetometer (VSM) from LakeShore and a superconducting quantum interference 

device (SQUID) from Quantum Design. The later was also employed to measure the M vs. 

H loops at 5 K and the thermal dependence of M under zero field cooling (ZFC) and field-

cooled (FC) conditions with a cooling field HFC = 8 kA/m. The in-phase χ’ and out-of-

phase χ” components of the AC susceptibility were recorded between 20 and 325 K in a 

LakeShore 7130 susceptometer using field amplitude of 0.08 kA/m and frequencies in the 

50 Hz to 10 kHz range. Additional AC susceptibility measurements in the 2 to 120 K 

temperature range for samples ZFO-250, ZFO-370 and ZFO-580 were performed using the 

SQUID magnetometer.  

3. Results 

The XRD patterns (see Supporting Information S.I.) showed that all samples are single 

phase of the fcc spinel structure (SG Fd-3m). The lattice parameter a estimated for sample 

ZFO is 8.44 ± 0.01 Å, in good agreement with the ICDD data of ZnFe2O4 (PDF  #821042). 

Within uncertainties, none of the a values obtained for Series I and II showed appreciable 

changes with respect to the cell parameter of ZFO. It is worth mentioning that the color of 

the samples changes from light to dark brown as TAnn increases (see S.I). 

Figures 1 and 2 exhibit, respectively, the Zn and Fe K-edge XANES spectra of selected 

samples ZFO, ZFO-370 and ZFO-620. In all cases, the Zn K-edge spectra present the 
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typical shape of ZnFe2O4 XANES that accounts for electronic transitions from 1s to 

unoccupied p states, i. e., three resolved peaks A, B and C as well as a shoulder D (Fig. 

1(a)) [11]. Even though the spectra are all similar, we observe that the peaks´ intensities 

vary with TAnn. Indeed, the B to A peak intensity ratio (IB/IA) first decreases with TAnn up to 

400 °C, then starts to increase for higher TAnn (Fig. 1 (b)). On the other hand, the intensity 

of peak D reaches a maximum for ZFO-370 (Fig. 1 (c)). The initial trends, i. e., the IB/IA 

decrease as well as the increase of ID are compatible with a progressive disappearance of a 

slight degree of inversion present in the starting sample (see discussion below) [11]. 

The Fe K-edge XANES results (Fig. 2(a)) also point toward a progressive approach of ZFO 

to an ideally normal ferrite for TAnn up to ca. 370 °C because less Fe ions occupy (A) sites 

[11, 26]. Indeed, this is reflected by the increment of the pre-edge peak intensity (1s → 3d 

and 1s → 3d/4p electronic transitions) (Fig. 2 (b)) and the decrease of the white line (1s  

4p) (Fig. 2 (c)) [11, 26,27].  The opposite trend of the ZFO-620 spectrum indicates that a 

reoccupation of (A) sites by iron ions has taken place [11,26,27] producing an increment of 

the degree of orbital p-d mixing. On the other hand, all spectra show similar edge energies 

corresponding to Fe ions with +3 oxidation state [27]. The possible presence of Fe+2 ions is 

below the detection limit. 

 

The Fe L-edge XMCD spectra (Fig. 3) allow us to distinguish between the contributions of 

iron ions sitting either at tetrahedral (FeA) or octahedral (FeB) sites [14]. The two negative 

peaks (B1 and B2 in Fig. 3) correspond to FeB aligned parallel to Hap while positive signal 

(peak A1) correspond to FeA that align antiparallel to Hap. The fact that the XMCD signal of 

ZFO presents a no null contribution from FeA confirms that this sample presents some 
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inversion. It is worth mentioning that the TEY mode used to perform the XMCD 

measurements is surface sensitive (about 5 nm in depth), thus the detected site inversion 

involves those iron ions at grain surfaces After annealing at 370 °C, the A1 peak almost 

disappears while B1 and B2 contributions also decrease, in accordance with the reduction 

of the degree of inversion [14]. On the other side, we observe that increasing TAnn above 

370 ºC the FeB contribution increases.  

 

M vs. H loops were registered at 5 and 300 K (Fig. 4). For all samples, the response 

consists of a superposition of two contributions: i) a paramagnetic (PM) component that 

accounts for the linear behavior of M at high-fields and ii) a ferromamagnetic-like 

component that gives rise to the S-shape at low-fields. The room temperature magnetic 

response at high fields (µ0H > 0.7 T) were fitted using the following equation: 

M(H) =  χPH + Ms(1 – a/|H| – b/H2 ) (1) 

where χP is the high-field PM susceptibility and Ms is the saturation magnetization [28]. The 

tendency of the resulting parameters χP and Ms clearly shows that for TAnn above 370 °C, 

there is an increment of the magnetic response (Figs.4(c) and 4(d)). 

At T=5 K, while the M vs. H loop of ZFO-as-cast shows hysteresis with a coercitive field 

µ0HC∼ 28 mT, the hysteresis almost disappears when TAnn is above 370 ºC. On the contrary, 

loops of samples annealed at TAnn higher than 450 ºC show a marked irreversibility. For 

instance, µ0HC ∼ 50 mT for ZFO-620 (Fig. 4(a)). 

Figs. 5 (a) and (b) show the ZFC and FC magnetization curves of some selected samples. 

MZFC of ZFO shows a rather sharp cusp at Tmax ~ 14 K (Fig. 5 (a)), while dMZFC/dT has a 
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maximum at ~ 11 K (Fig. 5 (c)), i. e., nearby TN of normal ZnFe2O4. Further, MZFC also 

shows a convex line comprising the 45-150 K range that is also visualized in its derivative 

shown in Fig. 5 (c). For ZFO-250 the cusp of MZFC occurs at almost the same Tmax ~ 14 K, 

while samples annealed at higher TAnn present a more rounded peak at Tmax (Fig. 5 (a)). In 

all cases, dMZFC/dT has a peak at about 11 K (Figs. 5 (c) and (d)), with an additional 

contribution centered at about 22 K for ZFO-580 and ZFO-620 (Figs. 5 (d)). The rate of 

change of MZFC also shows additional local extremes at higher temperatures (see insets Fig. 

5 (c) and (d)). On the other hand, the cusp of MFC lies in the 12-14 K range.  In all cases, 

MFC decreases monotonically when lowering the temperature below the cusp, a behavior 

that is usually observed in spin-glass or cluster-glass compounds [29]. A no null difference 

∆M = MFC-MZFC exists below the irreversibility temperature Tirr, which is Tirr =120 K and 

230 K, for ZFO and ZFO-370, respectively. In the case of ZFO-620, the irreversibility is 

observed from ambient temperature.  

 

Figure 6 (a) shows the in-phase χ´ component of the AC-susceptibility measured at a 

frequency of 835 Hz. The temperature at which the χ´ maximum occurs (��
χ ) allows 

identifying a magnetic feature of the system such as the magnetic ordering temperature of a 

compound, the blocking temperature (TB) of particle moments in magnetic nanoparticles, or 

the freezing temperature (Tf) in spin glasses. In our case, χ´ shows, depending on TAnn, one 

or two distinguishable broad peaks (Figs. 6 (a) and (b)). Indeed, two peaks can be observed 

for χ´ of ZFO and for those samples treated up to TAnn= 250 ºC. At higher TAnn only one 

broad peak was considered, except for ZFO-490 and ZFO-540 that also have two resolved 

peaks (Fig. 6 (b). On the other hand, the χ’ magnitude progressively decreases for samples 
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annealed up to TAnn= 370 ºC, while for samples above this TAnn increases. Furthermore, χ’ 

of ZFO-620 far exceeds the response registered for ZFO-370 (Fig. 6(a)).  In all cases, the 

inverse of the susceptibility (not shown) deviates from a Curie-Weiss behaviour below ∼ 

250-280 K.  For instance, the ΘCW estimated for ZFO, ZFO-370 and ZFO-620 are about 

+230, +80 and +180 K, respectively. 

In all cases, ��
χ

 shifts to higher temperatures and χ´(��
χ ) decreases with the frequency (see, 

for instance, Fig. 6 (b)). The linear fit performed on the Néel-Arrhenius plots for the multi-

frequency AC-susceptibility (not shown) gave unphysical values for the attempting time τ0, 

i. e., by assuming a relaxation time τ= τ0:exp(EA/kBT) where EA is the barrier energy and kB 

is the Boltzmann constant. 

Figure 7(a) shows a representative temperature (Tex) of the susceptibility obtained by 

extrapolating the linear behaviour of ��
χ

 vs. f to an exciting field frequency of 1 Hz. We 

observe that for ZFO (with two resolved contributions), Tex1=60 K and Tex2=90 K. Samples 

annealed at TAnn higher than 250ºC have low χ’ values while their unique Tex remains in the 

45 to 60 K range (Fig.7(a)). For TAnn above 450 ºC there is a progressive increment of both 

χ´and Tex, and the latter tends to a temperature of about 90 K. 

The relative shift ∆Tmax/Tmax per decade of frequency quantified throughout the p parameter  

allows to roughly identifying the origin of a dynamic magnetic response, i. e., whether is 

associated to S-G spin-glass (0.005<p<0.02), C-G cluster-glass (0.03<p<0.06) or 

superparamagnetic SPM behaviors (p>0.08) [29]. In our case, the pair of p values 

(associated with Tex1 nearby 60 K and Tex2 nearby 90 K) of samples treated up to 240 ºC lie 

at the bottom of C-G region (Tex1) and at the S-G region (Tex2). The p values for ferrites 
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annealed from about 250 to 430 ºC –with only one resolved maximum- mainly lie inside 

the C-G region (Fig. 7(b)). For samples annealed above 490 ºC, the p parameters also 

correspond to the C-G zone. 

4. Discussion 

The results from the various characterization techniques confirm that the starting sample 

ZFO is slightly inverted. Amongst the magnetic features that present this sample are the 

cusp of M-T curves at a temperature near the TN of the normal Zn-ferrite, two resolved χ’ 

maxima, a convex shape of MFC and MZFC at around 50 K, the deviation from the Curie-

Weiss law and a positive and high ΘCW (+230 K). Considering the XMCD results we infer 

that the cation inversion involves -at least- the grain surface regions. A weak ferromagnetic 

response at room temperature is commonly detected in nominal normal bulk ZnFe2O4 (see 

for instance, Refs. [3,30]). This is attributed to a low inversion at surface regions with 

interrupted super-exchange paths that release the frustration of Fe3+ spins at B sites [3].  

The slight frequency dependency of the χ´ maximum of ZFO (and also for those samples 

treated under vacuum up to about 250 ºC) accounts for a glassy behavior. A disorder state 

in Zn-ferrite can be associated to: i) an intrinsic defect-free behavior due to regions with  

short-range spin correlations promoted by FM J1 interactions, which compete with AF J3  

interactions [4,6], and  ii) the slight degree of inversion of these samples which gives rise to 

modified first nearest-neighbor J1' AF interactions that compete with also modified third-

neighbor J3' ones both now involving Fe3+ at (A) and [B] sites [5, 30]. On the other hand, χ´ 

measurements down to 2 K (see S. I. and Fig. 8) reflect the J3 predominance below 15 K 

because χ´ becomes independent on the frequency of the exciting magnetic field.  
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Vacuum annealing above 250 ºC causes that the iron ions start leaving the initial non-

equilibrium (A) sites to occupy the [B] ones and, at the same time, Zn+2 ions only occupy 

their preferential (A) positions. At TAnn above ca. 325ºC the detection of inversion is 

negligible. Thus, the cation distribution approaches to that expected for a normal ferrite 

state and, consequently, there is a detriment of its magnetic response. In addition, the two χ' 

maxima Tex1 (∼60 K) and Tex2 (∼90 K) merge into one resolved broad maximum that lies in 

the 45 to 60 K range. Likewise Tex1, the frequency-shift of this unique χ' maximum implies 

that p lies in the C-G region, accounting for a disordered magnetic behavior of defective 

ZnFe2O4-δ, where δ denotes the presence of VO generated by the annealing under vacuum.    

Considering the allocation of cations and their magnetic responses, ZFO-370 and ZFO-408 

would approach more than the other samples to a normal Zn-ferrite. Then, it is worthwhile 

describing their magnetic behavior more in detail. Figure 8 (a) shows the AC susceptibility 

measured in the 2 to 120 K range for ZFO-370. The distinction of temperature ranges 

displayed in Fig. 8 highlights the predominance of each type of interaction. This is 

schematized using the spin dodecamer model that is formed on the (111) kagome plane [8]. 

Below 15 K we observe that χ' does not depend on the frequency and shows a cusp at ~ 13 

K. The ZFC and FC curves (Fig. 8 (b)) deviate from each other and both drop with 

decreasing the temperature. Such behaviors resemble those found in spin glasses [10,29] 

and, for this geometrically frustrated compound they are probably related to the prevalence 

of interaction J3 over J1 without attaining a long-range ordering [9]. At intermediate 

temperatures (from 15 to 85 K) χ' has a broad peak centered at about 45 K that slightly 

varies with the frequency, while MZFC and MFC differ noticeably. The relative shift of this 

peak quantified through the p parameter is compatible with a C-G behaviour in a 
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temperature range where the spin interactions are governed by J1 [9]. Finally, at 

temperatures higher than 85 K, the thermal energy is high enough to overcome the spin 

interactions and a typical Curie-Weiss behavior is observed (Fig. 8).  The progressive 

extinction of the χ' broad peak at Tex2  when 250 <TAnn < 450 ºC coincides with the recovery 

of cation equilibrium positions at the grain surface, as shown by XMCD. Thus, it is 

plausible that Tex2 is related to the freezing of spins at regions with a partial inversion, more 

visible in sample ZFO.  

Ferrites treated at TAnn∼450 ºC and above display a ferromagnetic response (Fig. 4). The 

main magnetic characteristics are the S-shaped M vs. H loops with a Ms that increases with 

TAnn, the irreversibility at room temperature, the shift to higher temperatures of the 

maximum of MZFC with TAnn, a broad χ'  maximum, p parameters lying in the S-G or C-G 

region and positive and high ΘCW. Therefore, vacuum annealing at these TAnn causes a 

cation redistribution with both Zn and Fe at non-equilibrium sites. But the more remarkable 

effect is the large increment of Fe3+ at B sites shown by the XMCD results.  In the present 

case, it is expected that the thermal annealing under vacuum above a certain TAnn produces 

VO.  Indeed, the progressive darkening of the samples with TAnn (see S. I.) as well as the 

trend showed by the Mössbauer hyperfine parameters [31] can be interpreted in terms of the 

formation of VO. To maintain the charge neutrality, the excess of negative charge in 

ZnFe2O4-δ  could be compensated by a reduction of iron ions from Fe3+ to Fe2+ or due 

deficiency of Zn, the latter giving rise to a non-stoichiometric compound. However, these 

two possibilities were below the detection limit of our experiments.  

  All in all, these vacancies add randomness related with its position and frustration due to 

the competitive interactions modified by broken paths that give rise to a FM coupling 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

14 

 

between Fe3+ at B sites through J1
″ (B-VO-B) [14] as well as J3

″ (B-VO-B-O-B or B-VO-A-

O-B). The partial recovery of the inversion at these TAnn can be related to a way of releasing 

the strain caused by a higher concentration of VO [12,17,32].  

5. Conclusions 

ZnFe2O4 prepared by solid-state reaction (ZFO) showed a magnetic behavior linked to its 

low inversion state depicted by a weak ferromagnetic response and a thermal dependency 

of the magnetization with a cusp at 13 K. The AC-susceptibility has two maxima at ∼60 K 

and ∼90 K, whose frequency variation is indicative of a glassy behavior associated to the 

intrinsic and extrinsic frustration due to competing interactions.   

Upon thermal treatment performed under vacuum the electronic and magnetic behavior 

change in accordance to the production of defects such as oxygen vacancies and 

redistribution of cations. For TAnn higher than 250 ºC the Fe3+ and Zn+2 ions at the grain 

surface start leaving their non-equilibrium sites and the ferrite magnetic state approaches to 

a normal configuration. The magnetic response decreases when 250 <TAnn< 450 ºC, the 

unique resolved χ' maximum lies within the 45 to 60 K range and its frequency-shift is 

consistent with a cluster-glass behaviour. In particular, the magnetic behaviour of these 

ferrites with allocation of cations Fe3+ and Zn2+ only at their equilibrium sites allows 

identifying the prevalence of each super-exchange interactions that operate in this 

geometrically frustrated ZnFe2O4 compound. Finally, annealing at TAnn higher than 450 ºC 

generates an oxygen deficiency accompanied by a slight recovery of the inversion. A 

remarkable result on these samples is the increment of Fe3+ magnetic coupling at octahedral 

sites and the enhanced magnetic response of these defective zinc ferrites.   
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Figure 1: (a) XANES at Zn K-edge of samples ZFO, ZFO-370 and ZFO-620, (b) ratio 

between intensities of peaks B and A (IA/IB) and (c) intensity of the shoulder D (ID) as a 

function of the annealing temperature TAnn.  
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Figure 2: (a) XANES at Fe K-edge of samples ZFO, ZFO-370 and ZFO-620, (b) 

Enlargement of the pre-peak and (c) white-line regions. 
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Figure 3: XANES spectra at Fe L3-edge for ZFO-620 (under µ0H=0.6 T) and XMCD 

signals for samples ZFO, ZFO-370 and ZFO-620.  
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Figure 4: M vs. H loops of ZFO, ZFO-250, ZFO-370 and ZFO-620 samples, (a) at 5 K and 

(b) at 300 K (Inset: An enlargement showing the low-field region), (c) paramagnetic 

susceptibility χP and (d) saturation magnetization Ms  for all samples that result from fitting 

using Eq. (1)). 
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Figure 5: (a) Thermal dependence of the magnetization under ZFC-FC conditions for the 

samples shown; c), d) rate of change of MZFC corresponding to curves of Figs.(a) and (b), 

respectively (Insets show a magnification of the 40 to 260 K range). 
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 Figure 6: In-phase AC-susceptibility for different ZFO-TAnn samples measured with a 

frequency of 825 Hz (a), in-phase susceptibility at different frequencies for sample ZFO-

540. Peaks 1 and 2 are the two distinguishable contributions present in this sample used to 

determine the two χ´ maxima at ��
χ  . 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 

 

 

0 100 200 300 400 500 600
0.00

0.02

0.04

0.06

0.08

0 100 200 300 400 500 600
30

40

50

60

70

80

90

100

∆T
f/T

f

Annealing temperature (°C)

C-G

S-G

(b)

T
ex1

T ex
(K

)

Annealing temperature (°C)

(a)

two χ' maxima

 low χ' value 

T
ex2

 

Figure 7: (a) Temperature (Tex) that results after extrapolating to f= 1 Hz the linear 

behaviour of  ��
χ

 vs. frequency, (b) Relative shift of temperature (∆��
χ /��

χ ) per decade  of  

frequency (p parameter), as a function of  TAnn. Cluster-glass C-G and spin-glass S-G 

reported regions are indicated (Ref.[29]).Circles and square symbols correspond to Series I 

and II, respectively. For some TAnn, the hollow and solid symbols account for the two 

resolved χ´maxima at Tex1 and Tex2. 
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Figure 8: (a) In-phase susceptibility at different frequencies measured between 2 to 150 K 

for ZFO-370, (b) ZFC-FC magnetization. Dodecamer model showing the J1 and J3 

interactions (Ref. [8]). Gray dark and light circles represents spin up and down, 

respectively. White circles at the high temperature region symbolize paramagnetic ions.  
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Highlights 
 

• Defective ZnFe2O4-δ samples were obtained by vacuum annealing bulk Zn-ferrite. 
 

• The electronic and magnetic behaviours change with the production of defects. 
 

• The magnetic results accounts for spin-glass and/or cluster-glass behaviour.  
 

• The deficiency of oxygen triggers the coupling between Fe3+ at octahedral sites. 
 

• AC-susceptibility results allows identifying the prevalence of each interaction. 
 

 


