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Petroselli, Rosa Erra-Balsells, M.Carina Audisio

PII: S0944-5013(17)31054-6
DOI: https://doi.org/10.1016/j.micres.2018.04.003
Reference: MICRES 26149

To appear in:

Received date: 25-10-2017
Revised date: 14-3-2018
Accepted date: 6-4-2018
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Abstract 

Bacillus sp. B19, Bacillus sp. P12 and B. amyloliquefaciens B14 were isolated from soils of 

Salta province, and PGPR properties on the common bean (Phaseolus vulgaris L.) cv. 

Alubia and antagonistic activity against Sclerotinia sclerotiorum were studied. 

It was determined that B19 and P12 increased crop germination potential (GP) from the 

common bean by 14.5 % compared to control seeds; these strains also increased root length 

(10.4 and 15 %, respectively) and stem length (20.2 and 30 %, respectively) compared to the 

control; however, as for the B14 strain, no increases in growth parameters were detected. In 

addition, all the treatments that combined two bacilli: B14+B19, B14+P12 and B19+P12, 

generated beneficial effects on GP and seedling growth compared to control seeds, but not 

compared to a single inoculant. B19 and P12 strains synthesized auxins at concentrations of 

5.71 and 4.90 mg/mL, respectively, and it was qualitatively determined that they synthesize 

siderophores.  In addition, previous studies have determined that B14 produces auxins in a 

concentration of 10.10 mg/ml, and qualitatively synthesizes siderophores. 

The phytosanitary state of the white bean cv. Alubia control seeds revealed bacterial 

contamination in 87 % of all the evaluated seeds and different fungi such as Cladosporium 

sp., Fusarium sp., and Rhizopus sp. Bean seeds treated with B14, B19 or P12 showed no 

growth of contaminating bacteria or of pathogenic fungi; in fact, bacilli inoculum 

development was observed in all seeds. Additionally, B19, P12 and B14 strains inhibited in 

vitro the development of 9 native S. sclerotiorum strains isolated from the Salta region, 

with FI ranging between 60 and 100 %. The three Bacillus strains synthesized different 

isoforms of the lipopeptides: surfactin, iturin, and fengycin in the presence of S. 

sclerotiorum, as determined by MALDI-TOF.  

In the in vivo trials, when common bean seeds were grown in soils contaminated with S. 

sclerotiorum, an incidence of 100% was determined when the seeds were not treated with 

any Bacillus. Seeds treated with the chemical fungicide and sown in S. sclerotiorum-

infested soil did not produce seed emergence, while the inoculation of the seeds with 

B14+P12, B14+B19 or B19+P12 reduced the effect of the pathogen by 46, 43 and 25 %, 

respectively. Disease progression in B14+P12 and B14+B19 treatments was significantly 

lower than in the remaining treatments, with an AUDPC of 873.75 and 1071, respectively.  
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1. Introduction 

Common bean (Phaseolus vulgaris L.) production is a key agricultural activity in northwest 

Argentina (NWA). Crop production is mainly concentrated (70 %) in the province of Salta, 

with an estimated cultivated area of about 450,000 ha in the last years (De Bernardi, 2016). 

Sanitary status of seeds is one of the main factors influencing crop production and health 

and is determined by the presence or absence of crop associated pathogenic 

microorganisms. The agents causing the most devastating diseases in common bean crops 

can be transmitted by seeds; therefore, seeds may be a significant means of disease 

transmission as well as a source of primary pathogen inoculum. White mold, caused by the 

fungus Sclerotinia sclerotiorum Lib. de Bary, is a very detrimental disease affecting the 

common bean in the province of Salta. The fungus is favored by temperate climates, 

moderate temperatures and high relative humidity (Mamaní Gonzáles et al., 2015). S. 

sclerotiorum primarily spreads by spores and usually in forms of sclerotia, which may 

infect stems, leaves and flowers, and even spread to adjacent plants (Zhou and Boland, 

1998). Sclerotia of S. sclerotiorum can reside in the soil for several years and, under 

appropriate environmental conditions, germinate to form mycelium, leading to infectious 

hyphae, or producinge apothecia, which release millions of airborne ascospores (Coley-

Smith and Cooke, 1971; Bardin and Huang, 2001). Given its persistence in the soil or in 

seeds, as well as its tendency to spread, and further, the lack of resistant cultivars, this 

fungus can cause devastating economic losses in the crops; therefore, its management is of 

regional importance.  

Despite the efforts made by breeding programs, several common bean cultivars used in 

commercial production are susceptible to white mold. While advances have been made in 

the development of resistant varieties, selection should also be focused on high-yield 

varieties (Miklas et al., 2013; Balasubramanian et al., 2014). Other recommended 

management strategies are crop rotation, wider seeding row spacing and treatment of seeds 

with chemical products (Vieira et al., 2010; Vizgarra, et al., 2012). As for the last strategy, 
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intensive use of chemical compounds in crop management has led to insect microbial 

pathogen resistance to pesticides, and has also caused serious problems for human health 

and the quality of the environment. Hence, over the last few years, there is a trend in 

Argentina to apply sustainable agricultural practices to replace, or at least supplement, the 

use of chemicals, and thus obtain healthy and safe food. This change requires finding non-

contaminant and environmentally friendly alternatives. 

Different species of the genus Bacillus have been widely used both as potential plant 

growth-promoting rhizobacteria (PGPR) in agriculture, due to their capacity to promote 

plant growth and as biocontrol agents (Schenck zu Schweinsberg-Mickan and Müller, 

2009; Jakab et al., 2011; Pérez-García et al. 2011; Laditi et al., 2012; Stefan et al. 2013). 

These bacteria have an antagonistic effect against different plant pathogens, which is 

conferred by their potential to synthesize a wide array of metabolites with antagonistic 

activity, such as lipopeptides of surfactins, iturins, fengycins, polimixins, kurstakins, and 

bacitracins (Hathout et. al., 2000; Stein, 2005; Price et. al., 2007; Ongena and Jacques, 

2008; Banat et. al., 2010; Yánez-Mendizábal et. al., 2011; Béchet et. al., 2012; Cawoy et. 

al., 2014a; Thais et. al., 2016; Chandler et. al., 2015; Torres et. al., 2016; Zouari et. al., 

2016; Torres et. al., 2017; Sabaté et al., 2017). 

The aim of this work was to evaluate the effect of different native strains of the genus 

Bacillus isolated from soils of Salta province as potential PGPR and biocontrol agents, 

especially in the incidence of the fungus S. sclerotiorum (seed and seedling), on the 

common bean crop.  

 

2. Materials and Methods 

2.1. Bacterial isolation from soil 

Rhizosphere soil samples (10 cm depth) were taken from the central-eastern region of the 

province of Salta, which is the area of the province where most bean crops are cultivated 

under different production systems (24°52´23.72” S 64°14´54.46” W). Serial dilutions were 

performed, inoculated in BHI (Brain Heart Infusion, Britania, Argentina) broth and 

incubated at 37 ºC for 24-48 h. Strains exhibiting visible morphological characteristics of 

the Bacillus strain were preselected and their structure was confirmed via optical 
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microscopic observation. The selected strains were preserved in BHI broth with 20 % v/v 

glycerol at -20 ºC. 

 

2.2. In vitro plant growth-promoting attributes of isolates  

 

Plant growth-promoting bacteria (PGPB) activities of isolates were determined following 

standard procedures. The solubilization of inorganic phosphate was measured using the 

methods described by Goldstein (1986). Auxin and cyanide production were detected using 

the method described by de Brito Alvarez et al. (1995). Siderophore production was tested 

on TSA (Tripteina Soya Agar, Britania) medium supplemented with 8-hydroxyquinoline 

(de Brito Alvarez et al., 1995). 

 

2.3. Phylogenetic Characterization 

 

DNA was extracted from Bacillus spp. B19 and P12 with an active culture after incubation 

in 5 mL of Brain Heart Infusion broth (BHI, Britania, Argentina) at 37 ºC for 24 h, 

according to the method of Miller (1972). For the characterization, the strains were 

genetically characterized by analyzing the 16S rRNA subunit, and sequencing was 

performed on both strands by the commercial sequencing services of Macrogen Inc. (Seoul, 

Korea). 16S was carried out using nucleotide single universal strand primers S-D-Bact-

0008-a-S-20 (AGAGTTTGATCCTGGCTCAG) and S-D-Bact-1495-a-A-20 

(CTACGGCTACCTTGTTACGA) (Daffonchio et al., 1998). The extracted genomic DNA 

was amplified in a 25 µL reaction mixture containing: 0.2 µL Taq polymerase, 2.5 µL 

buffer STR, 0.1 µL primer, 17.5 µL PCR water and 5 µL DNA sample. Amplification 

consisted of an initial denaturation step at 94ºC for 5 min, followed by 35 cycles at 94 ºC 

for 1 min, 50 ºC for 2 min and 72 ºC for 2 min, and a final extension at 72 ºC for 7 min. 

Control reaction mixtures lacking template DNA were also included in each experiment. 

The PCR products were separated in 0.8 % agarose gel electrophoresis running at 65 volts 

for 50 min. Gel patterns were visualized by ethidium bromide staining, and photographs 

taken under UV light. Online search for similarity was carried out at GenBank using the 

BLAST program (http://www.ncbi.nlm.nih.gov).  
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2.4. Effect of Bacillus cell culture on common bean seed health 

 

For the following tests, a strain previously used for other studies, B. amyloliquefaciens B14 

(Sabaté et al., 2017), was incorporated due to the fact that it has beneficial properties on the 

growth of common black bean cv. Nag 12, and as a biocontrol agent against other 

pathogens of this crop.  

Seeds of the white common bean cv. Alubia were initially sterilized in 70 % alcohol for 30 

seconds and then in 1 % sodium hypochlorite solution for 1 min. After this treatment, the 

seeds were inoculated, submerged for 30 minutes with the 48-h-old cell culture of B19, P12 

and B14, at a concentration of 1 x 108 cells per mL. Non-inoculated seeds were used as 

control. Seeds were placed in Petri dishes (9 cm in diameter) containing Potato Dextrose 

Agar (PDA, Britania); five bean seeds per Petri dish per treatment were placed equidistant 

from one another and the dishes were then incubated in a heater at 26 ºC for 10 days. After 

the incubation period, the presence or absence of seed-borne pathogenic microorganisms 

and other microorganism contaminants in the seeds was assessed. The assays were 

performed in triplicate. 

 

2.5. Effect of Bacillus cell culture on common bean growth  

 

White common bean cv. Alubia seeds were initially sterilized and inoculated with the 48-h-

old cell culture of B14, B19 or P12, as mentioned above. The effect of the combination of 

two of these strains, grown in monoculture, was also tested, as follows: B14+B19, 

B14+P12, and B19+P12, in 1:1 proportion. Furthermore, the commercial chemical 

fungicide, Maxim®Evolution Rizobacter (tiabendazol 15 g/L, fludioxonil 2.5 g/L, 

metalaxil-M 2 g/L), commonly used in the region for this crop, was tested; it was applied to 

seeds following the manufacturer’s instructions. Non-inoculated seeds were used as control. 

Finally, a total of eight treatments were performed: B14, B19, P12, B14+B19, B14+P12, 

B19+P12, a commercial fungicide and control (seed non-inoculated). A total of 70 seeds 

per assay were planted at a depth of 2 cm in plastic trays containing sterile sand used as 
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substrate (loam soil with 2.91 % organic matter, 0.17 % total nitrogen, pH 6.9, 32 % sand, 

44 % silt and 24 % clay, typic ustorthents according to USDA Soil Taxonomy, 1975).  

The trays were placed in a growth chamber with air circulation for germination and 

temperature control (28 °C ± 2) for 15 days. After 9 days, the germination potential (GP) 

effect of each treatment on seeds was analyzed. After 15 days, a total of 45 seedlings were 

selected at random (15 per repetition) and plant height (shoot and root portion expressed in 

cm) was determined, also following the protocol of Altamirano et al. (2002). The assays 

were performed in triplicate.  

 

2.6. Fungal growth inhibition assays  

 

A dual culture technique was used for these trials (Landa et al., 1997). The inhibitory 

activity of the isolated Bacillus spp. B19 and P12 strains and B. amyloliquefaciens B14 was 

evaluated against Sclerotinia sclerotiurum (Lib) de Bary native strains isolated from NWA: 

15, 27, 33, 39, 48, 58, AN, PV and RF, belonging to the culture collection of Agricultural 

Microbiology Laboratory of the Estación Experimental Agropecuaria EEA-INTA-Salta, 

Argentina. The different strains of Sclerotinia sclerotiurum were grown on PDA, at an 

incubation temperature of 28 °C for 7 days. 

Five-day-old fungal discs (4 mm diameter) of each test fungus were placed in the center of 

9-cm-diameter Petri dishes containing PDA medium. Then, 10 µl taken from 24-h-old 

cultures of the isolated bacteria were placed equidistant from one another. After incubation 

at 28 ºC for 7 days, the mycelial growth diameter of each phytopathogen was measured and 

the percentage of fungal inhibition (FI) was calculated according to Royse and Ries (1978): 

FI (%) = RGI x 100 

RGI= (C-T) / C, 

where T is the average diameter of mycelial growth in presence of the Bacillus sp. strain, C 

is the average diameter of mycelial growth without bacterial samples.  

The assays were performed in triplicate.  

2.7. MALDI-MS analysis of lipopeptides involved in the antifungal activity 
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Lipopeptide synthesis by B14, B19 and P12 strains was analyzed on PDA medium with the 

nine previously mentioned strains of S. sclerotiorum. The interaction of the three bacilli 

with each fungus produced an inhibition zone of a large diameter. A portion of 4 mm 

(sample) was removed from the inhibition zone and kept at -20 ºC. Finally, each sample 

was resuspended in 0.5 mL of water at pH 8 and vigorously shaken for 30 s. The samples 

were analyzed by MALDI-MS, as described by Torres et al. (2016). Spectra were recorded 

on a Bruker Ultraflex II TOF/TOF (Bruker Daltonics, Bremen, Germany). As MALDI 

matrix, 9H-pyrido [3,4b] indole (norharmane, nHo) was used (Sigma-Aldrich, USA). For 

MALDI-MS experiments dry droplet sample preparation or the sandwich method was used 

according to Nonami et al. (1997), loading 0.5 μL of matrix solution, analyte solution and 

matrix solution successively after drying each layer at normal atmosphere and room 

temperature. Mass spectra were acquired in linear positive ion modes. External mass 

calibration was made using aqueous solution (1 mg/mL) β-cyclodextrin (MW 1134; 

[M+Na]=1157.35730 [M+K]= 1173.33010. Spectra were obtained and analyzed with the 

programs FlexControl and FlexAnalysis, respectively. 

 

2.8. Effect of Bacillus cell culture on common bean seeds grown in soils contaminated with 

S. sclerotiorum  

 

An inoculum of S. sclerotiorum was prepared on wheat grains, according to the method 

proposed by Elsheshtawi et al. (2017). Trays containing sterilized soil (loam soil with 2.91 

% organic matter, 0.17 % total nitrogen, pH 6.9, 32 % sand, 44 % silt and 24 % clay, typic 

ustorthents according to USDA Soil Taxonomy, 1975) were prepared as substrate; this 

substrate was artificially infected with the S. sclerotiorum RF culture obtained from the 

wheat (1 % w/w). 70 white bean cv. Alubia seeds were sown per tray and inoculated as 

mentioned above (item 2.5), using the following treatments: B14, B19, P12, different 

combinations of two bacteria grown in monoculture: B14+P12, B14+B19 and B19+P12, in 

1:1 proportion, and the chemical fungicide (Maxim®Evolution Rizobacter), applied 

according to the manufacturer’s instructions. A total of 8 treatments were performed: B14, 

B19, P12, B14+P12, B14+B19, B19+P12, commercial fungicide and control (non-

inoculated seed). Seeds of each treatment were sown in soils infested with S. sclerotiorum 
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RF. Moreover, non-inoculated seeds were used in infested and non-infested soils, as 

control. The trays were incubated at 23-26 ºC for 45 days. In these assays, germination 

energy (GE) at five days from seeding and pathogen incidence were determined during the 

assay. Pathogen incidence was determined visually as a percentage of plants showing 

characteristic symptoms. 

 

2.9. Area under the disease progress curve 

 

Visual assessments of white mold incidence were made three times between 5 and 45 days 

after seeding (same as the previous experiment). A modified version of area under the 

disease progress curve (AUDPC) (equation 1) (Wilcoxson et al., 1975), was used to 

evaluate disease incidence over time, as follows: 

 

                                                               (1) 

where R1 to R3 are incidence ratings corresponding to times t1 to t3. 

 

2.10. Statistical analysis 

 

Data were calculated and statistically analyzed using Microsoft Office Excel and 

INFOSTAT software (Di Rienzo et al., 2012) for Windows. Analyses of variance 

(ANOVA) with LSD (least significant difference) were used to test differences in fungal 

growth inhibition assays and plant growth-promoting attributes.  

Data obtained from germination potential and energy (GP and GE) and plant height (shoot 

and root portion, expressed in cm) of each treatment were analyzed to assess the effect of 

Bacillus spp. strains.  

B14, B19, P12 and their combinations, and their effect on white common bean seeds 

growth and incidence in soils contaminated with S. sclerotiorum were analyzed using 

standard ANOVA. In all cases, residuals were tested for normality via the Shapiro-Wilks 

test. To test for differences between means, an LSD test at a significance level of P≤ 0.05 

was used.  
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3. Results 

 

3.1. Isolation and determination of some plant growth promoting attributes  

 

Two strains of Bacillus spp., B19 and P12, were isolated from different types of soils, 

according to their macro and microscopic characteristics. Both B19 and P12 strains 

synthesized auxins at different concentrations: 5.71 and 4.98 mg/mL, respectively. Both 

strains grew on TSA medium supplemented with 8-hydroxyquinoline and were therefore 

considered positive for siderophore production. Neither cyanide synthesis nor inorganic 

phosphate solubilization was found in any of the strains.  

 

3.2. Phylogenetic characterization of Bacillus spp. strains 

 

The 16S rDNA sequence analysis of the selected bacilli showed 98 % DNA sequence 

identity of the B19 strain to database entries associated with known Bacillus sp. strains and 

98 % of P12 to known Bacillus sp. strains. The 16S rRNA nucleotide sequence data of 

Bacillus spp. B19 and P12 were deposited in the GenBank (accession numbers MF574161 

and MF574162, respectively) (http://www.ncbi.nlm.nih.gov). 

 

3.3. Effect of Bacillus cell culture on common bean seed health    

 

For these tests B. amyloliquefaciens B14, a strain previously used for other studies,  was 

incorporated. This strain was used because in previous studies it had shown beneficial 

properties in common black bean cv. Nag 12, and to be a biocontrol agent against 

Macrophomina phaseolina (Sabaté et al., 2017). 

The phytosanitary state of the white bean cv. Alubia control seeds revealed bacterial 

contamination in 87 % of all the evaluated seeds. Different fungal contaminants, such as 

Cladosporium sp. (60 %), and phytopathogenic fungi, such as Fusarium sp. (26 %) and 

Rhizopus sp. (7 %), were also identified in the non-inoculated seeds (Fig. 1a) based on their 

macro and microscopic appearance. Bean seeds treated with a single inoculum of B14, B19 
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or P12, showed no growth of bacteria or of pathogenic fungi; in fact, inoculum 

development was observed in all seeds (Fig. 1b).  

 

3.4. Effect of Bacillus cell culture on common bean growth  

 

The intrinsic germination potential (GP) of white bean cv. Alubia seeds, i.e., without any 

treatment, was 77.4 %. In addition, seeds inoculated with B19 exhibited a GP of 88.6 %, 

and an average increase in root length of 10.4 % and in stem length of 20.2 % with respect 

to control seeds, with significant differences (Table 1). Inoculation with P12 also generated 

beneficial effects on seedling growth since root length increased by 15 % and stem length 

by 30 %, approximately, compared to non-inoculated seeds, and a GP of 88.6 % (Table 1).  

The B14 strain did not have a beneficial effect on white bean cv. Alubia seeds, and a slight 

reduction of GP and seedling growth parameters were determined with respect to the 

control (Table 1). Inoculation of seeds with the chemical fungicide exhibited an average 

increase in root length of 2.6 % and in stem length of 11.8 % compared to control seeds 

(Table 1) with significant differences. In addition, all the treatments that combined two 

bacilli generated beneficial effects on GP and seedling growth compared to control seeds 

(Table 1). So, seeds inoculated with B19+B14, exhibited an increase in GP of about 16.3 

%, and significant average increase in root length of 5.2 % and in stem length of 8.1 % 

compared to the control. Seeds inoculated with B19+P12 exhibited a significant increase in 

GP of about 21.4 % and an average increase in root length of 4.2 % and in stem length of 

18.9 %, with significant differences compared to the control and the singles inoculants. 

Finally, seeds inoculated with B14+P12 exhibited an increase in GP of about 18.9 % 

compared to the control, and an average increase in root length of 1.6 % and in stem length 

of 11.5 % with significant differences compared to control and to the singles inoculants as 

well (Table 1).   

 

 

3.5. Fungal growth inhibition assays  
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The analysis of the individual effect of the three Bacillus strains on the different S. 

sclerotiorum strains showed a differential effect on the 9 plant pathogens (Fig. 2). The plant 

pathogen strains 15 and 27 proved to be the most sensitive as they were inhibited with an FI 

of 100 % by the three bacilli. The most resistant pathogens were PV and RF, with an FI that 

ranged between 60 and 80 % showing significant differences compared to the 15 and 27 

pathogen strains. Strains 33, 39, 48, 58 and AN were similarly inhibited by the three bacilli, 

with no significant differences between them. In all these strains the FI ranged between 70 

and 90 % (Fig. 2).  

 

3.6. MALDI-MS analysis of the lipopeptides involved in antifungal activity 

 

The MALDI-MS analysis of the lipopeptides synthesized by B14, B19 and P12 

individually in solid medium against 9 strains of S. sclerotiorum (Table 2, Fig. S1-S18) 

revealed signals compatible with kurstakin, surfactin, iturin and fengycin homologues. As 

is shown in Fig. S 1-18 (see supplementary material) observed signals are clearly located in 

two different m/z regions: those observed in m/z 900-1200 (Fig. S1, S3, S5, S7, S9, S11, 

S13, S15, S17) and the second group located in the region m/z 1400-1650 (Fig. S2, S4, S6, 

S8, S10, S12, S14, S16, S18). According to data in the literature (Vater et al., 2002; Yang 

et al., 2006; Price et al., 2007; Pathak et al., 2012; Torres et al., 2015) in the first region 

signals can be assigned mainly to kustakins, surfactins and iturins, the second to the m/z 

region were fengycins.  

No significant differences were observed in the production of lipopeptides (number of 

homologues and relative intensity) by B14 against the 9 plant pathogenic strains used. In all 

cases relative intensity was higher for surfactins homologues compare with the fengycins 

ones. Sodiated adduct of kurstakins (m/z= 915, m/z=943, m/z=957 and m/z=971) were 

detected. Homologues of polymyxin were detected as very low intensity signals (m/z 1145, 

m/z=1167, m/z=1182, m/z=1202 and m/z=1225). B14 synthetized 7 fengycins homologues 

against S sclerotiorum shown their molecular ions as [M+H]+, [M+Na] + and/ or [M+K]+  

species.    

B14 and P12 synthesized 7 isoforms of surfactin and 5 isoforms of iturin in the presence of 

the different S. sclerotiorum strains.  
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On the other hand, for the bacilli B19, fengycin homologues were more intense than signals 

assigned as surfactins. Homologues of kurstakins were not detected.  

 

3.7. Effect of Bacillus cell culture on common bean seeds grown in soils contaminated with 

S. sclerotiorum  

 

The S. sclerotiorum strain RF was selected for these assays because it was one of the most 

resistant strains against the bacilli, as indicated by the FI % reported in section 3.5. 

Untreated common bean seeds (control) sown in soil infested with S. sclerotiorum RF 

exhibited a GE of 7 %. After 15 days of seeding, the disease incidence was 80 % in the 

control, with infected seedlings showing the typical disease signs such as dark green lesions 

and watery appearance on the stem, as well as cottony growth of white mold in roots and 

stems (Fig. 3a, b). The analysis of seeds that did not emerge showed the presence of 

abundant sclerotia and growth of white mycelium surrounding them (Fig. 3c). After 45 

days of the sowing of the seeds without inoculation, the soils infected with the pathogen 

recorded 100% incidence. Seeds treated with the chemical fungicide and sown in S. 

sclerotiorum-infested soil did not produce seed emergence. The analysis of the non-

emerged seeds showed, as in the control, the presence of abundant sclerotia and mycelium 

growth. Seeds treated with a single inoculant, B14, B19 or P12, showed a lower disease 

incidence 15 days after seeding: 60, 52 and 50 %, respectively, compared to the control 

(Table 3). At the end of the trials, an incidence of 100, 76 and 75 %, respectively, was 

observed with the single inoculant. Seeds inoculated with B19+P12 did not exhibit 

statistically significant differences from seeds inoculated with a single inoculant of these 

strains, as the pathogen was present in 50 % 15 days after seeding. After 45 days, the 

incidence of treatment B19+P12 increased to 75 %, similar to the single inoculant. 

However, the B14+B19 treatment did show a statistically significant decrease of disease 

incidence (28.6 % incidence) 15 days after seeding compared to the application of a single 

inoculant and compared to the control. At the end of the trail, the disease incidence of 

B14+B19 treatment was 43 % lower than the control. A significantly higher protective 

effect was detected with the application of B14+P12 (Fig. 3d), which resulted in S. 

sclerotiorum incidence of 12.5 % 15 days after seeding. 45 days after sowing, B14+P12 
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treatment showed the lowest incidences compared to the rest of the treatments (Table 3). 

This treatment also yielded the highest GE (34 %) (Table 3). In all treatments, diseased 

plants initially exhibited watery lesions with white mold growth (Fig. 3a, b). On the other 

hand, non-emerged seeds showed the presence of sclerotia and pathogen growth in the form 

of cottony mycelium growth (Fig. 3c).  

Disease progress in B14+P12 and B14+B19 treatments was significantly lower than in the 

remaining treatments, with an AUDPC of 873.75 and 1071, respectively (Table 3). 

 

4. Discussion 

 

In this study, we determined that three Bacillus native strains: Bacillus spp. B19 and P12 

and B. amyloliquefaciens B14, isolated from soils of the province of Salta, significantly 

reduced white mold in common bean (Phaseolus vulgaris L.) caused by S. sclerotiorum 

under greenhouse conditions. This plant pathogen is of great concern in the region because 

it can easily spread in the soil or from infected seeds due to its reproduction mode, causing 

devastating crop yield losses (Mamaní Gonzáles et al., 2015). The use of pathogen-free 

seeds is recommended to control this problem; hence, chemicals are frequent applied on 

seeds (Vieira et al., 2010; Vizgarra, et al., 2012). However, there is currently significant 

concern about the impact of chemical pesticides on the environment and thus has led to 

increased interest in strategies for the biocontrol of different phytopathogens. The use of 

Bacillus strains as biocontrol agents to inhibit S. sclerotiorum has been previously tested in 

different crops. Hu et al. (2014) reported a reduction about 10 % of S. sclerotiorum 

incidence in oilseed rape seeds treated with Bacillus. Similar results were obtained by Chen 

et al. (2014) in rapeseed. Fernando et al. (2007) showed that B. amyloliquefaciens reduced 

the incidence of S. sclerotiorum on canola petals sprayed at 10 and 30 %. However, few 

attempts have been made to find bacterial biocontrol agents for controlling diseases that 

affect the common bean crop in the NWA region (Torres et al., 2016; Torres et al., 2017; 

Sabaté et al., 2017). In the present study we found that strains B19 and P12 significantly 

reduced in vivo disease incidence (25 % approximately) by the end of the trials. Moreover, 

the combined application in vivo of B14+P12 or B14+B19 was more efficient than a single 

inoculant, as seen from the fact that disease incidence was reduced by 46 and 43 %, 

ACCEPTED M
ANUSCRIP

T



respectively. During the progression of the disease, the analysis of disease progress curve 

(AUDPC), confirmed that the combination of B14+P12 was the most effective treatment, 

followed by B14+B19. The combinations appear to have a synergistic effect. Different 

authors have shown that the application of more than one biocontrol agent increases the 

effect of biological control (Guetsky et al., 2001; Jetiyanon and Kloepper, 2002). Sun et al. 

(2017) determined that the biocontrol effect of an inoculant composed of two Bacillus 

strains (LHS11 + FX2) is more effective than a single inoculant on rapeseed white mold in 

vivo. Correa et al. (2014) also reported that Bacillus strains applied in combination were 

more effective in controlling diseases affecting common bean than when applied as a single 

inoculant. However, no reports have been found on the effect of native inoculants for the 

treatment of white mold on common bean from our region.  

In common bean production areas in the NWA, sclerotia are usually present in the soils, 

which guarantee the presence of the pathogen in future crop seasons. This problem causes 

considerable crop yield losses and requires the use of fungicides to reduce the high disease 

levels affecting the crop (Vizgarra et al., 2012). McCreary et al. (2016) showed that 

fungicides still play a major role in the control of white mold in dry bean, and Vieira et al. 

(2010) found that fluazinam combined with reduced plant density offered great disease 

suppression. In this study, however, we determined that the chemical fungicide frequently 

used in our study region to prevent fungal diseases did not have a protective effect against 

S. sclerotiorum; moreover, bean seeds showed abundant presence of sclerotia and exhibited 

white mold growth. In the S. sclerotiorum-contaminated soils, the application of B14+P12 

or B14+B19 on seeds can be considered as an alternative for biocontrol of white mold in 

order to reduce the incidence of the disease in the crop. This possibility should be given 

serious consideration due to the fact that the common bean is one of the most widely grown 

crops in the region and because white mold is both one of the most harmful diseases 

affecting this crop and to date there are no cultivars resistant to the disease.  

In this study, we also found that the three strains significantly inhibited pathogen growth in 

vitro, with FI values ranging between 60 and 100 %. Numerous studies have demonstrated 

that the antifungal effect of Bacillus strains against phytopathogenic fungi is due to 

lipopeptides synthesis (Kumar et al., 2012; Cawoy et al., 2014; Li et al., 2014; Liu et al., 

2014; El Arbi et al., 2016; Torres et al. 2016; Kumar et al., 2016; Torres et al., 2017; Sabaté 
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et al., 2017). Elkahoui et al. (2014) determined that S. sclerotiorum inhibition by Bacillus 

sp. BCLRB2 is due to the synthesis of bacillomycin and iturin. In this study, using the 

MALDI-TOF MS method, we demonstrated the ability of B14, B19 and P12 to synthesize 

kurstakins, surfactins, iturins, polimyxin and fengycins against S. sclerotiorum when the 

strains are in contact with the fungus. However, no correlation was found between the 

different types of synthesized lipopeptides and their isoforms and the FI % found (Data not 

shown). This result may be due to the synergistic effect of metabolites among them. The 

lipopeptides iturins and fengycins are known for their antifungal activity (Ongena and 

Jacques, 2008; Falardeau et al., 2013), which suggests that these metabolites are the main 

factors responsible for the antagonistic activity against the phytopathogen used in this 

study. Surfactin primarily exhibits antibacterial activity but it also has a synergistic effect 

on iturin (Thimon et al., 1992) or fengycin (Koumoutsi et al., 2004); this may be the 

phenomenon observed with the B14 + P12 or B14 + B19 when applied on common bean 

seeds, with its antagonistic effect increasing in the presence of S. sclerotiorum. 

Furthermore, Sabaté et al. (2017) determined that B. amyloliquefaciens B14 synthesized 

surfactins, iturins, fengycins and, moreover, co-produced kurstakins and polymyxins when 

grown in the presence of M. phaseolina. Thus, from these results we can infer that the 

nature of lipopeptides synthesized by Bacillus influences the target species, which is 

consistent with results reported by Cawoy et al. (2014). Biocontrol efficacy of Bacillus on 

S. sclerotiorum was more efficient in vitro than in vivo, possibly due to the complexity of 

the soil microenvironment. We determined in vitro the synthesis of lipopeptides, and that 

they are responsible for the antagonistic effect; however, the antifungal substances that 

strains produce in the soil still remains to be determined in a future study. 

Seed health is one of the main factors influencing final seed quality of a crop and is 

determined by the presence or absence of pathogens. Pathogenic microorganisms 

associated with seeds generate diseased seedlings that may not survive in the field. In our 

study, we identified Cladosporium spp., Rhizopus spp. and Fusarium spp. in white bean cv. 

Alubia seeds; these results are consistent with those obtained by Persa et al. (2016) and 

Sabaté et al. (2017). In the present study, we detected Fusarium spp., which presented an 

incidence of 26 % in the in vitro trials. We demonstrated that seeds inoculated with B14, 

B19 or P12 suppressed all fungi identified in the control seeds. This result is extremely 
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important, mainly due to the presence of seed-borne Fusarium spp. in seeds, given that the 

fungi could be transmitted to the seedlings and cause significant economic losses (Persa et 

al., 2016). Similarly, although S. sclerotiorum did not grow in the studied seeds, it is 

imperative to recognize that because the fungus is a soil pathogen, the importance of 

control is not only to have a seed free of other pathogens, but also to control its incidence in 

the field. 

In this study, shoot length increased 7.7 and 11.4 cm, and root length, 2.0 and 2.9 cm in 

B19 and P12, respectively, as a single inoculant. These increases were more effective than 

in the combined application and than in the fungicidal-seed treated. Both strains, B19 and 

P12, synthesize IAA (5.71 and 4.90 mg/mL, respectively). IAA production by microbes 

promoted root growth by directly stimulating plant cell elongation or cell division (Patten 

and Glick, 1996; Babalola, 2010). This metabolite would be responsible for the increase in 

growth of common bean caused by these strains. These results suggest that these strains are 

more effective than the fungicide seed treatment and could be used as potential agents 

promoting growth in the common bean, thus minimizing the use of chemicals. Moreover, 

these strains would synthesize siderophores, which act specifically as chelates that can 

‘sequester’ iron and solubilize it, therefore supplying the plant with soluble iron and 

ultimately promoting its growth while also limiting the growth of phytopathogenic fungi 

and bacteria (Babalola, 2010). 

The preliminary results obtained in this study suggest that the isolated bacteria Bacillus 

spp.  B19 and P12 and B. amyloliquefaciens B14, in combination, have the potential to 

control white mold in the common bean used in our region as well as possessing potential 

PGPR properties.  

 

5. Conclusion  

 

The treatments B14+P12 or B14+B19 were the most effective combinations in reducing the 

incidence of S. sclerotiorum. Furthermore, B19 and P12 had beneficial properties on the 

growth of common bean cv. Alubia. Therefore, these strains or combined strains could be a 

potential growth promoter in commercial bean cultivation in the NWA region.  
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Figure captions 

Fig. 1. Seeds of white bean cv. Alubia arranged at random on agar PDA.  

a) Presence of contaminating fungi on non-inoculated white bean seeds. 

b) Presence and development of Bacillus B19 inoculated in white bean seeds.  

 

Fig. 2. Percentage of fungal inhibition (%FI) of Bacillus B14, B19 and P12 against 

different strains of S. sclerotiorum (identified as 15, 27, 33, 39, 48, 58, AN, PV and RF). 

Fig. 3. Symptoms and lesions caused by S. sclerotiorum in white bean cv. Alubia seedlings 

in soils infected with the pathogen. 

a) and b) Inoculated white bean seedlings showing symptoms in the stem. 

c) Sclerotia of and seeds infected with S. sclerotiorum. 

d) Comparison of seedlings inoculated with Bacillus B14+P12 and single inoculant (B14 or 

P12). 
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Table 1. Effect of Bacillus cell culture on common bean growth 

 

 

 

 

 

 

 

 

 

 

 White bean cv Alubia seeds 

Treatments GP (%) Root length (cm) Stem length (cm) 

Control seeds 77.4c 19.3±3.7bc 38.2±3.6d 

Seeds inoculated  with B19 88.6b 21.3±2.0a 45.9±3.5b 

Seeds inoculated   with P12 88.6b 22.2±1.8a 49.6±3.0a 

Seeds inoculated   with B14 70d 18.0±2.0c 34.3±2.5d 

Seeds inoculated   with  

fungicide 

90ab 19.8±2.0ab 42.7±2.7bc 

Seeds inoculated   with 

B19 + B14 

 

90ab 20.28±1.0a 41.3±2.0c 

Seeds inoculated   with 

 B19 + P12 

 

94a 20.1±1.0a 45.4±1.5b 

Seeds inoculated   with   

B14 + P12 

92a 19.6±1.30bc 42.6±2.6bc 
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Table 2. Lipopeptides synthesized by Bacillus B14, B19 and P12 against S. sclerotiorum characterized by MALDI-MS  

    S. sclerotiorum 

Lipopeptide Chemical formula Calculated Bacillus 

strain 

15 27 33 39 48 58 AN PV RF 

kurstakin [C40H66N7O11Na]+ 915.48 B14 + - - + - - - - + 
   B19 - - - - - - - - + 
   P12 - - - - - - - - - 
kurstakin [C42H70N7O11Na]+ 943.51 B14 + - + - - - + + - 
   B19 - - - - - - - - - 
   P12 - - + - - - - - - 
kurstakin [C43H72N7O11Na]+ 957.52 B14 + - - - + - - - + 
   B19 - - - - - - - - - 
   P12 - - + - - - - - - 
kurstakin [C44H74N7O11Na]+ 971.54 B14 + + + + + - + + + 
   B19 - - - - - - - - - 
   P12 + - + - - - + + - 
surfactin [C48H82N7O13Na]+ 987.59 B14 + + - + + - - - - 
   B19 - - - - - - - - - 
   P12 - - - - + + + + - 
surfactin [C49H84N7O13Na]+ 1001.60 B14 + + + + + + + + + 
   B19 - - - - - - - - - 
   P12 + + + + + + + + + 
surfactin [C50H86N7O13Na]+ 1015.62 B14 + + + + + + + + + 
   B19 + - - - - - + + + 
   P12 + + + + + + + + + 
surfactin [C51H88N7O13Na]+ 1029.63 B14 + + + + - + + - - 
   B19 + - - + + - + + + 
   P12 + + + + + + + + + 
surfactin [C53H92N7O13H]+ 1035.68 B14 + + + + + + + + + 
   B19 - + - + - + + + + 
   P12 + - + + + + - + + 
surfactin [C52H90N7O13Na]+ 1043.65 B14 + + + + + + + + + 
   B19 + + + + + + + + + 
   P12 + + + + + + + + + 
             
iturin [C47H71N11O15Na]+ 1052.50 B14 + + + + + + + + + 
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   B19 - - - - - + + - + 
   P12 + + + - + + - - + 
surfactin [C53H92N7O13Na]+ 1057.66 B14 + + + + + + + + + 
   B19 + + + + + + + + + 
   P12 + + + + + + + + + 
iturin [C48H73N11O15Na]+ 1066.52 B14 - - - - + - - + - 
   B19 + - - - - - - + - 
   P12 - - - - + - - - + 
surfactin [C53H92N7O13K]+ 1073.64 B14 + + + + + + + + + 
   B19 + + + + + + + + + 
   P12 + + + + + + + + + 
iturin [C49H75N11O15Na]+ 1080.53 B14 + + + + + + + + - 
   B19 +  - - + + + + + + 
   P12 - - + + + + + + + 
surfactin [C54H94N7O13K]+ 1087.65 B14 + + + + + + + + - 
   B19 + - - + + - - + - 
   P12 + + + + + + + + + 
iturin [C49H75N11O15K]+ 1096.51 B14 + + + + + + + + - 
   B19 + - - + + + + + + 
   P12 + + + + + + + + + 
iturin [C52H81N11O15H]+ 1100.60 B14 + + + + + + + + + 
   B19 + + - + + + + + + 
   P12 + + + + + + + + + 
iturin [C53H83N11O15H]+ 1114.61 B14 + + + + + + + + + 
   B19 - - + + + - + + + 
   P12 + - + - + + - + - 
Polimyxin D1 [C50H93N15O15H]+ 1144.70 B14 - - - + - + - - - 
   B19 - - + + - - - - - 
   P12 - - - - - - + - - 
Polimyxin D1 [C50H93N15O15Na]+ 1166.69 B14 + + + + + + + + - 
   B19 - - - - - - - - - 
   P12 + + - - - - - + - 
Polimyxin D1 [C50H93N15O15K]+ 1182.66 B14 + + + + + + + + + 
   B19 - - + + + + + + - 
   P12 + + + - + - + + - 
Polimyxin B1 [C56H98N16O13H]+ 1202.76 B14 - + - + + - + - - 
   B19 - - - - - - - + - 
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   P12 - - - - - - - - - 
Polimyxin B1 [C56H98N16O13Na]+ 1225.74 B14 - + - + - + - - - 
   B19 - - - + - - - - - 
   P12 - - + + + - - + - 
fengycin [C73H112N12O20H]+ 1477.82 B14 + + + + + - + + + 
   B19 + + + + + + - - + 
   P12 - - + + + - - - - 
fengycin [C72H110N12O20Na]+ 1485.78 B14 + + + + + + + + + 
   B19 + + + + + + + + + 
   P12 + + + + + + + + + 
fengycin [C74H114N12O20H]+ 1491.83 B14 + + + + + + + - + 
   B19 + + + + + + + - + 
   P12 - - + + + + - + - 
fengycin [C73H112N12O20Na]+ 1499.80 B14 + + + + + + + + + 
   B19 + + + + + + + + + 
   P12 + + + + + + + + + 
fengycin [C75H116N12O20H]+ 1505.85 B14 + + + + + + - + - 
   B19 + + + + + + + + + 
   P12 - + - - + + - - - 
fengycin [C74H114N12O20Na]+ 1513.82 B14 + + - + + + + + + 
   B19 + + + + - + + + + 
   P12 + + + + + + + + + 
fengycin [C73H112N12O20K]+ 1515.77 B14 + + + + + + + + + 
   B19 - + + + - - + + + 
   P12 + + + + + + + + + 
fengycin [C74H114N12O20K]+ 1529.79 B14 + + + + + + + + + 
   B19 + + + + + + + + + 
   P12 + + + + + + + + + 
fengycin [C75H116N12O20K]+ 1543.80 B14 + + + + + + + + + 
   B19 + + + + + + + + + 
   P12 + + + + + + + + + 
fengycin [C76H118N12O20K]+ 1557.82 B14 + + + - + - + + - 
   B19 + - + - - - + - - 
   P12 - - - - - - - - - 
fengycin [C80H127N12O20H]+ 1575.93 B14 + + + - + - - + - 
   B19 + - + + + + + + + 
   P12 - - - - - - - - - 
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fengycin [C81H129N12O20H]+ 1590.95 B14 - + + - - - - - - 
   B19 + - + - + - - - - 
    P12 - - - - - - - - - 
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Table 3. Effect of different Bacillus treatments on the white mold of common bean caused by S. 

sclerotiorum 

 

GE=germinative energy 

LP=number of living plants 

HP%= Healthy plants percentage 

I%= incidence pathogen percentage 

 
 
 
 

 

 
GE (%) 

After 15 days  After 30 days  After 45 days 
AUDPC 

 LP HP% I%  LP HP% I%  LP HP% I% 

Control 7.20c 5c 20d 80b  1c 20d 80b  0d 0c 100a 2550a 

Comercial 

Fungicide 

0d 0d 0e 100a  0c 0e 100a  0d 0c 100a 3000a 

B14 14.3b 10b 40c 60c  0c 0e 100a  0d 0c 100a 2700a 

B19 30.0a 21a 48b 52c  6b 28.5c 71.5b  5b 23.8b 76.2b 2034b 

P12 5.70c 4c 50b 50c  2c 50b 50c  1c 25b 75b 1687.5c 

B14+P12 34.3a 24a 87.5a 12.5e  18a 75a 25d  11a 46a 54c 873.75d 

B14+B19 10.0b 7bc 71.4a 28.6d  5b 71.4a 28.6d  3b 43a 57c 1071cd 

B19+P12 5.70c 4c 50b 50c  1c 25c 75c  1c 25b 75b 2062.5b 
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