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 22 

Abstract 23 

Aedes aegypti (L.) (Diptera: Culicidae) is a vector of many medically significant viruses in 24 

the Americas, including dengue virus, chikungunya virus and Zika virus. Traits such as 25 

longevity, fecundity and feeding behavior contribute to the ability of Ae. aegypti to serve as 26 
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a vector of these pathogens. Both local environmental factors and population genetics could 27 

contribute to variability in these traits. We performed a comparative study of Ae. aegypti 28 

populations from four geographically and environmentally distinct collection sites in 29 

Argentina in which the cohorts from each population were held at temperature values 30 

simulating a daily cycle, with an average of 25 ºC in order to identify the influence of 31 

population on life-history traits. In addition, we performed the study of the same 32 

populations held at a daily temperature cycle similar to that of the surveyed areas. 33 

According to the results, Aguaray is the most outstanding population, showing features that 34 

are important to achieve high fitness. Whereas La Plata gathers features consistent with low 35 

fitness. Iguazu was outstanding in blood feeding rate while Posadas’s population showed 36 

intermediate values. Our results also demonstrate that climate change could differentially 37 

affect unique populations, and that these differences have implications for the capacity for 38 

Ae. aegypti to act as vectors for medically important arboviruses.  39 

 40 

Keywords: Mosquito, fitness, Argentina 41 

 42 

 43 

Introduction 44 

Aedes aegypti is a highly successful invasive species that has become one of the most 45 

common mosquito species biting humans in many tropical and subtropical cities. It is also a 46 

vector of viruses causing several major tropical diseases including dengue, chikungunya, 47 

yellow fever and Zika (Gubler, 2004; Rodriguez-Morales, 2015). Aedes aegypti has a wide 48 

distribution in Argentina, from the northern border to the province of Neuquén in the south 49 

(Grech et al., 2012), from subtropical to temperate climates. Like other insects, Ae. aegypti 50 

Page 2 of 27

https://mc.manuscriptcentral.com/medent

Manuscripts submitted to Journal of Medical Entomology



development rates are a function of temperature (Christophers, 1960). However, several 51 

studies performed in Argentina have shown that some life-history traits of Ae. aegypti 52 

(immature and adults) varied between populations collected in different regions of the 53 

country when they were reared at the same temperature (Dominguez et al., 2000; Tejerina 54 

et al., 2009; Grech et al., 2010).  This evidence of adaptation to local conditions is 55 

supported by the fact that Argentinean Ae. aegypti populations showed high levels of 56 

genetic polymorphism which suggest different origins from genetically distinct populations 57 

(de Sousa et al., 2000; Rondán-Dueñas et al., 2009; Llinas and Gardenal, 2011).  58 

 Here we present a comparative study about Ae. aegypti populations from Argentina in 59 

order to identify the life traits that respond to local adaptation and the traits that could be 60 

mostly influenced by temperature. In this sense, we selected four mosquito populations 61 

from three provinces: Salta from the Northwest, Buenos Aires from the South and Misiones 62 

from the Northeast area of this mosquito species distribution. Cohorts from each site were 63 

held at temperature values simulating a daily cycle, with an average of 25 ºC in order to 64 

determine their life-history traits and to make comparisons between populations. 65 

Additionally, we performed the study of the same populations by holding them at a daily 66 

temperature cycle which was approximately the same as the one registered at the surveyed 67 

area.  The knowledge about the behavior of Ae. aegypti in different regions of the country, 68 

as well as the study of the same populations held at mean cycle temperature, will allow us 69 

to make inferences about the response of Ae. aegypti under different climatic scenarios that 70 

could be useful to define areas with greater potential of disease transmission. 71 

 72 

Material and Methods 73 

Study sites  74 

Page 3 of 27

https://mc.manuscriptcentral.com/medent

Manuscripts submitted to Journal of Medical Entomology



We have selected four locations from three provinces of Argentina: Salta (Aguaray), 75 

Buenos Aires (La Plata), and Misiones (Posadas and the Iguazu National Park) (Fig.1).  76 

Aguaray (22° 14´ 30” S 63° 44´ 00” W) is located in an area characterized as a subtropical 77 

montane moist forest with an annual mean temperature of 20 ºC and a mean annual rainfall 78 

of 950 mm. La Plata (34° 55´ 07” S 57° 57´ 15” W), as capital of the province of Buenos 79 

Aires, is a highly populated area located in a region called Pampa, which has predominance 80 

of plains and grasslands. The annual mean temperature is 16.5 ºC and the mean annual 81 

rainfall is 900 mm. Posadas (27° 21´ 42” S - 55° 54´ 15” W) and the Iguazu National Park 82 

(25° 35´ 49” S - 54° 34´ 42” W) are located in a region called Paranaense Forest with an 83 

annual mean temperature of 20 ºC and a mean annual rainfall of 1800 mm. Although they 84 

belong to the same province, these sites are different because Posadas is the capital of the 85 

province with high anthropic disturbances, while Iguazu is mostly a forest area with little 86 

human population, bordering Paraguay and Brazil (Burkart et al., 1999). 87 

 88 

Mosquitoes and environmental data collection 89 

During February and March of 2014, peak population period of Ae. aegypti in Argentina 90 

(Micieli and Campos, 2003; De Majo et al., 2013), mosquito eggs were obtained from 91 

approximately 25 ovitraps from each location (Aguaray, La Plata and Posadas) while in the 92 

Iguazu National Park it was possible to collect mosquito larvae only from seven artificial 93 

containers due to the low availability of these mosquito habitats. The eggs were transported 94 

to Centro de Estudios Parasitológicos y de Vectores (CEPAVE -CONICET-UNLP) in 95 

plastic bags and identified as Ae. aegypti after larvae reached the fourth instar. These larvae 96 

were used to build the colony from which F1 eggs were used in assays. For Iguazu 97 

locations, field collected larvae were transported in plastic containers to a local laboratory. 98 
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Larvae identified as Ae. aegypti were used to rear adults from which F1 eggs were obtained 99 

for transport to CEPAVE facilities to be used for assays. In each city, the daily temperature 100 

and relative humidity were recorded between February 20 and March 20, 2014 using 101 

HOBO data loggers (Onset, Cape Cod, MA) located at the collection sites, which were 102 

protected from direct sunlight and rain. We determined the temperature range and the mean 103 

value for each site: La Plata, 18-23 ºC, average: 20 ºC; Aguaray, 21-31 ºC, average: 25 ºC; 104 

Posadas, 18-34 ºC, average: 26 ºC and Iguazu, 21-35 ºC, average: 28 ºC. These data were 105 

used to build a curve of fluctuating daily temperatures that were used to program the 106 

incubators for the experimental procedures (Fig. 2). A mean temperature range was 107 

established from values generated at each of the four sites. This calculation provided a 108 

mean range cycle of 20-30ºC (Fig. 2). The mean relative humidity (X±SD) varied among 109 

Iguazu (75.45 ± 11.63%), Aguaray (77.61 ± 6.22%), Posadas (81.69 ± 18.31%), and La 110 

Plata (86.99 ± 4.04%). 111 

 112 

Experimental Procedures 113 

The colonies were maintained in the insectaries at CEPAVE following the protocol of 114 

Gerberg et al. (1994) until sufficient numbers of eggs of the F1 generation were acquired to 115 

carry out the experiments. The eggs were held at room temperature (20-27 ºC) until the 116 

beginning of the experiments, but for no longer than two months.  When needed, eggs of 117 

the first generation (F1) from each location were submerged overnight in 400 ml of 118 

dechlorinated water in plastic bowls (170 mm diameter) for hatching in order to obtain 1
st  

119 

instar larvae for the experiments. 120 
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The first set of trials was performed using the same cyclic temperature for all populations. 121 

The daily temperatures recorded by hour in each location were averaged to build a mean 122 

cyclic temperature curve that resulted in a daily minimum temperature of 20 ºC and a 123 

maximum of 30 ºC, with a daily average of 25 ºC (Fig. 2). The incubator temperature 124 

parameters were set according to this cycle.  125 

For each experiment, 100 1
st  

instar larvae from each population were placed in groups of 126 

25 larvae into one of four plastic flat trays (30 cm x 18 cm x 6 cm) filled with 750 ml of 127 

dechlorinated water. Finely ground rabbit food (0.5 g) was added to the water to feed the 128 

immature stages during the first two days of the experiment and 0.25 g of food were added 129 

each subsequent day until pupation. Water was added as needed to maintain a 750 ml 130 

volume. Larval instar and the number of dead larvae were recorded daily, as well as the day 131 

of pupation. The pupae were transferred to plastic containers (8 cm x 3.5 cm diameter) 132 

supplied with water and two to three raisins per container. After emergence, the adults were 133 

sexed and transferred to a cardboard cage (25 cm x 22 cm diameter) for 3 to 5 days to allow 134 

mating. Adults were offered a blood meal (restrained hamster (100 g) into each cage for 60 135 

min), and fed with a 10% sugar solution from a cotton wick in 50-ml plastic flasks. After 136 

feeding, the cages were held for 3 min at ≈ -20 ºC in order to anesthetize the adults.  Each 137 

engorged female was moved to an individual plastic container (8 cm x 3.5 cm diameter) 138 

containing a filter paper positioned over wet cotton to facilitate oviposition. A second blood 139 

meal was offered 15 days after the first blood feeding after which the females were released 140 

into a cardboard cage to commence the second gonotrophic cycle. Adults were checked 141 

every day to record the number of deaths. The eggs laid during each oviposition were 142 

counted daily and kept on their filter paper over cotton in a Petri dish and sealed using 143 

parafilm to maintain humidity for 7-10 days to ensure embryogenesis. Thereafter, 144 
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individual filter papers were transferred into a plastic container with 250 ml of 145 

dechlorinated water and 10 mg of yeast for hatching. The number of larvae was counted 146 

after 48 hours.  147 

The general procedure for a second set of experimental assays was similar to the above 148 

mentioned, but it was performed using the range of temperatures measured at the sample 149 

site of each population. Three replicates of 100 1
st  

instar larvae from each population were 150 

used for these experimental assays . All these studies were conducted at CEPAVE insectary 151 

facilities. We used an approximately photoperiod 14:10 (L:D) according to summer season 152 

across all experiments in the incubator and the relative humidity level was maintained 153 

between 70% and 80%.  154 

 155 

Table life construction and definitions  156 

The date and the total number of individuals that entered a given stage, died in that stage, 157 

and molted to the next stage were used as input for life table calculations (Deevey, 1947). 158 

The proportion of hatched eggs at the first submersion in water produced by the females of 159 

the cohort was used to estimate the number of initial eggs of each cohort. Daily mortality 160 

records were used to calculate survival as a function of age (lx). Survival (lx) was 161 

expressed as the percentage of individuals that reached the next instar/stage; the number of 162 

eggs laid daily was used to calculate the age-specific fecundity (mx), by dividing the total 163 

number of eggs laid each day(x) by the number of individuals alive at the end of that day. 164 

The (lx) and (mx) schedules allowed for the estimation of demographic parameters such as 165 

the intrinsic rate of natural increase (r), the net reproductive rate (Ro), and the mean 166 

generation time (Tg); complete definitions of these parameters and the formulas used for 167 

their calculation are given in Rabinovich and Nieves (2011). The length of the gonotrophic 168 
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cycle (GC) is equivalent to the number of days between the blood meal and the first batch 169 

of eggs (mean time between the first and last day for each female’s batch of eggs). The 170 

length of the second GC was regarded as the number of days between the second blood 171 

meal (approximately 14 days after the first blood meal) and the second batch of eggs. Life 172 

fecundity is understood as the mean number of laid eggs per female calculated from 173 

individual female oviposition during all its life; and the egg hatch rate is equivalent to the 174 

number of larvae/eggs. The blood-feeding rate is the number of blood-fed females over the 175 

total number of females exposed to feeding. 176 

 177 

Statistical analyses 178 

Three sets of analyses were performed in order to compare the life table traits including 179 

demographic parameters. The first analysis was conducted among populations held at 180 

common mean cycle temperature (25 ºC, range: 20-30 ºC), the second analysis was 181 

performed among populations held at the temperature cycle recorded from each site, while 182 

the third analysis was a comparison of the demographic parameters and some life table 183 

traits (fecundity, blood feeding rate) under the two temperatures regimes (specific-site and 184 

mean) by each population. 185 

Life table traits 186 

Immature stages. Hatching rate and mortality were analyzed by Chi-squared test. Larval 187 

and pupal development times were analyzed by Mann-Whitney Test.  188 

Adults. Adult female survival was analyzed by Log-rank (Mantel-Cox) Test. The sex ratio 189 

and blood-feeding rate were analyzed by Chi-squared test. The length of the GC and life 190 

fecundity was analyzed by Kruskal Wallis Test.  191 
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Demographic parameters. For each demographic parameter, we also estimated the 192 

confidence interval at a 95% significance level based on 1,000 bootstrap samples by 193 

random resampling with replacement from the initial individuals of each group. These 194 

calculations were carried out using a computer program developed in Delphi Language, 195 

cordially provided by Dr. Rabinovich. The statistical comparison of demographic 196 

parameters was carried out with the Student T-test for independent samples. 197 

All statistical methods were performed using R software (version 3.3.2).  198 

 199 

Results 200 

Aedes aegypti populations response at common mean cycle temperature 201 

Immature stages  202 

The lowest rate of hatching was observed on Iguazu’s population (78%), whereas the 203 

percentage obtained in cohorts from other sites was higher than 80%. However, a 204 

significant difference was detected only between Iguazu and La Plata (p<0.05, chi-square 205 

test).  206 

The specific mortality of the 1
st
 and 3

rd
 larval instar was different among populations 207 

(p<0.05, chi-square test) while in the 2
nd

 and 4
th

 larval instar there were no significant 208 

differences. However, the immature mortality from 1
st
 instar to pupa was not significantly 209 

different between the locations (Table 1). 210 

The mean development times from 1
st  

instar larvae to the pupal stage were statistically 211 

different among populations (p<0.01, Mann–Whitney test), with a range of 8.9 days 212 

(Iguazu) to 10.5 days (La Plata). The development time of Iguazu’s population was 213 

significantly shorter (p<0.01, Mann–Whitney test) compared to the other populations, 214 

Page 9 of 27

https://mc.manuscriptcentral.com/medent

Manuscripts submitted to Journal of Medical Entomology



which was primarily a result of decreased larval development time from the 2
nd

 to the 4
th

 215 

instar larvae (Table 1). 216 

Adult traits 217 

Adult female’s survival 218 

The median female survival was 27 days for Iguazu, 35 days for Posadas, 37 days for La 219 

Plata and 38 days for Aguaray. No significant differences were found among populations. 220 

Sex ratio 221 

Sex ratios were as follows: 0.60 for Iguazu, 0.86 for Aguaray, 0.95 for Posadas, and 1.17 222 

for La Plata. However, no significant differences were detected. 223 

Adult reproductive features 224 

The Ae. aegypti populations from Posadas and La Plata had a significantly higher blood 225 

feeding rate than those from Iguazu and Aguaray at the first GC (p< 0.00001, chi-squared 226 

test), but no differences were detected at the second GC. The life fecundity and the length 227 

of the first and second GC were not significantly different between populations (Table 2).  228 

Iguazu females laid the fewest total eggs (n=847), due to a low oviposition rate (0.60 229 

laying/fed female) in relation to the other populations (0.84 for Aguaray and 0.95 for La 230 

Plata and Posadas).  231 

Oviposition patterns for each GC varied among populations. For the first GC, Iguazu 232 

females laid eggs over two days, while in other populations oviposition was distributed 233 

over more than four days, the most extensive being the population from La Plata (6 days) 234 

(Fig. 3). On the first day of oviposition, females from Iguazu and Posadas laid 80% of their 235 

eggs (752 and 2,509 eggs, respectively), while females from Aguaray and La Plata laid 236 

approximately 60% of their total, equating to 1,056 and 1,895 eggs, respectively. The 237 

second GC showed the same pattern of oviposition, with the females of Iguazu’s population 238 
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laying all their eggs during the first day of oviposition, and the females from Aguaray and 239 

La Plata laying eggs over 2 or 3 days, respectively (Fig 3). Oviposition time by Iguazu’s 240 

population was significantly shorter (days) compared to Aguaray and La Plata (p< 0.05, 241 

Kruskal-Wallis test). 242 

Demographic parameters 243 

The mean generation time (Tg) was significantly different among the four populations 244 

studied (p<0.001, t-test). The highest Tg was measured with Aguaray’s population (28.2 245 

days) and the lowest (23.0 days) with Posadas’s population (Table 3). The net reproductive 246 

rate (Ro) also was significantly different among populations (p<0.001, t-test). The highest 247 

value for Ro was measured for La Plata, which was 4-fold higher than the one for Iguazu 248 

(p<0.05, t-student test). The intrinsic rate of natural increase (r) was statistically different 249 

among the populations (p<0.05, t-student test) with the exception of La Plata and Posadas 250 

(Table 3).  251 

 252 

Aedes aegypti populations response at specific-site temperature cycles 253 

Immature traits 254 

The lowest rate of hatching of 41.96% (p<0.05, chi-square test) was measured at 18-23 ºC 255 

in La Plata’s population, while Aguaray (21-31ºC) presented the highest percentage of 256 

hatching, 81.08% (p<0.05, chi-square test). The significantly lowest immature mortality, 257 

3.33 %, (p<0.05, chi-square test) and the lowest mean development time, 8.3 days (larvae-258 

pupa) (p<0.01, Mann–Whitney test) also were found at 21-31 ºC in Aguaray’s population, 259 

while the longest mean development time was found in La Plata at 18-23 ºC (p<0.01, 260 

Mann–Whitney test) (Table 1). 261 

Adult traits 262 
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The lowest female survival was found in Iguazu at 21-35 ºC (27 days, p<0.03, Log-rank 263 

Test) while the greatest (41 days, p<0.01, Log-rank Test) was found in La Plata (18-23 ºC). 264 

The lowest blood feeding rate (34 %) was found in La Plata (p< 0.05, chi-squared test) and 265 

the highest blood feeding rate at both, first (96 %) and second (75 %) gonotrophic cycles 266 

(p< 0.001, chi-squared test) was found in Iguazu at 21-35 ºC (Table 2). The highest life 267 

fecundity (110 eggs/female) was measured in Aguaray at 21-31 ºC (p<0.05, Kruskal Wallis 268 

Test) (Table 2). 269 

Demographic parameter 270 

The shortest mean generation time (27 days) was found in Aguaray at 21-31 ºC and the 271 

longest (44 days) was found in La Plata at 18-23 ºC (p<0.05, t-test) (Table 3). The lowest 272 

net reproductive rate, 3.14, was found in La Plata while the highest, 22.1, was found in 273 

Aguaray (p<0.05, t-test) (Table 3). Likewise, the lowest intrinsic rate of natural increase, 274 

0.027, was found at 18-23 ºC, La Plata population  while the highest value, 0.126, was 275 

recorded at 21-31 ºC in Aguaray  (p<0.05, t-test) (Table 3). 276 

 277 

Aedes aegypti populations response at two different temperature cycles 278 

Iguazu showed the highest blood feeding rate at its site-specific temperature cycle of 21-35 279 

ºC (0.96 for GC1 and 0.75 for GC2), in comparison to a mean temperature cycle of 20-30 280 

ºC (0.45 for GC1 and 0.28 for GC2) for both GCs (p<0.05, chi-square test). Instead, La 281 

Plata had the highest blood feeding rate at a mean temperature cycle of 20-30 ºC, in 282 

comparison to its site-specific temperature cycle of 18-23 ºC (only for the first GC, 0.89 vs. 283 

0.34) (p<0.05, chi-square test). Aguaray did not show significant differences in any GC 284 

between both temperature cycles (20-30 ºC vs. 21-31 ºC). The blood feeding rate for 285 

Posadas’s population presented a different behavior for each GC. For the first GC, the 286 
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highest value was found at the mean temperature cycle, 0.95, in comparison to the site-287 

specific temperature cycle (18-34 ºC), 0.58. On the other hand, for the second GC, the 288 

highest value was found at the site-specific temperature cycle, 0.25, in comparison to the 289 

mean temperature cycle, 0.03. 290 

Life fecundity was significantly different (p<0.05, Kruskal Wallis Test) between both 291 

temperature cycles for Iguazu, La Plata, and Posadas, with the highest number of eggs 292 

recorded at a mean temperature cycle. For Aguaray’s population, no significant difference 293 

was detected between cycles. The analysis of the demographic parameters (Tg, R0 and r) 294 

between two temperature cycles (mean temperature cycle vs. site-specific temperature 295 

cycle) for each population showed significant differences (p<0.001, t-test). Iguazu (33.69 296 

vs. 24.26), La Plata (43.96 vs. 25.21), and Posadas (28.50 vs. 23.02) presented a higher 297 

mean generation time at their site-specific temperature cycles, in comparison to a mean 298 

temperature cycle, with the exception of Aguaray (27 vs. 28.15). Iguazu (10.98 vs.7) and 299 

Aguaray (22.1 vs.16.65) presented a higher net reproductive rate at their site-specific 300 

temperature cycles, in comparison to a mean temperature cycle, whereas in La Plata (3.14 301 

vs. 29.96) and Posadas (8.7 vs. 27.12) the opposite behavior was shown. Iguazu (0.08 vs. 302 

0.07), La Plata (0.14 vs. 0.02), and Posadas (0.14 vs. 0.07) presented a higher intrinsic rate 303 

of natural increase at a mean temperature cycle in comparison to their site-specific 304 

temperature cycles, with the exception of Aguaray (0.10 vs. 0.12).  305 

 306 

Discussion 307 

The comparative study of Ae. aegypti populations allowed us to identify the life history 308 

traits that respond to local adaptation and the traits that most likely could be influenced by 309 

temperature. Some characteristics were significantly different between populations held at 310 
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the same temperature cycle, such as rate of hatching, mean development time and blood 311 

feeding rate in the first GC. Even more relevant are the differences among populations in 312 

the demographic parameters showing specific-population responses. These differences 313 

cannot be explained on the basis of temperature; therefore, part of this variation is due to 314 

population-related factors. On the other hand, some traits did not vary among populations 315 

held at mean cyclic temperature: immature mortality, sex ratio, blood feeding rate in the 316 

second GC, length of GC, life fecundity and female survival. These results suggest that 317 

these traits are more dependent on temperature. Moreover when we compare some traits 318 

such as blood feeding rate, lifetime fecundity and population-level traits at two different 319 

temperature cycles; we were able to demonstrate significant differences when the variation 320 

of the average temperature was at least one degree. More studies are needed in order to 321 

confirm these effects.  322 

Previous studies have demonstrated that fluctuating temperatures impact the bionomics of 323 

Ae. aegypti (Mohammed and Chadee, 2011; Carrington et al., 2013) but studies comparing 324 

different Ae. aegypti populations from Argentina also showed differences in life cycle traits 325 

due to local adaptations (Tejerina et al., 2009; Grech et al., 2010). Grech et al. (2010) 326 

studied three populations from Argentina (San Javier, Misiones; Oran, Salta; and Cordoba 327 

City, Cordoba) at the same temperature range (18.5-28 ºC) and found similarities in some 328 

traits (sex ratio, immature survival and mean development time larva-pupa). Moreover, 329 

differences among population traits were registered: fecundity, net reproductive rate and 330 

intrinsic rate of natural increase. Our results corroborate these data with the exception of 331 

the mean development time and fecundity. 332 

We additionally studied the populations held at daily cycling temperatures based on one 333 

month of temperature recordings in the populations source area. Because data from a single 334 
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survey was used, this does not include variation during this peak population period of Ae. 335 

aegypty, nor does include variation across a year or over the years. We identified Aguaray 336 

(mean: 25 ºC) as the population with the highest fitness, La Plata (mean: 20 ºC) with the 337 

lowest fitness, and Posadas (mean: 26 ºC) and Iguazu (mean: 28 ºC) with intermediate 338 

fitness levels.  339 

Moreover, we identified populations with unique traits. Iguazu female were shown to have 340 

the lowest survival rate and, concordantly, the shortest oviposition periods. Iguazu females 341 

completed oviposition in one or two days, which represents at least half the time of the 342 

other populations. La Plata’s population had the lowest blood feeding rate. However, the 343 

females had the longest survival, which could permit time for a third GC. When this 344 

population was held at an average temperature of 25 ºC, the blood feeding rate increased to 345 

very high values, while the survival remained high. In addition, the demographic 346 

parameters improved substantially. The combination of these effects could have 347 

implications for virus transmission in a climatic change scenario with a warmer 348 

environment. These populations could feed more frequently and for a longer period of time. 349 

This site is also distinctive with its long-term oviposition pattern, which could be related to 350 

high female survival, and this behavior could give them greater dispersion capacity and 351 

more possibilities of immature survival.  352 

Taken together, these studies of different mosquito populations at site-based temperature 353 

and mean temperature demonstrate that these populations could respond differently at 354 

specific climatic change scenarios and that the capacity for local adaptation may be 355 

differential. These results provide insight into the relative role of the environment and 356 

mosquito genetics in the variability of life cycle traits and into how such variability might 357 

contribute to regional differences in disease transmission. 358 
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Legends 429 

 430 

Figure 1. Four sampling locations of Aedes aegypti populations in Argentina. 431 

 432 

Figure 2. Temperature cycle used during experiments measuring Ae. aegypti life-history 433 

parameters for four Argentinean populations: Specific-site cyclic temperature (Aguaray, 434 

Iguazu, Posadas, La Plata) and mean cyclic temperature (Mean). 435 

 436 

Figure 3. Oviposition by Aedes aegypti from four populations in Argentina. The total 437 

number of laid eggs/day is shown in the same bar, for the first (black) and the second (gray) 438 

gonotrophic cycles. I= Iguazu, LP=La Plata, P=Posadas, A= Aguaray. 439 

 440 

 441 
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Table 1. Life-history traits of Aedes aegypti immature stages from four populations in Argentina.  The four populations were held at a mean temperature cycle 

and, secondarily, at a temperature cycle based on data recorded in each source site. The daily high and low temperatures recorded in each source area were 

averaged to construct a mean temperature cycle. 

 

 

 
Iguazú La Plata Posadas Aguaray 

T1 Instar/Stage/Instar N
2
 DT3 L-U4 M

5
 N DT L-U M N DT L-U M N DT L-U M 

 Egg6 128 1.00 --- 21.88a 113 1.00 --- 11.50b 116 1.00 --- 13.79ab 122 1.00 --- 18.03ab 

 Larvae I 98 1.52b 1.42-1.62 2.00ab 100 1.50b 1.39-1.61 0.00b 100 1.89a 1.76-2.03 5.00a 100 1.49b 1.39-1.59 0.00ab 
Mean  
cycle Larvae II 97 1.12b 1.04-1.21 1.02a 99 1.66a 1.55-1.77 1.00a 95 1.15b 1.08-1.22 2.11a 96 1.77a 1.56-1.98 4.00a 

 Larvae III 96 1.29b 1.20-1.38 1.03ab 94 1.66a 1.56-1.76 5.05a 93 1.46b 1.32-1.60 0.00b 94 1.67a 1.54-1.80 2.08ab 

 Larvae IV 95 2.79c 2.62-2.96 1.04a 92 3.55a 3.38-3.73 2.13a 93 3.24b 3.06-3.42 0.00a 94 3.12b 2.99-3.25 0.00a 

 Pupal 88 2.25b 2.15-2.35 7.37a 89 2.18b 2.10-2.26 3.26ab 92 2.68a 2.54-2.83 1.08b 93 2.14b 2.05-2.23 1.06b 

 LI-Pupal 88 8.94d 8.72-9.17 12.00a 89 10.45a 10.19-10.71 11.00a 92 10.38b 9.97-10.79 8.00a 93 10.05c 9.76-10.35 7.00a 

                 

 Egg1 525 1.00 --- 42.86b 715 1.00 --- 58.04a 435 1.00 --- 31.03c 370 1.00  18.92d 

 Larvae I 291 1.95c 1.78-2.12 3.00b 297 2.09b 1.98-2.21 1.00b 267 2.84a 2.68-3.00 11.00a 297 2.03b 1.92-2.13 1.00b 

Site 

cycle Larvae II 285 1.43b 1.34-1.52 2.06a 291 2.90a 2.79-3.02 2.02a 263 1.38b 1.30-1.46 1.50a 294 1.12c 1.08-1.16 1.01a 

 Larvae III 276 1.47b 1.38-1.57 3.16a 287 2.87a 2.77-2.97 1.37ab 261 1.13c 1.06-1.19 0.76bc 294 1.05c 1.02-1.07 0.00c 

 Larvae IV 270 3.53b 3.43-3.63 2.17a 274 5.30a 5.20-5.40 4.53a 255 2.89c 2.70-3.07 2.30a 293 1.94d 1.88-1.99 0.34b 

 Pupal 264 1.76d 1.70-1.81 2.22ab 260 3.49a 3.43-3.55 5.11a 254 2.06c 2.01-2.11 0.39b 290 2.20b 2.15-2.25 1.02b 

 LI-Pupal 264 10.14b 9.71-10.24 12.00a 260 15.84a 16.21-16.83 13.33a 254 10.30b 9.64-10.37 15.33a 290 8.34c 8.16-8.44 3.33b 
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1
T: temperature range at which the populations were held. Mean cycle: 20-30ºC. Site cycle: Iguazu (21-35ºC), La Plata (18-23ºC), Posadas (18-34ºC), 

Aguaray (21-31ºC).(Fig. 2). 

2N: number of individuals that completed each instar/stage.  

3
DT: average development time of instar/stage (Days); values within row followed by a different letter were significantly different between populations (p< 

0.05, Mann-Whitney Test), within temperature parameter. values followed by a different letter were significantly different between groups (p< 0.05, Mann-

Whitney Test). 

4
L-U: Lower–Upper 95% limits for a confidence levelintervals. 

5M: stage-specific mortality (%); values within row followed by a different letter were significantly different between populations (p< 0.05, Chi-squared Test) 

within temperature parameter.  

6
Note: the number of eggs for the life table analyses was estimated. In this trait, mortality M is equivalent to the percentage of unhatched eggs. The statistical 

tests presented here were performed separately for each temperature cycle. 
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Table 2. Reproductive features under first and second gonotrophic cycle of four populations of Aedes aegypti from 

Argentina held at a mean temperature and at a site-specific temperature cycle based on data recorded in each source 

area. The daily temperatures recorded in each location were averaged to build a mean temperature cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
1
T: temperature range at which the populations were held. Mean cycle: 20-30ºC. Site cycle: Iguazu (21-35ºC), La 

Plata (18-23ºC), Posadas (18-34ºC), Aguaray (21-31ºC) (Fig. 2). 

2
GC: number of days between the blood meal and the beginning of oviposition. After first feeding (GC1) and after 

second feeding (GC2). 

3Fecundity: mean number of laid eggs per female and per GC. 

4
Life fecundity: mean number of laid eggs per female calculated from individual female oviposition during all its life. 

 Length of gonotrophic cycle and life fecundity were analyzed by Kruskal-Wallis test. The blood feeding rate was 

analyzed by Chi-square Test. Values within row followed by a different letter were significantly different between 

populations within temperature parameter and GC. 

Note: The statistical tests presented here were performed separately for each temperature cycle. 

 

  

Reproductive feature 

Iguazu  La Plata  Posadas  Aguaray  

T1 1st GC2 2nd GC  1st GC 2nd GC  1st GC 2nd GC  1st GC 2nd GC  

 

 

 

Mean 

cycle 

Feeding female/total female 14/31 2/7  42/47 4/27  38/40 1/26  25/43 3/12  

Blood feeding rate  0.45b 0.28a  0.89a 0.14a  0.95a 0.03a  0.58b 0.25a  

Gravid females 9 1  40 3  36 0  21 2  

Fecundity3 94.11 51.00  80.75 51.66  87.38 0  87.19 101.5  

Life fecundity4 99.8 ±25.62a  84.7 ±30.42a  87.4 ±23.17a  94.1±39.09a  

Length of GC (d) 4.45a 7a  7.69a 9.25a  6.01a 0  7.3a 7.2a  

Range of GC (d) (4-6) (7-7)  (4-27) (4-15)  (4-26) 0  (4-22) (4-14)  

         

 

 

 

Site  

cycle 

Feeding female/total female 82/85 36/48  32/94 5/28  58/99 11/44 77/106 21/63  

Blood feeding  rate 0.96a 0.75a  0.34c 0.18b  0.58b 0.25b 0.72b 0.33b  

Gravid females 82 36  32 5  58 11 77 21  

Fecundity 62.81 51.19  55.12 46.8  65.29 46 93.76 62.14  

Life fecundity 69.2±49.03b  61.3±33.7b  73.7±42.64b 110.7±46.76a  

Length of GC (d) 8a 6a  14a 9a  8a 4a 6a 9a  

Range of GC (d) (1-15) (1-14)  (5-53) (6-13)  (3-16) (1-8) (2-15) (2-23)  
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Table 3.  Demographic parameters of Aedes aegypti from four populations of Argentina held at a mean temperature cycle and at four site-specific temperature 

cycles. The daily temperatures recorded in each population source location were averaged to build a mean temperature cycle. 

 

 

 

Iguazu La Plata Posadas Aguaray 

Temperature 

parameterRange 1  Demographic parameter Avg2 L-U3  Avg L-U Avg L-U Avg L-U 

 

 

Mean cycle 

Mean generation time (Tg) (days) 24.26c 24.06-24.48 25.21b 25.02-25.41 23.02d 22.93-23.12 28.15a 27.90-28.41 

Net reproductive rate (Ro) 7.007d 6.607-7.407 29.96a 29.32-30.60 27.12b 26.402-27.839 16.65c 16.15-17.16 

Intrinsic rate of natural increase (r) 0.083c 0.051-0.114 0.142a 0.119-0.167 0.145a 0.116-0.174 0.108b 0.084-0.132 

 

 

 

Site cycle 

Mean generation time (Tg) (days) 33.693b 33.508-33.907 43.968a 43.735-44.239 28.506c 28.380-28.639 27.008d 26.843-27.178 

Net reproductive rate (Ro) 10.984b 10.648-11.321 3.149d 3.002-3.296 8.703c 8.446-8.959 22.100a 21.708-22.491 

Intrinsic rate of natural increase (r) 0.075c 0.057-0.0929 0.027d 0.015-0.040 0.079b 0.063-0.096 0.126a 0.110-0.143 

 

1Temperature parameterrange at which the populations were held. Mean cycle: 20-30ºC. Site cycle: Iguazu (21-35ºC), La Plata (18-23ºC), Posadas (18-34ºC), 

Aguaray (21-31ºC) (Fig. 2).  

Avg2: average; values within row followed by a different letter were significantly different between populations (p<0.05, t-student test) within temperature 

parameter. 

L-U3: Lower–Upper 95% limits for a confidence levelintervals. 

Note: The statistical tests presented here were performed separately for each temperature cycle.  
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