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� Multivariate curve resolution figures
of merit are analyzed.

� Simulations and experimental data
have been studied.

� Prediction errors do not follow the
trend expected from analytical
sensitivities.

� The effect is due to lack of consider-
ation of constraints in the figures of
merit.
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Multivariate curve resolution-alternating least-squares (MCR-ALS) is the model of choice when dealing
with some non-trilinear arrays, specifically when the data are of chromatographic origin. To drive the
iterative procedure to chemically interpretable solutions, the use of constraints becomes essential. In this
work, both simulated and experimental data have been analyzed by MCR-ALS, applying chemically
reasonable constraints, and investigating the relationship between selectivity, analytical sensitivity (g)
and root mean square error of prediction (RMSEP). As the selectivity in the instrumental modes de-
creases, the estimated values for g did not fully represent the predictive model capabilities, judged from
the obtained RMSEP values. Since the available sensitivity expressions have been developed by error
propagation theory in unconstrained systems, there is a need of developing new expressions or
analytical indicators. They should not only consider the specific profiles retrieved by MCR-ALS, but also
the constraints under which the latter ones have been obtained.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Multivariate curve resolution-alternating least-squares (MCR-
ALS) is a versatile tool to extract meaningful information from
bilinear data, i.e., data that can be described in terms of a small
number of pure bilinear contributions [1]. Many analytical
Olivieri).
instruments or combination of instruments generate bilinear data,
with MCR-ALS being the model of choice to deal with second-order
calibration. This is especially so when extended MCR-ALS is applied
to adequately augmented data matrices, allowing to achieve the
second-order advantage [2]. In particular, the resolution of chro-
matographic datawith multivariate detection into pure constituent
profiles is possible, even in the presence of changes in peak posi-
tions and/or shapes from sample to sample [3].

One of the main limitations of MCR-ALS in reaching unique
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solutions is the phenomenon of rotational ambiguity, due to the
existence of different combinations of concentration and response
profiles satisfying the bilinear model [4,5]. The application of con-
straints has the object of minimizing the degree of rotational am-
biguity, reducing the number of possible solutions, and decreasing
the uncertainty in predicted concentrations [6]. The most widely
used constraints are: (1) non-negativity, because chemical con-
centrations of mixture constituents and their responses in many
instrumental methods should be nonnegative, (2) unimodality,
implying that a single peak is observed in chromatography, (3)
closure, which is related to chemical mass balance equations, (4)
correspondence between constituents and samples, (5) concen-
tration correlation, which builds a linear regression between the
area of resolved profiles and reference values during the alternating
least-squares optimization [7], and (6) selectivity, if it is known that
a constituent does not respond in a certain spectral region [1].

Recently, the reduction of rotational ambiguity resulting from
matrix augmentation has been rationalized based on the data
matrix augmentation strategy and the application of suitable con-
straints [8]. This helps to get a better insight into MCR-ALS
resolving power under different conditions. However, information
about the quality of future analytical predictions is also required, as
would be measured by the root mean square error of prediction
(RMSEP) for a group of validation samples. The latter parameter
should in principle be inversely related to the sensitivity, a figure of
merit that may anticipate the prediction quality of a model. How-
ever, the current expression for the MCR-ALS sensitivity does not
consider the influence of the applied constraints, since it was
derived by error propagation theory, estimating the prediction er-
ror brought about by a small perturbing signal noise [9,10]. During
this noise propagation, no constraints are involved.

In this work, simulations have been carried out with the objective
of studying the effect of constraints in the relationship between
RMSEP values and figures of merit, for systems generated under
different conditions of profile overlapping and noise level. The same
analysis was extended to an experimental second-order data set,
aimed at the determination of polycyclic aromatic hydrocarbons
(PAHs) via high performance liquid chromatography (HPLC) with
multivariate fluorescence detection (FLD). It is shown that sensitiv-
ities estimated for both simulated and experimental data do not
present the expected correlation with RMSEPs, and are therefore
Fig. 1. Noiseless simulated profiles for compound 1 (blue) and compound 2 (red). (A) Temp
spectral overlapping. (C) Spectral profiles for the lowest spectral overlapping. (For interpreta
version of this article.)
unrepresentative of the predictive capabilities of the model.

2. Simulations

Second-order data sets were simulated for a system containing
two constituents. Simulations were performed to mimic chro-
matographic experiments with spectral detection. Profiles in the
elution time mode were kept at a fixed overlapping level, while
profiles in the spectral mode were digitally moved to obtain eleven
different degrees of selectivity. The matrix of signals X for a typical
sample was generated by the following expression:

X ¼ y1c1s
T
1 þ y2c2s

T
2 þ Noise (1)

where y1 and y2 are the concentrations of analytes 1 and 2,
respectively, cn and sn (n¼ 1, 2) are the (J� 1) and (K� 1) constit-
uent profiles in the temporal and spectral modes (J and K are the
number of channels in each mode, in this case J¼ 100 and K¼ 110),
and the superscript ‘T’ indicates matrix transposition. Seven noise
levels were applied, in the range 0.1%e3% with respect to the
maximum calibration signal for each analyte at unit concentration.
This led to 77 different data sets, each with a specific combination
of noise level and spectral resolution. Fig. 1 shows the noiseless
temporal profiles used to build all data sets, as well as the noiseless
spectra for both the highest and lowest level of spectral
overlapping.

All data sets comprised 21 calibration samples, with concen-
trations of both compounds in the range 0e1 following a central
composite design (duplicates of the factorial and star samples and
five center samples), and 50 validation samples containing random
concentrations of both compounds in the range 0.4e0.6. Analytical
calibration using MCR-ALS is usually accomplished through matrix
augmentation. In the present simulations, augmentation was per-
formed in the temporal direction (column-wise), by appending
each validation data matrix with all 21 calibration data matrices.
Initial spectral profiles employed to start the MCR-ALS fitting were
obtained from the so-called purest variables in the spectral domain
[11]. The following constraints were imposed during the ALS fit:
non-negativity in both spectral and temporal modes, unimodality
in the temporal mode, and correspondence between constituents
and samples. After convergence of the ALS optimization (the
oral mode profiles, common to all data sets.(B) Spectral mode profiles for the highest
tion of the references to colour in this figure legend, the reader is referred to the Web



Fig. 2. Root mean square error of prediction (RMSEP) as a function of the inverse of g
for all the simulated data sets modeled by MCR-ALS. Compound 1, blue, compound 2,
red. (A) Values of g calculated following the pseudo-univariate approach, see eq. (4).
(B) Values of g estimated with eq. (5). (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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tolerance for convergence was set at a 0.01% relative change in fit
for successive iterations), analytes were identified by their spectral
profiles and their quantitation was performed through the corre-
sponding pseudo-univariate calibration curves. Figures of merit
were estimated according to ref. 10.

3. Experimental data

The experimental data set studied in this work has already been
reported, and involves seven PAHs: fluoranthene (FLT), pyrene (PYR),
benzo[a]anthracene (BaA), benzo[b]fluoranthene (BbF), benzo[a]
pyrene (BaP), dibenz[a,h]anthracene (DBA), and benzo[g,h,i]perilene
(BghiP) [12]. Eighteen calibration samples were prepared in the
range 0e50ngmL�1, sixteen with concentrations provided by a
fractional factorial design, a blank, and a sample containing all
analytes at the average concentration. A validation set of ten samples
was also prepared with random concentrations in the corresponding
calibration ranges. All samples were prepared in acetonitrile/water
(85:15 v/v) and analyzed by HPLC on an Agilent 1200 liquid chro-
matograph (Agilent Technologies, Waldbronn, Germany), equipped
with a quaternary pump, a thermostated column compartment set at
35 �C, and a fluorescence detector irradiating at 222 nm and col-
lecting emission spectra from 295 to 450 nm, each 2 nm. A Rheodyne
valve with a 20.0 mL loop was employed to inject the sample on to a
Poroshell 120 EC C18 column (4.6mm� 50mm, 2.7 mm particle
size). The mobile phase was a mixture of acetonitrile/water (85:15 v/
v) and flowwas set at 1.25mLmin�1, leading to a run time of 3.2min.
The data were collected using the software HP ChemStation for LC
Rev HP 1990e1997.

Elution time-fluorescence emission wavelength matrices were
subjected to asymmetric least-squares baseline correction [13]
before data processing by MCR-ALS. The number of components
was estimated by principal component analysis (PCA). MCR-ALS
was initialized by estimating the so-called purest variables in the
spectral domain. The modeling stage was carried under the same
constraints that were applied in the simulated systems, including in
this case the concentration correlation constraint. Finally, analytes
were identified by their spectral profiles and their quantitationwas
performed through the corresponding pseudo-univariate calibra-
tion curves. Figures of merit were estimated according to ref. 10.

4. Theory

4.1. MCR-ALS

A detailed discussion of the MCR-ALS algorithm can be found in
the literature [1]. Owing to the lack of reproducibility in elution
time profiles, second-order data of chromatographic origin are best
processed by applying this model to the augmented matrix D
generated by appending each validation data matrix with the
calibration data matrices. Augmentation is performed in the tem-
poral direction to preserve the bilinearity, while decomposition of
D follows the bilinear expression:

D ¼ C ST þ E (2)

where the columns of D contain the chromatograms acquired at J
times for (Ical þ 1) different samples at Kwavelengths, the columns
of C contain the augmented elution time profiles of the intervening
species, the columns of S their corresponding spectra, and E is a
matrix of residuals not fitted by the model. The sizes of these
matrices are D, J(Icalþ1)� K, C, J(Icalþ1)� N, S, K�N, E, J(Icalþ1)� K
(N is the number of responsive constituents). The augmented D
matrix contains data for the calibration samples (Ical) and for a
given validation sample.
MCR-ALS requires estimations of either the spectral or temporal
profiles to initiate the ALS optimization algorithm. While different
options are available, such as supplying spectra obtained from pure
analyte standards, or providing estimated elution time profiles, as
obtained from procedures such as evolving factor analysis (EFA)
[14], in this work MCR-ALS was initialized by estimating the so-
called purest variables in the spectral domain.

Decomposition of D is achieved by constrained iterative least-
squares minimization of the residuals contained in E [1], as already
explained. Once D is decomposed, analyte scores are defined as the
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area under the time elution profile for the ith sample, as:

aði;n Þ ¼
XiJ

je1þðie1ÞJ
cðj;nÞ (3)

where a(i,n) is the score for analyte n in sample i, and c(j,n) is the
element of the analyte profile in the augmented mode. Finally, the
analyte scores in the calibration samples are employed to build a
pseudo-univariate calibration curve against the nominal analyte
concentrations, and the concentration in the validation sample is
predicted by interpolation of the validation sample score.
4.2. Software

The routines employed were written in MATLAB 7.0. (Math-
works, MA, USA) [15]. MCR-ALS was implemented both by an in-
house MATLAB routine and using the graphical interface of the
MVC2 toolbox [16], freely available on the Internet [17].
5. Results and discussion

5.1. Simulations

As was previously discussed, all simulated data sets were
Fig. 3. (A) Chromatogram of a selected calibration sample (fluorescence detection at lexc¼
BaP, (6) DBA, and (7) BghiP. (B) Normalized fluorescence emission spectra for the assayed a
retrieved by MCR-ALS. BaP in burgundy, PYR in orange, BbF in green, BaA in dark cyan, B
interpretation of the references to colour in this figure legend, the reader is referred to the
processed by MCR-ALS, applying non-negativity in both spectral
and temporal modes, unimodality in the temporal mode, and
correspondence between components and samples. Afterwards,
with the aim of evaluating the effect of the applied constraints,
the RMSEPs and analytical sensitivities (g) were calculated for
each data set. RMSEP is widely regarded as a measure of a model
predictive power. On the other hand, the analytical sensitivity
can be expressed as the inverse of the uncertainty in the pre-
dicted concentration for a given model. The latter was first
estimated from the corresponding pseudo-univariate calibration
curves, according to the classical univariate expression [18]:

gunivar ¼
munivar

n
SD

(4)

where mn
univar and SD are, respectively, the slope and the standard

deviation of the residuals obtained for the pseudo-univariate curve
corresponding to analyte n.

This figure of merit was also estimated using eq. (5), as proposed
in Ref. [9] by error propagation analysis:

gMCR ¼ munivar
n

sx
h
J
�
STS

�e1
nn

i1=2 (5)
220 nm and lem¼ 420 nm). Peak numbers refer to (1) FLT, (2) PYR, (3) BaA, (4) BbF, (5)
nalytes. (C) Augmented temporal mode as retrieved by MCR-ALS. (D) Spectral profiles
ghiP in purple, DBA in dark blue, FLT in yellow, and blank (black dashed line). (For
Web version of this article.)
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where all symbols have already been defined, except sxwhich is the
experimental signal noise. In eq. (5), the subscript nn indicates the
(n,n) element of the matrix product (ST S).

Fig. 2 shows the changes in RMSEP as a function of the inverse
analytical sensitivity for the simulated data sets described in Sec-
tion 2., calculated according to eq. (4) (Fig. 2A) and to eq. (5)
(Fig. 2B). In both cases there is a significant deviation from the
ideal linear relationship at high values of RMSEP, i.e. the estimated
analytical sensitivities are smaller than expected. This deviation is
apparent when analyzing the systems with high noise and high
spectral overlapping. We propose that the deviation in the plot of
RMSEP vs. (1/g) is a consequence of the analytical sensitivity ex-
pressions not taking into account the applied constraints.

It has already been suggested that the pseudo-univariate
approach to MCR-ALS sensitivity does not reflect the degree of
overlapping among spectral component profiles [9]. On the other
hand, eq. (5) does consider the overlapping, and thus the plot of
Fig. 2B is less disperse than the one in Fig. 2A. However, the present
results suggest that in cases where the application of constraints is
essential to successfully retrieve the profiles, analytical sensitivities
are still underestimated. This shortcoming in the calculation of
gMCR by eq. (5) can be attributed to the fact that it fails to
acknowledge the way in which data were processed to obtain the
constituent profiles.

An attempt has also been made to correlate RMSEP values vs.
inverse analytical sensitivities estimated for three-way parallel
factor analysis (PARAFAC) [19] and also with an average of theMCR-
ALS and the PARAFAC sensitivity. However, this approach proved to
be unsatisfactory, mainly due to the lack of correlation between the
MCR-ALS and PARAFAC sensitivities, as already reported [10].
5.2. Experimental data

The presently discussed experimental system involves the
Fig. 4. Plots of BaP (burgundy circles), PYR (orange circles), BbF (green triangles), BaA
(dark cyan triangles), BghiP (purple squares), DBA (dark blue squares), and FLT (yellow
diamonds) predicted concentrations as a function of the nominal values in validation
samples. Inset: elliptical joint region (at 95% confidence level) for the slope and
intercept of the predicted vs. nominal concentrations plot. The cross marks the theo-
retical (intercept¼ 0, slope¼ 1) point. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
analysis of seven PAHs by HPLC coupled to fluorescent detection
and second-order calibration. Due to unavoidable shifts in reten-
tion times between successive chromatographic runs, the data
matrices were modeled by MCR-ALS. Fig. 3 shows a typical chro-
matogram for a calibration sample, as well as the analyte fluores-
cence emission spectra. Even in the presence of a high degree of
overlapping among spectral profiles, applying the previously
mentioned constraints allowed the algorithm to successfully
retrieve all profiles (Fig. 3). Hence, the importance of applying
adequate constraints when modeling complex systems is demon-
strated, in agreement with previous reports [20,21].

Fig. 4 displays the plot of predicted vs. nominal concentrations
for the validation samples, where good correlation is observed for
all analytes. The elliptical joint confidence region (EJCR) statistical
test was performed to verify the accuracy of the predictions [22].
Fig. 4 shows that the theoretically expected point (slope¼ 1,
intercept¼ 0) lies inside the elliptical region, indicating the accu-
racy of the proposed model. The quality of the predictions is also
verified by the low RMSEP values (Table 1), which imply relative
errors of prediction (REPs) in the range 4e22%. Analytical sensi-
tivities, selectivities (SEN) and limits of detection (LOD) and
quantification (LOQ) are shown in Table 1. We note that the values
for the analytical sensitivity g, calculated according to eq. (5), were
significantly lower than the expectations based on the achieved
RMSEP values. Furthermore, while concentrations as low as
10 ngmL�1 were successfully predicted by the proposedmodel, the
estimated LODs and LOQs were unreasonably large, in the range
8e508 ngmL�1 and 24e1523 ngmL�1 respectively. These results
suggest that the currently accepted expressions for the calculation
of figures of merit, particularly the sensitivity and analytical
sensitivity, do not adequately anticipate the predictive capabilities
of the proposed model.
6. Conclusions

The study of both simulated and experimental data demon-
strated that in challenging analytical systems, where the applica-
tion of MCR-ALS constraints is vital to retrieve adequate solutions,
the accepted expression for analytical sensitivity does not fully
represent the predictive capability of the model. While this
expression considers the overlapping among constituents' profiles
in the non-augmented mode, it does not reflect the way in which
these profiles are obtained, e.g. the constraints that allowed MCR-
ALS to arrive to such results. As a consequence, additional figures
of merit derived from the sensitivity, such as limit of detection and
limit of quantification, can also be highly overestimated. This pre-
cludes their use in assessing the predictive quality of the multiway
model, as well as the comparison with other methodologies. Thus,
there is an apparent need to devise new sensitivity expressions,
which should include the effect of the constraints applied during
MCR-ALS resolution.
Table 1
Figures of merit for the studied analytes by HPLC-FLD in validation samples.a

BaA PYR DBA BaP FLT BbF BghiP

Calibration range 0e50 0e50 0e50 0e50 0e50 0e50 0e50
RMSEP 1.5 1.1 4.2 2.0 5.6 2.9 2.6
gMCR 0.2 0.5 0.04 0.3 0.007 0.01 0.03
SEL 0.1 0.2 0.06 0.1 0.02 0.03 0.05
LOD 16 8 101 13 508 290 107
LOQ 48 24 306 40 1523 879 324

a Calibration range and RMSEP values in ngmL�1, gMCR, analytical sensitivity
calculated according to ref. [9] (ng�1 mL), SEL, selectivity, LOD and LOQ, limits of
detection and quantitation calculated according to ref. [10] (ng mL�1).
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