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A B S T R A C T

While insensitivity to GH (GHI) is characterized by low IGF-I levels, normal or elevated GH levels, and lack of
IGF-I response to GH treatment, IGF-I resistance is characterized by elevated IGF-I levels with normal/high GH
levels. Several genetic defects are responsible for impairment of GH and IGF-I actions resulting in short stature
that could affect intrauterine growth or be present in the postnatal period. The genetic defects affecting GH and/
or IGF-I action can be divided into five different groups: GH insensitivity by defects affecting the GH receptor
(GHR), the intracellular GH signaling pathway (STAT5B, STAT3, IKBKB, IL2RG, PIK3R1), the synthesis of in-
sulin-like growth factors (IGF1, IGF2), the transport/bioavailability of IGFs (IGFALS, PAPPA2), and defects af-
fecting IGF-I sensitivity (IGF1R).

Complete GH insensitivity (GHI) was first reported by Zvi Laron and his colleagues in patients with classical
appearance of GH deficiency, but presenting elevated levels of GH. The association of GH insensitivity with
several clinical sings of immune-dysfunction and autoimmune dysregulation are characteristic of molecular
defects in the intracellular GH signaling pathway (STAT5B, STAT3, IKBKB, IL2RG, PIK3R1). Gene mutations in
the IGF1 and IGF2 genes have been described in patients presenting intrauterine growth retardation and post-
natal short stature. Molecular defects have also been reported in the IGFALS gene, that encodes the acid-labile
subunit (ALS), responsible to stabilize circulating IGF-I in ternary complexes, and more recently in the PAPPA2
gen that encodes the pregnancy-associated plasma protein-A2, a protease that specifically cleaves IGFBP-3 and
IGFBP-5 regulating the accessibility of IGFs to their target tissues.

Mutations in the IGF1R gene resulted in IGF-I insensitivity in patients with impaired intrauterine and post-
natal growth.

These studies have revealed novel molecular mechanisms of GH insensitivity/primary IGF-I deficiency be-
yond the GH receptor gene. In addition, they have also underlined the importance of several players of the GH-
IGF axis in the complex system that promotes human growth.

1. Background

The GH/IGF axis plays an important role in pre- and postnatal
growth [1]. In the prenatal period growth factors IGF-I and IGF-II are
essential for longitudinal growth [2]. In the fetus, placental lactogen
(PL) and nutritional factors play an important role in the control of IGF-
I expression [3].

2. Introduction

Insensitivity to GH (GHI) is characterized by low IGF-I levels asso-
ciated with normal or elevated GH levels and lack of IGF-I response to
GH treatment. On the other hand, IGF-I resistance is characterized by

elevated IGF-I levels with normal/high GH levels. Several genetic de-
fects are responsible for impairment of GH and IGF-I actions resulting in
short stature that could affect intrauterine growth or be present in the
postnatal period [4–6]. The genetic defects affecting GH and/or IGF-I
action can be divided into five different groups (Table 1).

3. Defects affecting GHR (MIM # 262500, Laron syndrome, GH
insensitivity syndrome, GH receptor deficiency)

The first description of GH insensitivity (GHI) was reported in 1966
by Laron et al. [7] in two siblings with the classical clinical appearance
of GH deficiency, but presenting elevated levels of GH. It was not until
1989 that the molecular defect was characterized in patients with this
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condition presenting a partial deletion of GHR gene [8]. Laron and his
colleagues described a total of 30 patients with 18 adults presenting a
final height ranged from 108 to 136 cm [9]. A few years later, 20 pa-
tients with GHR deficiency were described among members of an
inbred white population from the province of Loja in southern Ecuador
[10,11]. Presently, about 70 different mutations affecting the GHR gene
have been reported in more than 300 patients [12]. Most of the cases
were homozygous for GHR gene mutations, usually in consanguineous
families [12]. Frequently, mutations affect the extracellular domain of
the receptor, resulting in abnormal GH binding and low to undetectable
GHBP levels. Other GHR gene mutations may result in defects in re-
ceptor dimerization, cell membrane anchorage, or transduction of the
signal [12]. Although in most of the cases the condition is inherited as
an autosomic recessive condition, there are few cases where hetero-
zygous GHR mutations exert a dominant negative effect [13–15]. These
last cases, as well as those caused by an intronic mutation and the ac-
tivation of a pseudoexon [16], present a less pronounced growth re-
tardation and a milder clinical phenotype. While in complete GH in-
sensitivity rhIGF-I is the only therapeutical option to improve linear
growth, it is of note that patients with less severe GH insensitivity, such
as those presenting activation of the pseudoexon or heterozygous GHR
mutations, may benefit from rhGH or from a combination of rhGH and
rhIGF-I [15].

4. Defects affecting the intracellular GH signaling pathway

4.1. GH insensitivity with immunodeficiency (MIM # 245590)

The STATs (signal transducers and activators of transcription) fa-
mily includes seven members that are activated by multiple growth
factors and cytokines. Although GH activates four members of this fa-
mily, STAT5b is the key mediator of GH promoting actions. In 2003, a
homozygous mutation in STAT5B gene was described in a 16-year-old
girl with severe post-natal growth retardation and IGF-I deficiency
[17]. The patient had a history of recurrent pulmonary infections and
lymphocytic interstitial pneumonia, presenting immunodeficiency
characterized by a defect in T cell immunity. Since STAT5b is also re-
quired in the signaling of several cytokines such as interleukine-2 and γ-
interpheron, it seems likely that the growth failure and the immune
defect are both due to its inactivation. At least ten patients with STAT5b
deficiency have been reported and they all present severe growth
failure, complete GH insensitivity and moderate to severe im-
munodeficiency. While all described patients present severe GH in-
sensitivity that result in a marked growth retardation, the severity of
immune deficiency and the pulmonary disease are more variable
[17–23]. Heterozygous STAT5B mutations appear to affect growth,
since heterozygous carriers are shorter than their wild-type relatives
[24].

4.2. Autoimmune disease, multisystem, infantile-onset 1 (MIM # 615952)

Heterozygous gain-of-function mutations in the STAT3 gene have
been recently described associated with a variable degree of immune
dysregulation and the early appearance of different autoimmune dis-
eases (type-1 diabetes, autoimmune enteropathy, thyroid dysfunction,

pulmonary disease, hemolytic anemia, thrombocytopenia, neutropenia,
juvenile-onset arthritis, eczema [25–27]. Most of the described patients
present growth failure associated with marked IGF-I deficiency. It has
been shown that the constitutive activation of STAT3 could induce in-
creased expression of SOCS3 [25]. Suppressor of cytokines signaling
(SOCS) family members are STAT targets that block STAT activation by
turning off the initial signal [28]. Epstein-Barr virus-transformed cell
lines derived from patients carrying activating STAT3mutations display
reduced STAT5b phosphorylation in response to Interleukine-2, a
plausible explanation for the observed GH insensitivity [27]. In contrast
to STAT5b deficiency, patients carrying activating STAT3 mutations
preserve some degree of responsiveness to rhGH treatment [27,29].
Similarly to what was reported in STAT5b deficiency, the severity of the
immune disorder and autoimmunity caused by germline STAT3 gain-of-
function mutations results in a severe life-threatening condition. Recent
therapeutic approaches include bone marrow transplantation and anti-
IL6R monoclonal antibody. Finally, small-molecule inhibitors of STAT3
are under clinical investigation [27].

4.3. Immunodeficiency 15 (MIM # 615592)

Members of the nuclear factor κB family of transcription factors
form homo or heterodimers and modulate gene expression by their
binding to specific DNA regulatory elements. In the unstimulated state
NF-κB homo or heterodimers are sequestered in the cytoplasm and
bound to IκB, preventing the translocation to the nucleus [30], thereby
maintaining NF-Κb in an inactive state. Heterozygous mutations in
IKBKB gene, that encodes for the inhibitory IκBα protein, have been
described in two patients with immune disorder, growth retardation
and partial GH and IGF-I insensitivity [31].

4.4. Severe combined immunodeficiency, X-linked, T cell-negative, B-cell-
positive, NK cell-negative (SCID, MIM # 300400)

This condition is caused by mutations in the gene encoding the
gamma subunit of the interleukin-2 receptor (IL2RG) [32]. It has been
shown that some patients with mutations in the IL2RG gene, present a
diminished or absent response to rhGH treatment both in terms of IGF-I
increase as well as growth acceleration [33]. In addition, the stimula-
tion of mutated B cells shows no phosphorylation of STAT5b and lack of
nuclear translocation, suggesting that growth failure in X-linked SCID is
primarily related to the genetic alteration of IL2RG [34].

4.5. SHORT syndrome (MIM # 269880)

This syndrome has historically been defined by its acronym: short
stature (S), hyperextensibility of joints and/or inguinal hernia (H),
ocular depression (O), Rieger abnormality (R) and teething delay (T)
[35]. An autosomal dominant inheritance has been confirmed by the
identification of heterozygous mutations in PIK3R1 as the cause of
SHORT syndrome [36]. More recently several research groups have
identified PIK3R1 mutations in several patients affected with SHORT
syndrome [37,38]. PIK3R1 codes for the regulatory subunits of the
phosphatidyl inositol-3 kinase of classes IA (PI3K) and is involved in
activation of the AKT/mTOR pathway to ensure proper growth and cell
proliferation [39]. Persistently low levels of IGF-I with insufficient re-
sponse to rhGH has been shown in some patients, indicating some de-
gree of GH insensitivity [40].

5. GH insensitivity by defects affecting the synthesis of growth
factors

5.1. IGF-I deficiency (MIM # 608747)

In 1996 the first molecular defect in the IGF1 gene was described in
a patient homozygous for a deletion of exons 4 and 5 in the IGF1 gene.

Table 1
Molecular defects affecting GH and/or IGF-I action.

➢ GH insensitivity by defects affecting the GH receptor (GHR).
➢ GH insensitivity by defects affecting the intracellular GH signaling pathway

(STAT5B, STAT3, IKBKB, IL2RG, PIK3R1).
➢ GH insensitivity by defects affecting the synthesis of insulin-like growth factors

(IGF1, IGF2).
➢ GH insensitivity by defects affecting the transport/bioavailability of insulin-like

growth factors (IGFALS, PAPPA2).
➢ IGF-I insensitivity (IGF1R).
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The 15-year-old boy presented severe intrauterine growth retardation,
postnatal growth failure, sensorineural deafness, mental retardation,
microcephaly, and delayed puberty. Marked insulin-resistance was also
present, likely related to the abnormally high GH levels and a func-
tional GH receptor [41]. Several additional patients with IGF1 gene
mutations have been reported, all showing pre- and post-natal growth
failure, mental retardation, and hearing loss [42,43]. Interestingly, a
homozygous missense mutation (Val44Met) was detected in a 55-year-
old patient presenting severe intrauterine and postnatal growth re-
tardation, microcephaly, and sensorineural deafness. Functional ana-
lysis demonstrated a 90-fold reduced affinity of the mutant-Val44Met-
IGF-I for the IGF-I receptor [43]. The classical phenotype with prenatal
growth retardation was observed in those cases presenting both alleles
affected. However, a different clinical presentation with no intrauterine
growth retardation, microcephaly or deafness has been described in
several members of a family, carriers for a frameshift mutation that, if
expressed, would result in a truncated and presumably inactive protein
[44]. A patient with non-dysmorphic phenotype presenting a less severe
affected pre- and post-natal growth retardation was homozygous for a
missense mutation that reduces the affinity of the mutant IGF-I for the
IGF-1 receptor two- to three-fold. [45]. Molecular defects at the IGF1
gene are rare, and only about 9 patients have been described [46].

5.2. IGF-II deficiency (severe growth restriction with distinct facies, MIM
#616489)

In 2015 Begemann et al. reported an IGF2 variant with evidence of
pathogenicity in a multigenerational family with four members pre-
senting growth restriction [47]. Confirming the monoallelic expression
of the maternally imprinted IGF2 gene, in those tissues involved in
growth, only the transmission of the paternally affected allele resulted
in growth impairment. The affected patients have severe intrauterine
and postnatal growth restriction and a Silver-Russell syndrome-like
phenotype. More recently, two independent reports described two pa-
tients with frameshift and missense de novo mutations in the IGF2 gene,
presenting a characteristic Silver-Russell syndrome (SRS)-phenotype
[48,49], indicating that this alteration could arise as a de novo mutation
in non-familial patients affected with SRS.

6. GH insensitivity by defects affecting the transport/
bioavailability of growth factors

6.1. Acid-labile subunit deficiency (ACLSD, MIM # 615961)

In a 17-year-old boy with delayed onset of puberty, slow pubertal
progress, and marked IGF-I and IGFBP-3 levels that remained un-
changed after GH stimulation, complete absence of ALS was reported
[50]. He presented an inactivating mutation in the IGFALS gene en-
coding the acid-labile subunit (ALS), a key factor for stabilizing IGF-I in
the circulation. Although ALS has no discernible affinity for IGF-I and
IGF-II, it is capable to bind binary complexes formed by IGF-I or IGF-II
with IGFBP-3 or IGFBP-5, forming ternary complexes [51]. The main
role of ALS is to maintain up to 80–90% of the circulating IGFs in this
ternary complex, extending the half-life of free IGF-I from 10 min to
more than 12 h. So far, at least 62 patients have been described with
ALS deficiency [52]. Thirty-two of them have been described early this
year [53,54], suggesting that once the clinical characteristics and bio-
chemical phenotype of acid-labile subunit deficiency become re-
cognized, this alteration was more often diagnosed. In these patients,
whereas circulating levels of IGF-I are dramatically decreased, local
production appears to be preserved. Circulating IGF-II, IGFBP-1, -2, and
-3 levels are also reduced, with the greatest reduction observed for
IGFBP-3. Insulin resistance, characterized by normal glucose levels,
hyperinsulinemia, and low levels of IGFBP-1, were common findings
[55]. Commonly, height SDS before puberty was between −2 and −3.
Adult height SDS was higher than prepubertal height, but still 1.0 SD

lower than the midparental height SDS. Interestingly, despite a pro-
found circulating IGF-I deficiency, there is only a mild impact on
postnatal growth. Local expression of IGF-I, under the control of normal
and/or increased GH levels, could be responsible for the preservation of
linear growth near normal limits [56]. It is noteworthy that hetero-
zygous IGFALS gene mutations are present in a subgroup of idiopathic
short stature children presenting partial acid-labile subunit deficiency
[57,58]. The characterization of children presenting partial ALS defi-
ciency may result clinically relevant, because these patients have shown
responsiveness to rhGH treatment increasing IGF-I levels and accel-
erating their growth velocity [59,60]. Whether this initial response
results in an improvement in their adult height remains to be de-
termined.

6.2. Pregnancy-associated plasma protein A2 deficiency (PAPP-A2)

A completely new syndrome has been recently described, involving
the first genetic defect in a specific IGFBP-protease. Pregnancy-asso-
ciated plasma protein-A2 (PAPP-A2) is a serum and tissue protease
responsible for the proteolysis of IGFBP-3 and IGFBP-5, regulating the
accessibility of IGF-I and IGF-II to their target tissues. Five affected
subjects from two families presenting a moderate growth retardation
and elevated circulating levels of IGF-I, IGF-II, IGFBP-3, IGFBP-5, and
ALS have been described [61]. Most of the IGFs remain in the ternary
complexes and there is a reduction in bioactive IGF-I. Interestingly, a 1-
year treatment with hrIGF-I resulted in a clear increase in growth ve-
locity and height in two siblings. Bioactive IGF-I was increased, and
spontaneous GH secretion was diminished after acute administration of
rhIGF-1, whereas serum total IGF-1 and IGFBP-3 levels remained ele-
vated [62].

7. IGF-I insensitivity

7.1. IGF-I resistance (MIM # 270450)

Intrauterine human growth requires the normal expression of IGF-I/
IGF-II and the type 1-IGF receptor. Haploinsufficiency of the IGF1R
gene (encoding the IGF1 receptor) is associated with impaired in-
trauterine and postnatal growth. The complete absence of IGF1R ex-
pression in humans may be lethal. This could explain why, except for
two compounds heterozygous [63,64] cases, and two homozygous pa-
tients [65,66], only heterozygous cases have been reported. The few
patients presenting mutations in both IGF1R alleles appear to retain
some degree of IGF1R activity. The first mutations in this gene were
detected in patients with intrauterine growth retardation or short sta-
ture and elevated IGF-I levels [63]. One was a girl compound hetero-
zygous for two different missense mutations in the IGF1R gene and the
other a boy heterozygous carrier for a non-sense mutation. Functional
in vitro studies of naturally occurring IGF1R mutations suggest that
different mechanisms could explain the impairment of IGFs action: re-
ceptor haploinsufficiency, decreased biosynthesis, reduction of binding
affinity, interference of transmembrane signaling, and disruption of the
tyrosine kinase activity [67]. The impact of IGF1R mutations on in-
trauterine growth is variable, but is frequently more severe when ma-
ternally inherited, indicating that maternal IGF-I resistance during
pregnancy is one factor contributing to the severity of the growth re-
tardation, possibly by decreasing placental growth [68]. As much as 20
patients have been described with IGF1R mutations [63–75]. These
patients have shown a poor to moderate clinical response to rhGH
treatment [67].

8. Conclusion

From the description of the first patients with complete GH in-
sensitivity by Laron and his collaborators 50 years ago, advances in
genetic tools have resulted in the molecular characterization of a dozen
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of different molecular defects affecting either GH or IGF-I actions re-
sulting in monogenic causes of short stature. Before 2010 the main
strategy was the gene candidate approach, by using clinical data and
biochemical profiles to select the more likely candidate gene(s) to be
studied. The characterization of molecular defects in STAT5B [17] and
IGFALS [50] genes represent illustrative examples of the success of this
approach. Since the development of next generation sequencing (NGS)
methods, capable of determining the complete exome sequence (WES)
or even the complete genome (WGS) within weeks, associated with
copy number variation (CNV) techniques, useful to detect deletions and
duplications, new genetic clinical conditions have been elucidated in
patients where clinical and biochemical data did not suggest an obvious
candidate gene. Examples of this novel strategy are the recently de-
scribed molecular defects in STAT3 [25], PAPPA2 [61], and IGF2 [47]
genes. In addition, it has been shown that in a small percentage of cases
more than one gene could be affected with a single base substitution or
copy-number variant, resulting in a more complex clinical presentation,
usually presenting overlapping phenotypic features [76]. In the case of
GH insensitivity, novel heterozygous STAT5Bmutations associated with
novel heterozygous IGFALS variants have been described [77].

It has been proposed that a genetic evaluation of short stature is
indicated in those cases that present severe GH deficiency, multiple
pituitary hormone deficiency, unequivocal GH insensitivity, small for
gestational age without catch-up growth, additional congenital
anomalies or dysmorphic features, evidence of skeletal dysplasia, as-
sociated intellectual disability, microcephaly, and severe growth re-
tardation [78]. Even by a carefully selection of patients with apparent
GH or IGF-I insensitivity, only in 30 to 42% of the cases a genetic di-
agnosis is obtained [79]. It is remarkable, that aside from the well-
recognized monogenic causes of GH insensitivity, such as genetic de-
fects in GHR and IGFALS genes, likely pathogenic variants in genes
associated to 3M syndrome (OBSL1 and CUL7) or Noonan syndrome
(PTPN11) are identified by WES [79].

With more accessibility to WES and CNV methods, a significant
number of likely pathogenic variants associated to GH and IGF-I re-
sistance have been described. These variants appear both in genes
previously associated with these conditions as well as in completely
novel genes. A greater effort in the development of well-designed in
vitro functional assays is required to determine the real contribution of
these findings.
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