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A B S T R A C T

The sediments are a key link to understand the dynamics of a water basin, since they are the main transport and
retention agent of nutrients and contaminants. Therefore, a method to identify the main sediment sources and
study their distribution through the basin over time without the need to use reference standards was developed.

Water samples with suspended sediments were collected for one year from different sites of the Ludueña
stream basin (Argentina). The sediments were deposited in fiberglass filters and their near infrared spectrum was
measured. The data obtained were processed by bilinear and trilinear methods. Principal component analysis
(PCA), multivariate curves resolution with alternating least squares (MCR-ALS) with and without trilinearity;
and parallel factor analysis (PARAFAC) were applied. These algorithms allow identifying the three main sedi-
ment sources. The spectral loadings that characterize each source and the scores that reflect their distribution
along the different sampling sites were obtained. It was concluded that the main contribution of sediments is
given by the plant tissue developed by photosynthetic organisms that have a seasonal behavior. The remaining
sources are characterized by being soil particles of the region under study (incorporated into the system by wind
and rain) and the development of organisms with anoxygenic photosynthesis (their growth is favored due to the
contribution of fluid discharges from anthropogenic activities).

1. Introduction

Sediments are the main transport agent of nutrients within a wa-
tershed [1]. Therefore, they have a great influence on the eutrophica-
tion pathways and on the chemistry of the rivers. They can also parti-
cipate as transport agents and retention of organic and metallic
pollutants [2, 3]. Therefore, the study of the contributions and behavior
of the sediments is of great interest in the environmental area, since the
distribution in space and the evolution in time of sediments is a critical
element to determine the dynamics of a basin.

One of the main steps to be able to determine a correct model to
understand the behavior of the sediments is the determination of its
sources that give origin and/or contribute to the different sediments of
a basin [4]. This information is of great importance, not only to un-
derstand the behavior of sediments, but also to create models of erosion
or optimize the interactions between terrestrial and aquatic ecosystems
[5, 6]. It is very complex to determine the sources that contribute to the
different sediments and trace their location in the space based on visual
observations, since there is a great diversity of possible sources [7–9]. It
must be considered that the sediments are not composed of a single

pure compound, but they are a mixture of particles from multiple ori-
gins and, additionally, they have point and/or diffuse sources which
make it even more difficult to determine their origin, since the sedi-
ments collected from a basin are the sum of all these sources [10].

Near infrared spectroscopy (NIR) is a fast, inexpensive and non-
destructive technique that has been previously used in soil and sedi-
ment studies [11, 12]. NIR reflectance spectroscopic measurements can
be carried out very quickly in sieved and dried samples. There are
several studies that have investigated the use of near infrared spectro-
scopy, along with chemometric methods, such as partial least squares
(PLS) analysis, to evaluate the physical, chemical and even biological
properties of soils [13–16].

In this work, we use the fingerprint methodology to identify and
trace the origin of the sediments. This methodology uses the most
distinctive characteristics of the sediment spectrum originated by a
certain source. Therefore, it does not use a particular NIR band to
identify a source, but the full spectrum that characterizes it. There are
previous works where the fingerprint methodology is similarly used
[17–19]. In all of these works this methodology is used to determine or
predict a particular characteristic of the sediments or the water body
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using calibration samples. There is a single work where the authors
quantify the contribution of the different sources of sediments in a basin
[20]. They used samples from known sources of sediment to build a
calibration model. The aim of our work is to determine these sources
without the use of patterns or references samples, which is a major
challenge to the algorithm for processing the data. However, the fact of
not having reference samples offers the advantage that the results ob-
tained will not be restricted to the possible sources of sediments used to
build the calibration model.

In the fingerprint methodology, the NIR spectral data cannot be
assigned to a specific chemical compound, and therefore multivariate
statistical methods must be used to evaluate the spectral data. In this
study, bilinear and trilinear methodologies are applied to solve the
measured data. The bilinear methods obtain the main sediment sources
only taking into account the spectral variations (second mode) of all the
samples. On the other hand, trilinear methods also take into account the
third mode of the data, i.e., resolve the data contemplating that the
same sampling site was measured over time.

Principal component analysis (PCA) is a bilinear model used to
obtain the main patterns in sediment composition from the NIR spectral
data. PCA is a multivariate technique to replace a larger number of
covarying variables with fewer independent (orthogonal) variables, i.e.,
principal components. Another bilinear algorithm is multivariate curve
resolution coupled to alternating least squares (MCR-ALS). It was em-
ployed for similar purposes [21]. Therefore, both methods were applied
to process the NIR spectral data and compare their results. MCR-ALS
works in a similar way to PCA, but its constraints provide the results
with physicochemical meaning and thus it is simpler to interpret (see
specific details below).

MCR-ALS is a chemometric tool with an increasing application for

the analysis of environmental monitoring data sets [22, 23]. Ad-
ditionally, other recent examples exist proposing similar approaches for
the resolution and interpretation of major contamination sources of
surface waters operating in several river basins over the world [24].
Another algorithm popularly used to analyze NIR data is PLS [25], but
MCR-ALS and PCA were chosen because they do not require con-
centrations or calibration samples to perform the decomposition of the
measured signal.

In order to apply trilinear methods, the data were analyzed again
with MCR-ALS, but this time with the trilinearity constraint, and with
parallel factor analysis (PARAFAC). Both methods allow obtaining the
sediment sources by means of different strategies. These decomposing
the data measured in three matrices, each of these matrices represents
the behavior of sediment sources (components) in the different modes
of the data (sampling sites-campaigns-spectra). In bibliography there
are a large number of works where both algorithms are applied to
different problems of a trilinear nature [26].

All the algorithms mentioned before decompose the signal in load-
ings and scores. In our case the loadings are related to the NIR spectra
that characterize each component or sediment source, so they contain
qualitative information. On the other hand, the values of the scores
calculated with appropriate constrains are directly proportional to the
concentration of specific sediment, i.e., they measure their relative
concentrations. For this reason, this paper innovates in using these
values without needing to obtain the absolute concentration value of
specific sediments as in previous works [20]. Thus, the objective of this
work is to use this advantage to be able to identify the different sedi-
ments sources and study their distribution throughout space-time
without reference samples to optimize the model.

Fig. 1. Detailed sight of the sector under study showing sampling points and main geographical features.
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2. Material and methods

2.1. Study area

The system under study is the Ludueña stream. It is located in the
Santa Fe Province of Argentina, in the Rosario Department. Its basin is
about 800 Km2. Before its confluence with the Parana River, it flows
inside two tubes for along 1.5 Km. In the higher areas, it has an earthen
dam that helps to slow the water runoff during the rainy season, and
also contributes to collect water from two gutters: the Ibarlucea and the
Salvat channels (Fig. 1).

The Ludueña stream watershed is currently in constant modification
by human activities. This is because big cities exist in its margins that
contribute to sealing large areas of soils; for this reason, its caudal in-
creases dramatically during periods of rainfall. Currently, several
neighborhoods are being developed in its vicinity. Also, dense and ir-
regular settlements exist in its margins, generating clandestine channels
which provide storm water and sewage effluents.

2.2. Sample collection and preparation

Eleven sampling points (Fig. 1 and Table 1) of the stream were se-
lected to represent the different branches and thus they represent the
overall states of the stream according to the activities in its vicinity. At
least five days were taken into account elapsed since the last rain before
each campaign, to ensure that conditions were reproducible as much as
possible. The campaigns were done approximately every 45 days, in the
period between November 2016 and September 2017 (seven cam-
paigns). (07/11/16, 13/12/16, 16/02/17, 24/04/17, 06/06/17, 24/
07/17 and 19/09/17).

The samples were collected by duplicate for each site and they were
stored in 1 l caramel colored glass bottles. The samples were filtered on
mesh of 4mm pore to eliminate traces of crustaceans, waterweeds and
wastes. The sediments of a fraction of 200ml of each sample were
deposited in a Munktell micro-glass fiber MG/C filter of 47mm dia-
meter and 1.2 μm pore, by vacuum filtration. The filters were placed in
glass plates and heated at 50 °C during 1 h, then dried in desiccators at
room temperature and Vis-NIR spectra were measured. The Vis-NIR
specters were measured as described below. All measurements were
performed within 48 h of sample collection.

2.3. Equipment

Near infrared absorbance measurements were performed in re-
flectance mode using a NIRS DS2500 spectrometer (FOSS, Hilleroed,
Denmark) equipped with pre-dispersive monochromator. This equip-
ment allows measurements to be made starting from the visible to the
NIR region of the spectrum. It converts the reflectance measurements in

absorbance, so it allowed acquiring the full absorbance spectra in the
Vis-NIR range from 550 to 2500 nm with a step of 0.5 nm. The equip-
ment is connected to a PC where the spectra were stored. The spectra of
the samples were obtained by placing the previously dried filters inside
the cup provided by the equipment manufacturer. Each sample was
scanned twice in different positions by manual rotation at an angle of
180°. The average spectrum was taken as the sample spectrum. The
blank was obtained from the average spectrum of several dry and clean
fiberglass filters. The recorded spectral data were processed and stored
as absorbance units.

2.4. Data pretreatment

The first step in the data pretreatment was to subtract the average
signal for the fiberglass filters to the spectra of each sample. This step
was carried out in order to obtain the signal only from the sediments
deposited on the filter.

The goal of this work is to locate and identify the sediments sources.
For this reason, the Vis-NIR spectra of all samples must be analyzed
together. The data arrangement of matrix D was built with the spectra
of all samples. A vector of 3901 data points was obtained by sample;
each vector was arranged one below each other. The size of the matrix
D was 154×3901, where the first mode includes all samples taken in
different sites and times by duplicate and the second mode are the
measured wavelengths (see Fig. 2).

Since in this work sediment sources apportionment was studied,
data were not initially mean centered or derived, because these data
pretreatments cause some negative values that cannot be processed
with the non-negativity constrain in the MCR-ALS algorithm. The
MinMax pretreatment was preferred, because it scales the data between
zero and one, maintaining the original magnitude of the data disper-
sion. The specific expression for the MinMax transformation is:

=
−

−
D D min(D)

max(D) min(D)MM (1)

where D is the data matrix with the original Vis-NIR absorbance values
of all samples at all wavelengths, max(D) and min(D) are the global
maximum and minimum of D respectively, and DMM are transformed or
scaled elements where the subscript ‘MM’ corresponds to the pretreat-
ment selected. Scaled data are showed in Fig. 3A.

This procedure can also be applied individually for each wave-
length. When done in this way, it has the advantage of giving equal
importance to the magnitude of all the values of the spectrum.
However, the disadvantage is that the original shape of the spectra is
lost. It was corroborated that with both pre-processing strategies the
results are very similar, and for this reason we chose to present the
results with the first option because they are easier to interpret.

Table 1
Values of latitude and longitude of the location of the different sampling sites with their corresponding nomenclature dependent on the tributary to which they
belong.

Sampling site identification Tributary of the stream Latitude Longitude

Number Code

1 L1 Ludueña Stream 32°54′32.7″ South 60°40′53.1″ West
2 L2 Ludueña Stream 32°54′0.67″ South 60°43′21.3″ West
3 L3 Ludueña Stream 32°55′27.1″ South 60°45′43.9″ West
4 L4 Ludueña Stream 32°57′02.5″ South 60°47′19.7″ West
5 L5A Ludueña Stream 33°00′42.2″ South 60°48′27.0″ West
6 L5B Ludueña Stream 33°01′05.9″ South 60°54′15.0″ West
7 L5C Ludueña Stream 32°56′54.0″ South 60°54′19.9″ West
8 S1 Salvat Channel 32°53′03.6″ South 60°44′51.0″ West
9 S2 Salvat Channel 32°53′37.3″ South 60°48′18.6″ West
10 I1 Ibarlucea Channel 32°52′50.6″ South 60°44′27.8″ West
11 I2 Ibarlucea Channel 32°51′07.9″ South 60°45′07.1″ West
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3. Theory

3.1. PCA

PCA assumes a bilinear model to explain the observed data variance
using a reduced number of components only under the orthogonality
constraint. For a detailed description of this well-known methodology
in chemometrics and other multivariate statistical data analysis
methods see references [27, 28]. The bilinear decomposition may be
written by the element wise equation:

∑= +
=

d x y eij
n

N

in jn ij
1 (2)

where dij is one of the entries of the experimental data matrix (intensity
of Vis-NIR reflectance in a particular sample to a specific wavelength)
from the ith row (a particular sample) and the jth column (a specific
wavelength), xin is an scalar element corresponding to the nth score of
the i sample, yjn is an scalar element corresponding to the nth loading at
the j variable and eij is the residual not modeled by the sum of N
components or contributions. The same bilinear equation can be
written in matrix form as:

= +D XY ET (3)

where D is the experimental data array expressed as a data matrix. Eq.
(3) describes the decomposition (matrix factorization) of matrix D into
two matrices, the loading matrix YT and the score matrix X. The loading
matrix YT identifies the main sources of the data variance by means of
their Vis-NIR spectra (spectral loadings), which eventually may be re-
lated to the main sediments sources. The score matrix X provides
sample scores for these data variance patterns, indicating their geo-
graphical and temporal distribution in each sampling point because
they are directly related to sediment concentrations. PCA solves Eq. (3)
under orthogonal constraints. Each successively extracted principal
component explains maximum variance. The determination of the
complexity of the model in PCA (i.e. the number of principal compo-
nents) is performed as a compromise between several goals: model
simplicity (few components), maximum variance explained by the
model (more components), and model interpretability.

3.2. MCR-ALS

MCR-ALS [29, 30] works with the data array arranged in the so-
called column-wise augmented data matrix Daug (Fig. 2), which is the
same data array built for PCA (described in the previous section, matrix
D). The bilinear decomposition of the augmented matrix Daug is per-
formed according to the same expression already given for PCA [i.e. Eq.
(3)], but for its resolution an iterative procedure is applied called al-
ternating least squares (ALS). In contrast to PCA, however, during the
ALS optimization phase of MCR-ALS some other constrains can be ap-
plied. The selected constraints were non-negativity for profiles in both
modes (for the augmented score mode and for the loadings, i.e. con-
centrations and spectral modes) and the loadings normalization to
equal length.

3.3. MCR-ALS for trilinear models

Trilinear model can be implemented iteratively as a constraint
during ALS optimization in the MCR-ALS method [31, 32]. The appli-
cation of MCR-ALS using this constraint should not be considered to be
equal to a standard bilinear decomposition of the augmented two-way
matrix Daug. This is because the profiles of the components must be the
same in all the samples like in bilinear models, but in addition, trili-
nearity requests that their distribution in the sites must be the same in
all the campaigns. During the ALS optimization, each individual profile
of the augmented scores matrix X is constrained to fulfill the trilinearity
condition independently and iteratively. The same procedure used
previously for the recovery of the loadings in the three modes from the
augmented scores matrix obtained by PCA or MCR-ALS is applied now
inside/during the ALS optimization instead of at the end of the opti-
mization as in PCA. Each column of the X matrix is appropriately folded
at each ALS iteration step to give a matrix with a number of rows equal
to the number of sampling sites (eleven) and seven columns corre-
sponding to each campaign. Singular value decomposition (SVD) of this
folded scores matrix gives the loadings in the second and third modes
for the considered component. These two loadings describe the
common variation captured by ALS in the two modes (sampling sites
and campaigns) for that particular component. The Kronecker product
[33–35] of these two new loading vectors gives the new augmented
scores vector which substitutes the corresponding column of the X

Fig. 2. Arrangement of the data for the MCR-ALS and PARAFAC analyses.
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Fig. 3. A. Scaled data of all samples. B. Loadings profiles of the 3 components of PCA. C. Loadings profiles obtained by MCR-ALS bilinear model. D. Loadings profiles
obtained by MCR-ALS trilinear model. E. Loadings profiles obtained by PARAFAC model.
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scores matrix. When this constraint is inserted during each step of the
ALS iterative optimization procedure, it forces the shape of the loadings
vector in the second mode (describing the sampling site variation of the
considered component) to be the same for the seven campaigns.
Moreover, it captures the intensity (scale) variation of this component
in the loadings of the third mode, showing the scale differences of this
component among the seven campaigns.

3.4. PARAFAC

After measuring first-order data for a set of samples, each of them as
a 1×K vector (K is the number of sensor on the spectral mode) of the I
sampling sites at the J campaigns are joined into a three-way data array
D, whose dimensions are [I× J× K] (see Fig. 2). Provided D follows a
trilinear PARAFAC model, it can be written in terms of three vectors for
each responsive component or sediment source, designated as an, bn and
cn, and collecting the relative concentrations [I×1] for component n
and the profiles in the two modes (J×1) and (K×1), respectively. The
specific expression for a given element of D is [36]:

∑= +
=

d a b c eijk
n

N

in jn kn ijk
1 (4)

where N is the total number of responsive components or sediment
sources, ain is the relative concentration of component n in the ith
sample, bjn is the sediment intensity in the campaign j and ckn is the
absorbance intensity at the wavelength k, respectively. The values of eijk
are the elements of the array E, which is a residual error term of the
same dimensions as D. The column vectors an, bn and cn are collected
into the corresponding loading matrices A, B and C (bn and cn are
usually normalized to unit length).

The model described by Eq. (4) defines a decomposition of D, which
provides access to sediment evolutions through campaigns (B) and se-
diment spectral profiles (C), and relative concentrations (A) of in-
dividual components in the I samples, whether they are chemically
known or not. The decomposition is usually accomplished through an
alternating least-squares minimization scheme [37, 38].

Issues relevant to the application of the PARAFAC model on three-
way data are as follows: (1) initializing the algorithm, (2) establishing
the number of responsive components.

Initializing PARAFAC for the study of three-way arrays can be done
by the loadings giving the best fit after small PARAFAC runs involving
several sets of orthogonal random loadings.

The number of responsive components (N) can be estimated by
several methods. A useful technique is CORCONDIA, a diagnostic tool
considering the PARAFAC internal parameter known as core con-
sistency [39, 40]. Another useful technique is the consideration of the
PARAFAC residual error, i.e., the standard deviation of the elements of
the array E in Eq. (4) [37]. Usually this parameter decreases with in-
creasing N, until it stabilizes at a value compatible with the instru-
mental noise. A reasonable choice for N is thus the smallest number of
components for which the residual error is not statistically different
than the instrumental noise.

3.5. Software

All calculations were made using MATLAB 7.0 (The Mathworks,
Natick, Massachusetts, USA, 2007). In order to apply MCR-ALS, the
codes available on the internet were implemented [41, 42]. The PAR-
AFAC package codes are available thanks to Bro [43].

4. Results and discussion

4.1. Bilinear decomposition

4.1.1. PCA results
The first approximation to estimate the number of components was

obtained by PCA, which indicates the number of possible major in-
dependent sediments sources affecting the measured data. The number
of components was estimated by examining the size of the changes in
explained variance in PCA as a function of the number of principal
components and the values of the intensity of each eigenvalues. Three
components were proposed to model the MinMax pre-processed data
matrix, which allowed explaining 99.2% of the overall variance.

In Fig. 3B, loadings obtained by PCA are shown. It can be observed
that the first component (94.3% of the variance explained) describes
the average spectra sediments affecting the geographical region under
study over the investigated period of time, and the other two compo-
nents are describing the contrast with more specific sediments sources.
The second component (2.8% of the explained variance) highlights the
different sediment spectral region between 750 and 900 nm and it has
at large wavelengths (1700–2500 nm) the characteristic shape of bio-
mass rich in plant tissues with cellulose and lignin [44, 45]. Finally, the
third component (2.1% of the explained variance) describes the dif-
ferent spectral behavior mainly in the wavelengths region between 600
and 720 nm. In addition, in this component, the peaks of the water that
is retained in the hygroscopic material of the sediments can be observed
in inverted form (1400 and 1900 nm).

The corresponding PCA scores describe the geographical and tem-
poral distribution of these sediments patterns. These show the sites with
high general sediment concentration (PC1 scores), the sites affected by
a specific sediment source (PC2 scores) and the sites related with a
seasonal behavior of sediments (PC3 scores). Because PCA defines the
same vector space as the one obtained by MCR-ALS decomposition
using the same number of components (see below), PCA scores plots are
available in the Supplementary material. An advantage of MCR-ALS
over PCA is the possibility of applying natural constraints like non-
negativity, making easier the physical interpretation of the results. For
this reason, the discussion about the possible sources or patterns was
mainly focused on the MCR-ALS results.

4.1.2. Bilinear MCR-ALS results
MCR-ALS was first applied with only non-negativity constraint for

scores and loadings. The trilinearity constraint was not applied in this
case to build a more flexible model. The explained variance was 99.7%
for three components.

In the Fig. 3C are shown the bilinear MCR-ALS loadings obtained
and in the Fig. 4 are shown the scores of the three major sediments
patterns represented in bar plots and its geographical distribution in
each campaign. The graphics of the geographical distribution were
constructed with a routine designed by our working group written in
MATLAB. This routine works with two superimposed georeferenced
layers. The background layer is a simplified image of the watercourses
of the basin and the superior layer contains gaussians of different
heights that represent the intensity of the scores in the different sam-
pling sites. These maps allow interpreting the results in a more agile
way since they allow relating the results with the geography of the area.
These three components are interpreted in environmental terms as
follows.

The first component (Figs. 3C and 4) (98.0% of the total variance
explained) has a loading spectra signal in the same region than the main
light absorbing protein complex of photosystem II [46]. This signal is
consistent with organism with chlorophyll-a, which is responsible of the
oxygenic photosynthesis and absorbs light at 680 nm. In its geo-
graphical and temporal distribution, it can be seen that this component
has a cyclical behavior dominated by the seasonal period (higher in-
tensities at the beginning of the monitoring, corresponding to spring
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and summer in the southern hemisphere). This component represents
the sedimentary material contributed by oxygenic photosynthesizing
organisms that proliferate in periods of high temperatures in areas with
high load of nitrates and phosphates.

The second component (Figs. 3C and 4) (1.0% of the total variance
explained) has two signal regions in its loading spectra. One is domi-
nated by the characteristic signal of biomass rich in plant tissues with
cellulose and lignin at large wavelengths [44, 45], and the other

between 750 and 900 nm is consistent with the spectra of bacterio-
chlorophyll [46], because the main light absorbing complex in anoxy-
genic photosynthesis [47] of purple bacteria, green bacteria, helio-
bacteria and chlorobacteria absorb in the region between 770 and
870 nm. The biomass material comes from the vegetable tissue that
develops due to the high nutrient load of the water (eutrophication of
the basin). Such profile is specifically located on the zone of Ibarlucea
Channel which presents a highly impacted zone by anthropological
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Fig. 4. Bar plots and spatial distributions of the bilinear MCR-ALS scores of the three components in an all sampling sites of all campaigns. Sampling sites identi-
fication: 1-L1, 2-L2, 3-L3, 4-L4, 5-L5A, 6-L5B, 7-L5C, 8-S1, 9-S2, 10-I1 and 11-I2.
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activities. In this area a sanitary landfill is located with leachate
treatment lagoons and also a large amount of local denounce about
untreated sewage discharges through clandestine connections or the
emptying of tanker truck exists.

The loading spectrum of the third component (0.7% of the total
variance explained) (Figs. 3C and 4) corresponds to the Vis-NIR spectra
of the particles of the soil of basin incorporated into the system by the
wind and the flow stream. Only to corroborate this conclusion, the
loading was compared with the spectra of several sieved and dried soil
samples and it always has the same shape.

4.2. Trilinear decomposition

4.2.1. Trilinear MCR-ALS results
MCR-ALS was then applied with non-negativity again for scores and

loadings, and trilinearity constraint [48, 49]. This latter constraint is
more restrictive, leading to a decreased percentage of explained var-
iance, but it has the advantage of separating the components of the
patterns between the campaigns and the time. It demands that all
campaigns have the same number of sampling sites. This is not always
possible in environmental databases because not all sampling points are
taken in the monitoring plans, but it is possible for our data base. In
terms of explained variance, the results obtained by trilinear MCR-ALS
analyses were slightly worse than those obtained with bilinear model
(90.5% with this approach), but resulted rather similar in relation to

the resolved components. This suggested that the data could be ap-
proximated by the trilinear model, giving more easily interpretable
component profiles, especially in terms of the geographical distribution
representation (mapping) of the resolved components describing the
different sediment sources under study.

Fig. 3D shows the results corresponding to the non-negativity/tri-
linearity constrained MCR-ALS study. Three different patterns or source
groups were identified (total explained variance of 90.5%): (1) the first
component (89.1% of the total variance explained) is dominated by the
signal at 680 nm of organisms with oxygenic photosynthesis, char-
acteristic of chlorophyll-a; (2) the second component (0.7% of the total
variance explained) is dominated by the spectra of anoxygenic photo-
synthetic organisms with bacteriochlorophyll, and (3) the third com-
ponent (0.6% of the total variance explained) is dominated by the se-
diment signal coming from the particles of soil. Once identified the
spectral characteristics of the main sediments patterns, the localization
of these patterns and the corresponding possible sources are in-
vestigated.

In Figs. 5A, 6A and 7A, the temporal loadings of each trilinear MCR-
ALS component are shown. In Figs. 5B, 6B and 7B, the scores intensity
in each sampling site are shown in bar plots; and Figs. 5C, 6C and 7C
show the same scores but in a map representation to analyze their
geographical distribution by each component respectively. These last
figures were built as mentioned previously for Fig. 4, but it using a
georeferenced satellite image as background.

Fig. 5. Trilinear MCR-ALS scores of component 1. A. Temporal distribution in each campaign. B. Representation in a bar plot of the distribution of the scores in each
sampling site. Sampling sites identification: 1-L1, 2-L2, 3-L3, 4-L4, 5-L5A, 6-L5B, 7-L5C, 8-S1, 9-S2, 10-I1 and 11-I2. C. Map representation of the geographical
distribution of the scores in each sampling site.
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The first MCR-ALS component or sediment source (89.1%) defined
by the first spectra (see above) is localized throughout the basin (see
Fig. 5B and C), but is mainly located in the highest areas of the basin
which have lower flow, allowing a greater proliferation of algae and
others oxygenic photosynthetic organisms. This component explains the
behavior of sediments with a natural origin and has a highest seasonal
or cyclical behavior in the spring and summer period (Fig. 5A).

The second component (0.7%) is focused on regions near the
Ibarlucea Channel and has high concentrations in the first and third
campaigns. This behavior is typical of the impact of anthropic activities,
since it does not present a particular trend (Fig. 6A). Its spectrum is
characteristic of bacteriochlorophyll coming from organisms with an-
oxygenic photosynthesis. The bacteriochlorophyll can only be gener-
ated by purple bacteria, green bacteria, heliobacteria and chlor-
obacteria [47]. These organisms develop in environments with high
load of organic matter and presence of sulfur (Fig. 6B and C).

Finally, the third component (0.6%) is present in all sampling
points, similar to the first component, but is highest at the Ludueña
outlet site to the Paraná River (Fig. 7B and C). The water in this site is a
mixture coming from both rivers. The water form Paraná River is
characterized by having high concentrations of colloidal soil particles.
As regarding the time evolution of this component (Fig. 7A), it can be
concluded that it is present in all campaigns but with greater intensity
in the fourth and fifth campaign (24-04-17 and 06-06-17, autumn and
winter). These campaigns correspond to the months with less rainfall
recorded by the Argentine National Meteorological Service [50], so the

particulate material from the soil can be in corporate more easily to the
stream by the wind.

Results obtained with trilinearity agree with previous results ob-
tained by modeling the dataset with bilinear MCR-ALS algorithm.
Again, three MCR-ALS components were used to justify the observed
data variance. Interpreting the composition and location of each com-
ponent, we can conclude that the first component can be associated
with the development of algae and others oxygenic photosynthetic or-
ganisms since its spectrum corresponds to the proteins of photosystem
II and has a seasonal behavior, being higher in the months of higher
temperature. The second component can be associated with an an-
thropological origin because it has a random behavior related with
clandestine discharges of untreated fluids and its spectrum is associated
with the signal of bacteriochlorophyll due to the development of or-
ganisms with photosynthesis anoxygenic because of the high load of
organic matter and sulfur. The third component profile can be specifi-
cally related to the particulate material from the soil of the area that is
incorporated into the system by the wind or resuspended by the flow of
the stream.

4.2.2. PARAFAC results
As explained in the Theory section, PARAFAC is a trilinear method;

therefore it requires a linear behavior in the three measured modes
(sampling sites, campaigns and spectra). The previously scaled data was
used to apply this algorithm, but grouped together in a three-dimen-
sional array (as shown in Fig. 2). Each sampling campaign generates a

Fig. 6. Trilinear MCR-ALS scores of component 2. A. Temporal distribution in each campaign. B. Representation in a bar plot of the distribution of the scores in each
sampling site. Sampling sites identification: 1-L1, 2-L2, 3-L3, 4-L4, 5-L5A, 6-L5B, 7-L5C, 8-S1, 9-S2, 10-I1 and 11-I2. C. Map representation of the geographical
distribution of the scores in each sampling site.
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two-way matrix of dimensions 11× 3901, which correspond to the 11
sampling sites and the 3901 wavelengths. 7 sampling campaigns were
carried out in duplicate throughout this work, thus having a total of 14
matrices. These matrices were stacked one on top of the other to obtain
a three-way arrangement data of 11× 14×3901.

As previously mentioned, the best-fitting models of several models
fitted using a few iterations was used to initialize the algorithm. Similar
to MCR-ALS model, PARAFAC was applied with no-negativity con-
straint for the three modes. The quantity of components used was se-
lected by the CONCORDIA test. Values of the core consistency of 100,
48.9, 60.1, 21.4 and −4.2 were obtained for 1 to 5 components re-
spectively. The component selection criteria is the value of this para-
meter falls below 50 units means that the components are not neces-
sary. Consistent with the previous analyses, 3 components were chosen.
This model explains a total of 97.2% of the variance (89.1% corre-
sponds to the first component, and 6.2% and 1.3% correspond to the
second and third component respectively).

The PARAFAC spectral loadings are shown in Fig. 3E. These are
similar to those obtained with trilinear MCR-ALS model. The PARAFAC
components order is the same obtained by bi- and trilinear MCR-ALS.
The spectral loadings of components 1 and 3 have similar shape in both
methods. The component 2 is slightly different but it has signal at the
region between 750 and 900 nm typical of bacteriochlorophyll. For this
reason, it can be concluded these represent the same sediment sources
previously found. It was corroborated studying their distribution in the
sampling sites and their behavior throughout the campaigns. Since the
distribution and temporal behavior of the components of PARAFAC is
the same to the results obtained by trilinear MCR-ALS, only the results

obtained by the latter are shown to summarize the figures of the work
(they are available in the Supplementary material).

5. Conclusions

In this work, PCA, MCR-ALS and PARAFAC were applied to in-
vestigate main sediments sources affecting a river basin of a particular
geographical region over several monitoring campaigns and analysis.
PCA allows determining the quantity of sediment sources, being only
three components enough to justify the variability of the data.
PARAFAC and MCR-ALS with non-negativity and with or without tri-
linearity constraints resulted to be more efficient tools to resolve the
major sediments sources explaining the measured data variance. Three
major patterns were detected, which were respectively related to: or-
ganism with oxygenic photosynthesis with a seasonal behavior; or-
ganism with anoxygenic photosynthesis characteristic of sites with high
load of organic matter and sulfur; and particles coming from the soil of
the zone. It was possible to study their temporal evolution and, by
mapping representations, their geographical distribution. All these re-
sults were obtained without reference or calibration samples; this is a
very important advantage above the methods available in bibliography.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.microc.2018.06.040.
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