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A B S T R A C T

A validation covering a 30-year period (1987–2016) of the relatively new CHIRPS precipitation dataset was
performed over the Central Andes of Argentina (CAA), a semi-arid region with complex topography and sparse
ground observations. Precipitation data from 57 rain gauges and several well-known continuous and categorical
validation statistics were assessed to evaluate the performance of CHIRPS estimations. The study area was di-
vided into two zones based on the timing of the rainy season maximum, in order to determine regional differ-
ences in the characterization of precipitation patterns. The results of this study indicate that CHIRPS data re-
produce adequately several characteristics of precipitation along the study area, as the seasonal and interannual
variability and the spatial patterns of precipitation. CHIRPS dataset is able to capture the rainy season char-
acteristics over the CAA, considering the Mediterranean climate features over the Andes ranges and the mon-
soonal regime in the lowlands. CHIRPS achieves better results for the stations located in the region with summer
precipitation maximum, mostly located over Cuyo region (correlation= 0.86, bias= 11%, mean absolute
error= 15.3mm). Despite the strong correlation of 0.82 over Northern Patagonia region, CHIRPS showed a
significant overestimation of the seasonal precipitation totals during the cold semester (April to September,
bias= 65.8%, mean absolute error= 34.7 mm). These systematic errors can be attributed to the poor perfor-
mance of CHIRPS in reproducing the precipitation features over the zones above 1000m.a.s.l. One of the reasons
behind the observed differences can be attributed to the limited number of anchor stations used in the CHIRPS
calculation procedure, which highlights this study as an independent validation given the amount of meteor-
ological stations used.

1. Introduction

The knowledge of precipitation variability, both in time and space,
is crucial for water management strategies, environmental monitoring,
agricultural practices and climate studies. Precipitation is one of the
main input to hydrological models and to most of the indices used for
flood and drought monitoring. The impacts of precipitation variability,
associated to floods and droughts, often led to adverse economic effects,
particularly in regions that rely on agriculture or hydropower genera-
tion. Changes in precipitation patterns can have profound societal
consequences, directly affecting ecological systems, food security, dis-
aster management and human lifes (Farooq Iqbal and Athar, 2018;
Maidment et al., 2015; Thiemig et al., 2012). Thus, it is of paramount
importance to provide accurate precipitation information, considering a
climatological perspective based on past information, a current

perspective based on operational monitoring and a future perspective
based on reliable precipitation forecasts.

To achieve these goals, until some decades ago, the use of conven-
tional rain gauge networks have provided the main source of relatively
accurate point measurements of precipitation (Feidas, 2010; Katsanos
et al., 2016a). However, estimations from rain gauges over mountai-
nous areas with complex topography are often subjected to large un-
certainties due to the lack of accessibility to the rain gauges –which
habitually have an uneven and sparse distribution-, the limited sam-
pling area of the gauges, and the maintenance costs of the network
(Farooq Iqbal and Athar, 2018; Feidas, 2010; Zambrano-Bigiarini et al.,
2017). In South America, the available rainfall network has significant
limitations in its infrastructure, maintenance, density and frequency of
observations (Hobouchian et al., 2017). Particularly in Argentina, to
obtain accurate precipitation estimations based on rain gauges is a
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challenging task due to the extension of the country, the sparse dis-
tribution of the stations and the complex topography that includes the
Andes, the most important mountain range in the Southern Hemi-
sphere. In turn, 40% of the Argentinean meteorological network was
lost during the 1970s, particularly after 1976 (Boulanger et al., 2010;
Tencer et al., 2011), and most of the rain gauges located along the
adjacencies of the Andes were dismantled (Viale and Nuñez, 2011).

To overcome these limitations, satellite-based estimates are widely
used to measure precipitation given that provides quasi-global cov-
erage, high resolution, frequent sampling and easy access (Tang et al.,
2015). Satellite derived precipitation data can support the study of
precipitation patterns at different temporal and spatial scales, and are a
crucial tool for hydrological applications, water management and de-
cision-making (Hobouchian et al., 2017; Mantas et al., 2015). The re-
markable capabilities of satellite estimations demanded constant ad-
vancement and development of new algorithms and methods for further
improving the quality of precipitation estimates (Ahmadalipour et al.,
2017). Moreover, temporal and spatial resolutions are continuously
improving owing to steady advances in sensor technology and new
methods for merging various data sources (Thiemig et al., 2012).

Nowadays, several high-resolution products based on satellite pre-
cipitation estimates are freely available at an operational stage, dif-
fering in terms of design objective, data sources, spatial resolution,
spatial coverage, published temporal resolution, temporal span and
latency (Beck et al., 2017). However, the use of these databases for
climate studies is only possible if precipitation estimations resemble the
spatial and temporal variability based on rain gauges observations. In
this sense, validations of satellite-based precipitation products are ne-
cessary to ascertain the accuracy of precipitation estimates on various
spatial and temporal scales and to establish the direct usability of these
products (Feidas, 2010). The validation activity has two aims: 1) to help
technique developers to improve their algorithms and 2) to provide the
potential users with a reliable error structure of the precipitation pro-
ducts (Porcù et al., 2014). Performance of different satellite products,
typically evaluated comparing them to ground measurements, is dif-
ferent in different geographical regions, surface conditions and season
(Hobouchian et al., 2017; Rahmawati and Lubczynski, 2017), which
often lead to substantial biases and stochastic errors that need to be
reduced or corrected before transforming the satellite estimations into
operational tools with potential hydrological application (Tang et al.,
2015; Thiemig et al., 2012).

Scientists at the United States Geological Survey (USGS), working
closely with collaborators at the University of California, Santa Barbara
Climate Hazards Group, have developed a quasi-global (50°S–50°N,
180°E–180°W), 0.05° resolution, 1981 to near-present gridded pre-
cipitation time series: the Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS) data archive (Funk et al., 2014,
2015a). The CHIRPS dataset is a new land-only climatic database of
precipitation, made available since early 2014; it encompasses three
diverse types of information: global climatologies, satellite estimates
and in situ observations (Katsanos et al., 2016b). The CHIRPS pre-
cipitation data set blends in more station data than other products and
uses a high-resolution background climatology, providing better esti-
mates of precipitation means and variations, resulting in a better hy-
drologic state (Shukla et al., 2014).

The CHIRPS dataset has been subjected to diverse evaluations
worldwide, although the number of studies is still limited. Shukla et al.
(2014) used CHIRPS estimations to generate seasonal soil moisture
forecasts for agricultural drought prediction over the equatorial East
Africa. Over the same region, Vigaud et al. (2017) analyzed precipita-
tion composites based on CHIRPS to identify teleconnections with tro-
pical Pacific surface temperatures and regional atmospheric circulation.
Maidment et al. (2015) quantified the recent observed trends in pre-
cipitation over Africa with 8 gridded gauge-only and satellite-based
datasets, including CHIRPS estimations. The authors observed that
CHIRPS show relatively small deviations from the Climate Research

Unit (CRU) gauge analysis. Le and Pricope (2017) used the CHIRPS
dataset into a standard hydrologic model for the simulation of
streamflow over Western Kenya. A meteorological drought assessment
over Southeast Asia was performed by Guo et al. (2017) using the
CHIRPS estimations to calculate the standardized precipitation index
(SPI, McKee et al., 1993). Katsanos et al. (2016a) analyzed precipitation
extremes based on CHIRPS over Cyprus, after a validation study that
allowed to identify a trend in the difference between rain gauges and
CHIRPS over time (Katsanos et al., 2016b). The first quasi-global eva-
luation of CHIRPS dataset was performed by Beck et al. (2017), finding
that CHIRPS presents a viable choice for tropical regions.

This dataset was recently considered for validation studies over
South America. Particularly, Funk et al. (2015a) evaluated CHIRPS
during the rainy season in areas of complex terrain as Colombia and
Peru. They obtained that CHIRPS estimations were comparable to the
variability of the Global Precipitation Climatology Centre (GPCC) da-
taset. Paredes-Trejo et al. (2016) performed a validation of CHIRPS
over Venezuela, finding an acceptable overall performance but with a
low skill of rain detection, which prevents its use for agricultural pur-
poses. Over Northeastern Brazil, CHIRPS arise as a promising tool for
drought monitoring, performing better outside the semi-arid region,
although rain detection is deficient over the studied domain (Paredes-
Trejo et al., 2017). This product has been recommended for (quasi-)
real-time monitoring and hydrological applications over Chile
(Zambrano-Bigiarini et al., 2017). Nevertheless, Zambrano et al. (2017)
showed that the product should be calibrated to adjust to rainfall
especially over northern Chile.

The Central Andes of Argentina (CAA) is a region where the inter-
play between the complex topography and the atmospheric circulation
determines a wide range of precipitation features, from intense winter
orographic precipitation (Viale and Norte, 2009), extreme summer
precipitation events leading to the occurrence of landslides along the
Andes (Santos et al., 2015) and hailstorms over the lowlands (Biles and
Cobos, 2007), to multi-annual severe drought events (Penalba and
Rivera, 2016; Rivera et al., 2017). In view of the lack of observations
over the region, it is crucial to advance in the understanding of pre-
cipitation variability at diverse spatial and temporal scales by using
available satellite-derived precipitation databases, considering the large
negative impacts associated to precipitation variations on agriculture
and water resources sectors.

The aim of this study is to assess the accuracy of monthly CHIRPS
satellite-based estimations along the CAA, in order to quantify its
suitability to represent the spatial patterns of precipitation, its season-
ality and interannual variability. To our best knowledge, given the long-
record −1981 to near present- of CHIRPS estimations, this will be the
validation of a satellite-based precipitation product over the longer
period of time ever performed in the region. Thus, the outcomes of this
study will be a baseline for the study of climate variability and change,
the assessment of precipitation at small-catchment scale and the de-
velopment of meteorological, agricultural and hydrological drought
monitoring tools over the CAA. This paper is organized as follows:
Section 2 presents the study area, the rain gauge data used, the CHIRPS
dataset and the validation statistics. Section 3 presents the results of the
precipitation intercomparison. The discussion of the main findings is
presented in Section 4, while the conclusions are summarized in Section
5.

2. Study area and data sources

In this study, the CAA was defined as the Argentinean sector of the
region located between 30°-40°S and 67°-71°W (Fig. 1). The study area
spans part of two geographical regions of the country: Cuyo region (30°-
36°S, comprising the provinces of San Juan and Mendoza, where the
Andes have a mean elevation of 3500m) and northern Patagonia region
(36°S-40°S, comprising Neuquén province, where the mean elevation of
the Andes decrease to 1500m). The Andes ranges strongly affect the
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regional precipitation patterns over these regions, through interactions
with the continental atmospheric circulation and the incursion of moist
air masses from the Pacific Ocean (Rivera et al., 2017). Along the study
area, the Andes act as a permanent barrier to the humid air masses from
the mid-latitude South Pacific Ocean and the baroclinic precipitation
systems coming from the west. The climate at high elevations has a
Mediterranean regime with higher precipitations during the cold season
(April to September) and dry warm seasons (October to March), in re-
sponse to the seasonal displacement of the South Eastern Pacific High
(Falvey and Garreaud, 2007). Over this area precipitation is mainly
generated by the passage of cold fronts moving eastward from the Pa-
cific (Garreaud, 2009). Due to the strong rain shadow effect, climate
east of the Andes is arid to semi-arid, where convective warm season
rainfalls favored by moist air masses from the Amazon and Atlantic
basins play a relevant role (Schwerdtfeger, 1976). There are very in-
tense storms east of the Andes during the warm season, capable to
develop large hail over the study area (Biles and Cobos, 2007).

The CAA is the major wine producer region in Argentina, and the
agro-industrial activities in CAA depend largely on grape production,
an activity only possible through irrigation. Dams and reservoirs collect
the snowmelt contribution to the streamflows during the warm season.
Along Cuyo region, 95% of its 2.5 million inhabitants are distributed
just within the 4% of the territory, highlighting the vulnerability of the
region to periods of water shortages. Regarding Northern Patagonia, the
rivers which are born in the higher elevations of the Andes, fed by
snowmelt and rainfall, play an important role in the development of the
region, with several hydropower plants providing a significant part of
the electric power in Argentina (Seoane et al., 2005).

2.1. Rain gauge observations

Initially, monthly precipitation records from 103 rain gauges were
collected from the National Weather Service (Servicio Meteorológico
Nacional, SMN) and the Water Resources Agency of Argentina

(Subsecretaría de Recursos Hídricos, SSRH; http://bdhi.
hidricosargentina.gob.ar/) databases. A filtering method was used to
select the time series with< 15% of missing data, with a data length
requirement of at least 30 years, comprising ideally the most recent

Fig. 1. Location of the study area with the main topographic features and the
rain gauges used for the validation of satellite-based estimates.

Table 1
Geographical characteristics and percentage of missing data of the selected rain
gauges for the 1987–2016 period.

Name Province Lat (°S) Lon (°W) Elevation
(masl)

Source Missing
data (%)

San Juan San Juan 31.57 68.42 598 SMN 2.22
San Juan INTA San Juan 31.62 68.53 603 SMN 3.88
Jachal San Juan 30.23 68.75 1175 SMN 3.88
San Martín Mendoza 33.08 68.42 653 SMN 0.00
Mendoza Aero Mendoza 32.83 68.78 704 SMN 0.00
Mendoza

Observato-
rio

Mendoza 32.88 68.85 827 SMN 0.00

Malargüe Mendoza 35.50 69.58 1425 SMN 0.00
San Rafael Mendoza 34.58 68.40 748 SMN 0.00
La Angostura Mendoza 35.09 68.87 1302 SSRH 0.00
La Jaula Mendoza 34.67 69.32 1457 SSRH 0.00
Rama Caída Mendoza 34.67 68.38 714 SSRH 1.67
El Nihuil Mendoza 35.03 68.67 1309 SSRH 0.00
Villa Atuel Mendoza 34.82 67.92 519 SSRH 0.00
Capitán

Montoya
Mendoza 34.58 68.45 820 SSRH 3.33

Las Salinas Mendoza 34.93 68.81 1320 SSRH 5.56
Puesto Canales Mendoza 34.67 68.89 1574 SSRH 0.00
Puesto

Carmona
Mendoza 34.68 67.84 522 SSRH 0.00

Arroyo Hondo Mendoza 34.48 69.28 1900 SSRH 0.00
Las Aucas Mendoza 34.70 69.54 1800 SSRH 1.67
Las Malvinas Mendoza 34.94 68.24 602 SSRH 0.00
Los Mayines Mendoza 35.66 70.20 1663 SSRH 2.50
Bardas Blancas Mendoza 35.87 69.81 1445 SSRH 1.67
Arroyo La

Vaina
Mendoza 35.92 69.99 1550 SSRH 1.67

Puesto Las
Moras

Mendoza 35.12 66.85 388 SSRH 0.00

Cacheuta Mendoza 33.01 69.12 1250 SSRH 6.39
Guido Mendoza 32.92 69.24 1408 SSRH 0.28
Valle de Uco Mendoza 33.78 69.27 1199 SSRH 1.67
Pincheira Mendoza 35.52 69.81 1775 SSRH 7.50
San Rafael Mendoza 34.61 68.32 681 SSRH 0.28
Las Vertientes Mendoza 34.42 68.59 990 SSRH 1.11
Juncalito Mendoza 34.74 69.21 1593 SSRH 4.72
Puesto Morales Mendoza 34.60 68.87 1455 SSRH 0.83
Polvaredas Mendoza 32.79 69.65 2250 SSRH 0.28
Potrerillos Mendoza 32.96 69.20 1427 SSRH 1.11
Puesto

Papagayos
Mendoza 34.23 69.12 1529 SSRH 3.05

La Remonta Mendoza 33.71 69.29 1360 SSRH 0.28
San Alberto Mendoza 32.47 69.41 2180 SSRH 14.44
Uspallata Mendoza 32.59 69.34 1890 SSRH 3.33
Buta Ranquil Neuquén 37.07 69.75 816 SSRH 0.28
Paso de Indios Neuquén 38.53 69.41 498 SSRH 5.56
El Cholar Neuquén 37.44 70.65 1230 SSRH 5.83
Chos Malal Neuquén 37.37 70.27 856 SSRH 2.78
Andacollo Neuquén 37.18 70.68 1011 SSRH 12.22
Junín de los

Andes
Neuquén 40.05 71.10 750 SSRH 9.44

Vilu Mallín Neuquén 37.46 70.76 1065 SSRH 1.67
Cajón

Curileuvú
Neuquén 36.96 70.39 1400 SSRH 4.17

El Alamito Neuquén 37.26 70.42 1032 SSRH 5.28
Las Ovejas Neuquén 36.98 70.75 1267 SSRH 2.78
Varvarco Neuquén 36.86 70.68 1180 SSRH 3.61
El Huecu Neuquén 37.65 70.58 1212 SSRH 1.67
Tricao Malal Neuquén 37.04 70.32 1350 SSRH 0.00
Los Miches Neuquén 37.21 70.82 1219 SSRH 0.83
Chochoy Mallín Neuquén 37.36 70.79 1066 SSRH 1.94
Chorriaca Neuquén 37.94 70.10 1100 SSRH 7.22
Pichi Neuquén Neuquén 36.63 70.80 1350 SSRH 0.83
Auquinco Neuquén 37.32 69.97 1520 SSRH 2.22
Neuquén Neuquén 38.95 68.13 271 SMN 0.00
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period of records. After these procedures, the final database consisted
on monthly precipitation observations from 57 stations (see Fig. 1) with
measurements over the 1987–2016 period. In addition, the names and
relevant particulars of the selected rain gauges are summarized in
Table 1. As can be observed in Fig. 1, the region has scarcely available
meteorological data for a long-term climatic assessment, particularly
considering the stations from the SMN (Table 1). Precipitation time
series were subjected to quality control procedures, considering the
techniques applied by González (2013) to the time series over the study
area. Moreover, we analyzed the spells of months without precipitation,
removing from the assessment the periods larger than 5months, a
threshold identified by Llano and Penalba (2011) over the study area
based on high-quality precipitation time series. Reasons behind the
occurrence of these long spells can be attributed due to the in-
accessibility to the stations mainly during winter months. Extreme
precipitation totals were also analyzed considering the spatial dis-
tribution of precipitation in the nearest rain gauges, in the cases were
monthly totals exceeded four times the standard deviation above the
mean. This criteria has been previously used by Penalba et al. (2014)
considering daily precipitation totals and is in line with the threshold
level used by Paredes-Trejo et al. (2016, 2017) for monthly data. Ad-
ditionally, homogeneity control using the Standard Normal Homo-
geneity Test (Alexandersson, 1986) for a confidence level of 95% al-
lowed to identify inhomogeneities in just 6 of the 57 precipitation time
series. These inhomogeneities were not corrected given that occurred
during the first or the last year of record. Missing data were replaced by
applying linear regressions with neighboring stations, only for reference
stations that explain> 80% (R2 > 0.8) of the temporal behavior of
precipitation. Even when the final set of precipitation time series still
have some missing months –either because of removal of suspicious
records or to the lack of close reference stations to fill missing gaps- this
aspect is not expected to affect the comparability of the results or the
calculation of the metrics for CHIRPS comparison.

2.2. CHIRPS precipitation estimates

The CHIRPS monthly precipitation product was obtained through
the Climate Hazards Group (CHG) of the University of California at
Santa Barbara (UCSB) webpage (http://chg.geog.ucsb.edu/data/
chirps/index.html) for the years 1987–2016, which overlaps the
period of ground-based precipitation data. This dataset is updated at
near-real time, has quasi-global coverage (land only, 50°S-50°N) with a
spatial resolution of 0.05° (approximately 5 Km) and several temporal
scales (monthly, decadal, pentadal or daily time steps). The CHIRPS
dataset was produced blending precipitation estimates based on in-
frared cold cloud duration (CCD) observations calibrated using Tropical
Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation
Analysis (MSPA) with in-situ station data from a variety of sources in-
cluding national and regional meteorological services (see Funk et al.,
2014, 2015a, 2015b for details). The incorporation of station data also
helps to correct for estimates that often underestimate the intensity of
precipitation events (Le and Pricope, 2017). This relatively new product
was designed for drought monitoring in places with complex topo-
graphy, changing observation networks and deep convective pre-
cipitation systems (Funk et al., 2015b), features that are present in the
study area. Moreover, the spatial resolution of CHIRPS is higher than
other satellite-based global precipitation datasets, making it favorable
to analyze precipitation variations at small basin scales.

The temporal evolution of the anchor stations used in the creation of
CHIRPS over the study area is presented in Fig. 2 for the 1987–2016
period. Between 2 and 12 anchor stations were used, all of them pro-
vided by the SMN and obtained through either the Global Historical
Climate Network (GHCN) or the Global Summary of the Day (GSOD), as
can be observed in ftp://ftp.chg.ucsb.edu/pub/org/chg/products/
CHIRPS-2.0/diagnostics/monthly_station_data/. This temporal evolu-
tion shows a large decadal variability, with an average of 11 stations

during the last part of 1980s, 6 stations during the 1990s and 8 between
2000 and 2016 (Fig. 2). Starting with the national datasets, the list of
anchor stations to create CHIRPS were increased adding regional and
global sources (Funk et al., 2014). Nevertheless, the incorporation of a
valuable national source as the SSRH was discarded, perhaps given the
hydrological focus of the rain gauges information of this dataset or the
lack of knowledge about its existence and availability. As can be ob-
served in Table 1, just 9 of the 57 rain gauges used for this validation
where provided by the SMN, which indicates that the incorporation of
data from the SSRH could result in an improvement of CHIRPS esti-
mations over the study area and, particularly, over Argentina. More-
over, just one of the anchor stations was located in Neuquén province,
with two of the anchor stations having a precipitation maximum during
the cold semester (Neuquén and Malargüe stations). Considering this
limitation, the validation of CHIRPS precipitation dataset over the CAA
it can be considered as an independent validation.

3. Methodology

3.1. Continuous validation statistics

A point-to-pixel analysis was performed to compare the time series
of rain gauges observations to the corresponding CHIRPS pixel. This
comparison allows capturing the small scale variability of monthly
precipitation totals (Thiemig et al., 2012), largely subjected to its sea-
sonality and the topography of the study area. Therefore, we selected
the CHIRPS estimations for the 57 grid points conrresponding to the
location of the rain gauges. An interpolation of the observed pre-
cipitation would involve large uncertainties given the lack of a high-
density rain gauges database to reproduce adequately the precipitation
gradients along the complex terrain, although this alternative was
previously carried out over the study area (Hobouchian et al., 2017)
and other regions of the world (Dinku et al., 2008; Feidas, 2010).

To evaluate the performance of CHIRPS in estimating the amount of
the precipitation we used the following comparison statistics: the
Pearson correlation coefficient (PCC), the mean absolute error (MAE),
the Nash-Sutcliffe efficiency (NSE) and the percent bias (PB) (Table 2).
The PCC measures the linear relationship strength between the satellite
estimations and the rain gauges observations, bounded by −1 and 1
with an optimal value of 1. The MAE provides information on the
average magnitude of error estimations, considering both systematic
and random errors. Several studies are replacing the widely used root
mean squared error (RMSE) by the MAE because the errors are unlikely
to be unbiased or to follow a normal distribution (Beck et al., 2017;
Willmott et al., 2017). The perfect score for this statistic is 0. The NSE
(Nash and Sutcliffe, 1970) determines the relative magnitude of the
variance of the residuals compared to the variance of the observed
values of precipitation. This statistic vary from minus infinity to 1,
being negative in cases of poor precipitation estimation and an optimal
value equal to 1, which would indicate that the estimated values mat-
ched observed precipitation exactly. The PB measures the average
tendency of the estimated precipitation to be larger or smaller than the
observed precipitation, with an optimal value of 0. Positive values in-
dicate overestimation bias, whereas negative values indicate under-
estimation bias.

3.2. Systematic and random error components

Characterizing satellite precipitation errors and their random and
systematic components is essential to develop bias reduction techni-
ques, and thus to improve precipitation retrieval algorithms, and for
many operational applications (Maggioni et al., 2016). According to
Willmott (1981), the error in the numerical weather prediction models
can be separated into systematic and random error components of the
mean squared error (MSE):
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where a and b are parameters (slope and intercept, respectively) to be
calibrated. The systematic error is defined as the part of error to which
a linear function can be fitted (Habib et al., 2009). Following
AghaKouchak et al. (2012), the systematic and random components of
error were expressed as MSESyst/MSE × 100 and MSERand/MSE × 100,
respectively.

3.3. Categorical validation statistics

Complementary, several categorical validation statistics were used
to assess CHIRPS rain-detection capabilities. The statistics were derived
from a contingency table involving four event combinations: hits (A)
–months when both rain gauge and CHIRPS detect precipitation; false
alarms (B) –months when CHIRPS detects precipitation and rain gauge
not; misses (C) –months when rain gauge recorded precipitation and
CHIRPS not; and correct negatives (D) –both rain gauge and CHIRPS
detect no precipitation (see Table 3). Following the assessments of Toté
et al. (2015) and Paredes-Trejo et al. (2017), we used a precipitation
threshold of 5mm.

The validation statistics include the probability of detection (POD),
the false alarm rate (FAR), the equitable threat score (ETS), the
Hanssen-Kuipers discriminant (HK), the Heidke skill score (HSS) and
the frequency bias index (FBI) (Table 4). The POD gives the fraction of
precipitation occurrences that were correctly detected; it ranges from 0
to a perfect score of 1. The FAR gives the fraction of events for which
CHIRPS detected precipitation but was not observed; ranging from 0 to
1 with a perfect score of 0. The ETS measures the fraction of observed
and/or estimated events that are correctly predicted, adjusted by the
frequency of hits that would be expected to occur simply by random
chance. The range of ETS is −1/3 to 1, with a perfect score of 1, 0 for
no skill and negative values indicate that chance estimation of the event
should be preferred (Zambrano-Bigiarini et al., 2017). The HK shows
how well the satellite estimates discriminate between precipitation and
no-precipitation events; ranging from −1 to 1, with a perfect score of 1
and no skill for 0. The HSS, which ranges from minus infinity to 1,
measures the accuracy of the estimates accounting for matches due to
random chance. An HSS< 0 indicates that random chance is better
than the satellite product, an HSS of 0 means the product has no skill,
and an HSS of 1 indicates a perfect estimation of precipitation by the
product (Diem et al., 2014). Finally, the FBI reveals systematic differ-
ences between precipitation events frequency in raingauge observations
and CHIRPS-based precipitation estimates. It can indicate whether
there is a tendency to underestimate (FBI < 1) or overestimate
(FBI > 1) precipitation events, ranging from 0 to infinity with a perfect
score of 1.

4. Results

4.1. Annual precipitation climatology over the Central Andes of Argentina

As a first step, the CHIRPS precipitation estimates were compared
with the rain gauges observations considering the spatial distribution of

Fig. 2. Temporal evolution of the number of anchor stations used for the estimation of CHIRPS dataset within the study area for the period 1987–2016.

Table 2
Statistical measures of performance used for analysis based on continuous
metrics, where: G=rain gauge observations, G = average rain gauge ob-
servations, S=CHIRPS estimations, S = average CHIRPS estimations and
N=number of data pairs.

Statistic Ecuation

Pearson correlation coefficient (PCC)
=

∑ − −

− −
r G G S S

G G S S

( )( )

( )2 ( )2

Mean absolute error (MAE) = ∑ −MAE S G(| |)
N
1

Nash-sutcliffe efficiency (NSE)
= −

∑ −

∑ −
NSE 1 S G

G G
( )2

( )2

Percent bias (PB)
=

∑ −

∑
PB 100 S G

G
( )

Table 3
Contingency table for comparing rain gauge observations and satellite-based
precipitation estimates (precipitation threshold used is 5 mm).

Gauge ≥ threshold Gauge< threshold

Satellite ≥ threshold A B
Satellite< threshold C D

Table 4
Statistical measures of performance used for analysis based on categorical
metrics, where: A=number of hits, B=number of false alarms, C=number of
misses, D=number of correct negatives, N=number of data pairs and Ar
stands for hits that could occur by chance.

Statistic Equation

Probability of detection (POD) =
+

POD A
A C

False alarm rate (FAR) =
+

FAR B
A B

Equitable threat score (ETS) =
−

+ + −
ETS A Ar

A B C Ar
where =

+ +Ar A B A C
N

( )( )

Hanssen-Kuipers discriminant
(HK)

= −
+ +

HK A
A C

B
B D

Heidke skill ccore (HSS) =
−

+ + + + +
HSS AD BC

A C C D A B B D
2( )

( )( ) ( )( )

Frequency bias index (FBI) =
+

+
FBI A B

A C
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the annual average precipitation totals over the study area. This as-
sessment is shown in Fig. 3, considering the climatology for the
1987–2016 period. Regarding Northern Patagonia, observed pre-
cipitation ranges from over 700mm at the high elevations of the con-
tinental divide, between 37° and 40° S, to< 300mm east of the Andes.
At these latitudes, there is a strong precipitation gradient from west to
east due to the rain-shadow effect of the Andes. This spatial pattern of
annual precipitation is properly reproduced by the CHIRPS estimations,
although with an overestimation of the mean annual totals close to the
Andes ranges and an underestimation east of the Andes, between 68° to
70° S. This feature indicates that the precipitation gradient associated to
the rain-shadow effect is magnified considering the satellite estima-
tions. In contrast to the observed 500–800mm close to the higher
elevations of the Andes, CHIRPS shows annual precipitation totals be-
tween 900 and 1300mm (Fig. 3), while precipitation tends to be un-
derestimated by 50mm approximately in the lowlands of Neuquén
province. Considering Cuyo region, the observations show annual pre-
cipitation totals below 150mm over San Juan province (north of 32° S),
while higher values are distributed in the central-eastern portion of
Mendoza province (approximately 34° - 35° S). The mean annual
CHIRPS precipitation estimates over this region show a similar spatial
pattern than the observations, although some regional features are
poorly captured by CHIRPS, as the relative maximum over Uco Valley
(around 34° S; 69.5° W) or the annual totals over the region east of 68°
W (Fig. 3). Moreover, CHIRPS estimations tend to overestimate pre-
cipitation totals over the southwestern portion of Mendoza, close to the
Andes (35.5° S; 70° W), increasing the precipitation gradient as in the
case of Northern Patagonia.

4.2. Annual cycle of precipitation

As previously described in Section 2, the annual cycle of pre-
cipitation shows two distinct regional features related to the atmo-
spheric circulation over the region and its interaction with the Andes
range: a Mediterranean regime close to the higher elevations of the
Andes, where the average precipitation is higher in the cold season than
in the warm season, and a monsoonal regime over the low lands
dominated by convective warm season rainfalls and a relatively dry
cold season. Fig. 4 shows some of the main features of the annual cycle
of precipitation over the CAA. Firstly we classified the rain gauges

according to the seasonal precipitation features, an assessment shown
in Fig. 4 a. The spatial distribution of the rain gauges with higher
precipitation during the warm season is restricted to the region east of
69.5° W approximately. Conversely, rain gauges west of this longitude
show higher precipitation values during the cold season (Fig. 4 a).
CHIRPS estimations reproduce this spatial pattern adequately, therefore
highlighting its ability to discriminate the seasonal climatic features of
precipitation over the CAA. Just in 6 of the 57 locations the CHIRPS
estimates of the annual cycle of precipitation differed from the ob-
servations, with 5 pixels showing higher precipitations during the cold
season (corresponding to the locations of Guido, La Jaula, Arroyo
Hondo, Juncalito and Puesto Papagayos) and one location showing
higher precipitations during the warm season (Paso de Indios), with
observations showing an opposite behavior (Fig. 4 a). These stations are
located in the geographical transition between the influence of the
frontal systems during the cold season and the convective systems
during the warm season. Hence, in this transitional region it is expected
a reduction in the seasonality of precipitation.

To exemplify the seasonal precipitation variability over the region,
Fig. 4 b shows the boxplots of monthly precipitation for six selected
locations. There is a good agreement between rain gauges observations
and CHIRPS estimations considering Mendoza Aero, Rama Caída and
Chochoy Mallín time series. The seasonality of precipitation is correctly
reproduced by satellite estimations, although precipitation values
during the warm semester are slightly underestimated at Mendoza Aero
–especially during January, February and March- and overestimated at
Rama Caída –particularly during November, December, January and
March- (Fig. 4 b). For these 3 sites it can be observed that the variability
of precipitation during the rainy season –represented by the inter-
quartile range- is larger than for the dry season, considering both ob-
servations and CHIRPS estimations, although CHIRPS precipitation es-
timates exhibit less variability than the observations particularly during
the dry season. Additionally, we analyzed the performance of CHIRPS
for 3 locations over the transitional region (Guido, La Jaula and Au-
quinco, Fig. 4 b). As shown in Fig. 4 a, CHIRPS precipitation estimations
for Guido and La Jaula show that the larger precipitation totals are in
the cold season, while observations indicate the opposite, although the
annual cycle in precipitation is not clearly monsoonal. CHIRPS esti-
mations show a double maximum over Guido station, with a summer
peak in February and a winter peak in May and August, while

Fig. 3. Mean annual precipitation over the CAA: a) based on rain gauges observations and b) based on CHIRPS estimations.
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observations show higher precipitations during the warm semester.
Regarding La Jaula station, the seasonal variability of observed pre-
cipitation is not clearly defined. Monthly precipitation totals based on
rain gauges exhibit larger variability than the estimations based on
CHIRPS, with the exception of the month of May. A double maximum
during the cold season is estimated by CHIRPS during May and Sep-
tember, a feature that is also evident at Auquinco station (Fig. 4 b), with
an overestimation of precipitation totals especially during the cold
season.

To further illustrate the differences in the representation of the
annual cycle of precipitation, Fig. 5 shows the scatterplots of the ob-
served precipitation and the CHIRPS estimations averaged over the
rainy and dry season of each location. Considering the 57 locations, the
rainy season estimations show a good agreement with the observations

(PCC=0.86), and similar results can be found considering the stations
with higher precipitation during the warm season (PCC=0.85) or the
stations with higher precipitation during the cold season (PCC=0.89).
Nevertheless, CHIRPS estimations tends to show an overestimation of
precipitation totals mostly over North Patagonia and southwestern
Cuyo –the stations with rainy season during the cold semester-, while
there is a slight underestimation considering the locations with the
rainy season during the warm semester –most of Cuyo region- (Fig. 5 a).
Regarding the dry season estimations, the linear regression considering
the 57 locations indicates a poor agreement between observations and
CHIRPS estimations (PCC=0.27), which indicates that CHIRPS data
misrepresent the precipitation totals during this season. This is parti-
cularly evident considering the stations with dry season during the
warm semester (PCC=0.15), while most of the stations located over

Fig. 4. a) Spatial distribution of the season of higher precipitation amounts for the 57 rain gauges and its correspondent CHIRPS pixel. b) Boxplot of the mean
monthly precipitation for 6 selected stations along the CAA. Each boxplot shows the median and first and third quartiles, while the whiskers extend to the data values
that are 1.5 times the interquartile range above or below the quartiles. Notice that the scale of the monthly precipitation varies among the selected stations.

Fig. 5. a) Rainy season and b) dry season precipitation scatter plots comparing the 57 rain gauges data with the corresponding grids of CHIRPS estimations over the
1987–2016 period, with linear regression fits (black lines) for the stations showing higher precipitation totals during the cold season (squares) and the stations
showing higher precipitation totals during the warm season (circles). The grey dashed line represents a 1:1 relation.
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Cuyo region show an acceptable skill (PCC=0.66) (Fig. 5 b). Once
again, CHIRPS estimations show an overestimation of precipitation
over North Patagonia, with a slight underestimation of dry season
precipitation over most of Cuyo region.

4.3. Spatial distribution of continuous validation statistics

The spatial variations of the continuous statistics used for the vali-
dation of CHIRPS estimations across the CAA are shown in Fig. 6. The
values of PCC show a better agreement between observations and sa-
tellite estimations close to the Andean portion of North Patagonia and

in the lowlands of Cuyo region, with values higher than r=0.6 (Fig. 6
a). Low correlations are observed over the mountainous region of
Mendoza, particularly in the central portion of the province where the
annual cycle of precipitation was poorly captured by CHIRPS. Re-
garding the spatial behavior of the MAE, Fig. 6 b) indicates that higher
errors are located over the northwest of North Patagonia and the
southwestern tip of Cuyo region, with values ranging from 30 to over
50mm. The NSE is above 0.4 in a large portion of Cuyo region, with 16
locations with values higher than 0.65, a threshold that indicates that
CHIRPS estimations are in agreement with observations (Förster et al.,
2016). The NSE values decrease over North Patagonia, even with

Fig. 6. Spatial distribution of the continuous statistics used to measure the agreement between observations and CHIRPS estimations: a) Pearson correlation
coefficient, b) mean absolute error, c) Nash-Sutcliffe efficiency and d) percent bias.

Fig. 7. Systematic and random error components (%) over the CAA for CHIRPS monthly precipitation estimations.
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negative values of efficiency (Fig. 6 c), in coincidence with the region
where larger MAE are observed. The spatial distribution of the PB in-
dicates that CHIRPS estimations over most of North Patagonia region
tend to overestimate precipitation values, with bias larger than 20%
(Fig. 6 d). Over Cuyo region the spatial pattern is heterogeneous but
with a large number of locations showing an underestimation of pre-
cipitation values over the center of Mendoza province, a result pre-
viously shown in Fig. 5. The wet bias over the Andean portion of
Neuquén province is in line with the poor performances considering the
MAE and NSE, even when the PCC between observations and CHIRPS
estimations is above 0.7. Moreover, this result is supported by Fig. 5
considering both the rainy and dry seasons. The MAE, the NSE and the
PB show that the CHIRPS estimations provide a good approximation to
observed precipitation over northern Cuyo region (north of 34° S), even
when the PCC have low values closer to the Andes. Conversely, the
Andean region of North Patagonia has large PCC but the overestimation
of precipitation is translated to high MAE and low NSE.

4.4. Systematic and random errors

Fig. 7 shows the spatial distribution of the systematic and random
components of error over the study area. Considering the systematic
component of CHIRPS estimations, the higher values are observed over
the region that showed large positive PB, high MAE and low NSE (see
Fig. 6), located south of 35° S and west of 69° W (Fig. 7). As observed in
Fig. 4, the overestimation of precipitation over this region, especially in
the winter, and the misrepresentation of the dry season totals can be
factors that contribute to the systematic error. The areas with low
systematic error can be associated with the blending procedure using
rain gauges measurements, given that the spatial pattern resembles the
distribution of the anchor stations used for CHIRPS estimations (not
shown). Over this region, the systematic component is less than the
random error component (Fig. 7) and corresponds to the areas with low
MAE, PB and high NSE (see Fig. 6).

4.5. Performance based on categorical validation statistics

To measure algorithm performance for different rain rates it is
useful to plot the categorical scores as a function of an increasing
precipitation threshold (Ebert, 2007). For this purpose, multiple
monthly precipitation thresholds have been considered to calculate the
statistics: 1, 5, 10, 20, 50 and 100mm. Fig. 8 shows the results of the
performance based on the categorical statistics. The POD (Fig. 8a)
ranges between 0.8 and 1 for low precipitation values (1, 5 and 10mm
thresholds) considering all the months and both warm and cold seasons.
This good performance is observed also for large precipitation values
during the cold season, with stabilization around POD=0.75; never-
theless, during the warm season the performance for large precipitation
totals shows POD values lower than 0.1 for the 100mm threshold
(Fig. 8a). The behavior of the FAR shows an increase as the precipita-
tion threshold increases, with larger values for the warm season in
comparison to the cold season, particularly for the months with pre-
cipitation larger than 100mm (Fig. 8b). In this sense, 80% of the pre-
cipitation detections above 100mm during the warm season were in-
correct, with most of these events occurring over Cuyo region. The ETS
shows that the maximum detection skill during the warm season was
achieved for a threshold of 20mm, with a value of 0.23 (Fig. 8c), with
almost no skill for precipitation exceeding 100mm. Considering all the
months, precipitation thresholds exceeding 20mm shows the best de-
tection skill, with a value closer to 0.3. The best performance is ob-
served during the cold season for monthly precipitation higher than
20mm (ETS~ 0.4). A similar behavior is observed for the HSS, al-
though with larger values for this categorical metric (Fig. 8d). Perfor-
mance evaluated through the HK score indicates a low skill for all the
thresholds, with negative values for higher monthly precipitation totals,
i.e. performance inferior to a random estimation (Fig. 8e). Regarding

the FBI, it can be observed an overestimation of precipitation totals in
all the thresholds, considering all the months and the cold season
(Fig. 8f). For the thresholds between 5 and 20mm, the warm season
shows the largest overestimations, while the cold season shows the
lower overestimations. For thresholds of 50 and 100mm there is an
opposite seasonal behavior in the FBI, with large overestimation during
the cold season and underestimation of precipitation totals during the
warm season.

4.6. Precipitation performance at different elevation

Given the complex topography of the CAA, this study assessed the
dependence of CHIRPS's performance on elevation. In order to achieve
this, the rain gauges were classified in five groups considering their
elevation: 0–700m (10 stations), 700–1000m (9 stations),
1000–1300m (13 stations), 1300–1500m (13 stations), and> 1500m
(12 stations) (see Table 1). The results for the continuous validation
statistics are shown in Table 5. For the PCC, NS and PB, stations located
between 700 and 1000m.a.s.l. showed the best performance, while the
MAE shows lower values for the stations located at elevations lower
than 700m. As the elevation increase, the statistics indicate that the
performance of CHIRPS tends to decrease. For example, the lower PCC
and NS are observed for the stations located above 1500m (Table 5).
Nevertheless, the higher values in MAE and PB are observed for the
stations located between 1000 and 1300m. In order to complement
these results, we plotted the categorical POD, FAR, HSS and FBI sta-
tistics for the five selected elevation ranges and different thresholds to
identify precipitation (Fig. 9). The best performance considering the
POD is observed in the stations located between 1000 and 1300m, with
values between 0.8 and 1 (Fig. 9a). This behavior resembles the result
obtained for the POD of the winter season (Fig. 8), which is typically
the rainy season over the stations located at this altitude. Higher dif-
ferences in POD for each altitude range are observed for thresholds
higher than 50mm, with the worst performance observed for pre-
cipitation higher than 100mm in the stations located between 0 and
700m. Nevertheless, the FAR for this group of stations shows the best
performance for all the selected thresholds (Fig. 9b). Higher FAR values
are observed for the stations located at higher altitudes. The HSS shows
that the best performance is observed for the stations located between 0
and 1000m, particularly for thresholds of 10 and 20mm (Fig. 9c). The
group of stations located between 1000 and 1300m have the best
performance for precipitation higher than 100mm. Finally, the FBI
shows precipitation overestimation for the stations located over 1000m
for all the selected thresholds (Fig. 9d). Underestimation of precipita-
tion totals is observed for the stations located below 1000m, con-
sidering a threshold higher than 50mm. This result is in line with the
findings observed in Fig. 8f, given that the rainy season of the stations
located at lower elevations is recorded during summer. Additionally,
large positive FBI is observed for the stations located between 1000 and
1300m, particularly for high precipitation thresholds, a result that is
mainly associated to winter precipitation totals.

4.7. Temporal evolution of regional precipitation

In order to illustrate the temporal behavior of observed and esti-
mated precipitation, the time series of the 57 locations were averaged
considering its rainy season (see Fig. 4a for the spatial distribution).
This allowed to obtain two regionally-averaged time series comprising
the stations that have higher precipitation amounts during the warm
and cold seasons. Even when this clustering seems arbitrary, it is phy-
sically meaningful given that separates one of the main features of
precipitation over the CAA. Fig. 10 show the comparison of the re-
gionally-averaged time series of observed and estimated precipitation,
together with the difference between the time series for each region.
Precipitation variability at the stations with warm season maximum
shows that the peaks in precipitation are not appropriately represented
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by CHIRPS, with an underestimation of the precipitation amounts
mostly during the warm season (Fig. 10a). It was observed that in
several years the magnitude of this dry bias was higher than 50mm
(1994, 1997, 1998, 2007 and 2014), representing almost half of the
precipitation accumulated during the summer season over the region.
Nevertheless, there is a good agreement between both regional ob-
servations and CHIRPS estimations (PCC=0.86), with a PB of −11%
and a MAE of 15.3 mm. Considering the time series of the stations with

precipitation peak during the cold season, Fig. 10b shows that the an-
nual cycle is accurately captured by CHIRPS estimations (PCC=0.82),
even in the years where a double maximum in precipitation was ob-
served (see for example the years 1999 and 2001; Fig. 10b). However,
the difference between observations and estimations shows a wet bias
that is mostly evident during the cold season, with values that can be
larger than 100mm especially during the months of May of 1992, 1993,
1999, 2001, 2005, 2012 and 2016. The large values of precipitation
estimated by CHIRPS during the month of May are in line with the
extremes of Fig. 4b in La Jaula and Auquinco stations during this par-
ticular month (see the whisker above the quartiles). Just in few months
the CHIRPS estimations showed a dry bias, a result that is in line with
the PB statistic for this region considering the complete period of
analysis (PB=65.8%).

Considering Fig. 10, we focused mainly on the assessment of pre-
cipitation bias during the rainy season, which is usually translated to an
annual precipitation bias as observed in Figs. 3 and 5. Nevertheless,
during the dry season CHIRPS estimations show precipitation occur-
rences in most of the months, with just few cases of zero precipitation

Fig. 8. Categorical verification of monthly CHIRPS precipitation estimates for the complete period and during the warm and cold seasons over the CAA as a function
of the threshold value chosen to separate the precipitation/no-precipitation events: a) probability of detection, b) false alarm rate, c) equitable threat score, d)
Hanssen-Kuipers discriminant, e) Heidke skill score and f) frequency bias index.

Table 5
Performance of the continuous validation statistics as a function of different
elevation.

Elevation categories (m.a.s.l.)

Continuous metrics 0–700 700–1000 1000–1300 1300–1500 >1500
PCC 0.708 0.744 0.715 0.606 0.470
MAE 14.464 16.008 33.653 26.077 24.353
NS 0.466 0.520 0.133 −0.149 −0.377
PB −19.560 6.678 64.477 30.158 34.640
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during the 30 years period. This characteristic arise from a screening
procedure developed to remove “false zeros” in the CHIRPS estima-
tions, given that national and global precipitation datasets have a
substantial number of values that have been incorrectly reported as
zeros (Funk et al., 2014). Similar results have been previously reported
over Cyprus (Katsanos et al., 2016b) and Chile (Zambrano et al., 2017).

5. Discussion

The point-to-pixel comparison of monthly precipitation data from
57 rain gauges over the CAA with the relatively new CHIRPS
dataset allowed to identify its accuracy for estimating the amount,
timing and spatial distribution of regional precipitation. This dataset is
unique regarding spatial resolution (0.05°) and allows the study of
precipitation variability for the past 37 years in high resolution. Given
the lack of rain gauges and the complexity of the Andes range, accurate
estimations of precipitation gradients by interpolation methods can be
affected by large uncertainties. The CHIRPS precipitation dataset blends
in more station data than other products and uses a high-resolution
background climatology, providing better estimates of precipitation
means and variations, resulting in a better hydrologic state (Shukla
et al., 2014). Our results showed that the validation statistics indicated
a relatively good agreement between the CHIRPS precipitation esti-
mates and ground precipitation measurements over the CAA. However,
a large wet bias (PB=65.8%) was observed in monthly precipitation
totals especially over the region where the seasonal cycle of precipita-
tion has a maximum during the cold season (North Patagonia, western
and southern Cuyo). The annual cycle and the interannual variability of
precipitation over North Patagonia was accurately represented by
CHIRPS estimations (PCC=0.82), but an overestimation of precipita-
tion during the wet season (cold semester) resulted in large errors
(MAE=34.7 mm) particularly for high precipitation totals.

One of the causes of this discrepancy between observed and

estimated precipitation can be associated to the number of anchor
stations used in the creation of CHIRPS, which was shown in section 2
as a deficient aspect in the generation of the product and highlights this
assessment as an independent validation. Another source of uncertainty
was the duplication of data from different sources. We observed that
several anchor stations were included from global datasets like the
Global Summary of the Day (GSOD) and the Global Historical Clima-
tology Network (GHCN) with the same name but with different loca-
tion. As an example, during March 2010 we found that data from San
Juan and Neuquén stations was duplicated from these two global da-
tasets. Considering San Juan station, coordinates from GHCN are 31.5°
S, 68.699° W, elevation of 630m; while GSOD data shows that location
is 31.4° S, 68.417° W, with an elevation of 597m. In the case of Neu-
quén station, GHCN data has a location in 39° S, 68.27° W with an
elevation of 270m; while the coordinates from GSOD data are 38.95° S,
68.13° W, elevation of 273m. The information for this example can be
accessed at ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/
diagnostics/monthly_station_data/2010.03.csv, and the following link
has the information about the monthly station data for the complete
CHIRPS period: ftp://ftp.chg.ucsb.edu/pub/org/chg/products/
CHIRPS-2.0/diagnostics/monthly_station_data/. For CHIRPS calcula-
tion, stations were only added to the anchor list if they were outside of a
10-km radius from any station already in the list, assuming that stations
within the 10-km radius to be duplicates (Funk et al., 2014). In this
sense, a difference in the location of the rain gauges depending on the
data source could led to a deficient blending, resulting in a mis-
representation of precipitation based on CHIRPS estimates.

Finally, another cause that can led to the overestimation of CHIRPS
over North Patagonia region can be related to the precipitation esti-
mates based on infrared cold cloud duration observations. In a valida-
tion of daily satellite precipitation estimates over South America, Salio
et al. (2015) found that the greatest difficulties for these products to
reproduce the main features of precipitation were shown to arise in

Fig. 9. Categorical metrics performance at different elevations as a function of the threshold value chosen to separate the precipitation/no-precipitation events: a)
probability of detection, b) false alarm rate, c) Heidke skill score and d) frequency bias index.
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mountainous areas and in non-convective precipitation events, features
present over North Patagonia region during the rainy season. Moreover,
the overestimation generated by evaporation of precipitation below the
cloud base before reaching the surface, a condition present in arid to
semi-arid regions like the study area (Hobouchian et al., 2017), could
be playing a major role in the performance of CHIRPS estimations.
Further studies are needed to quantify in detail these possible sources of
error, for which observations at higher altitudes will be necessary to
provide a proper characterization of precipitation over the study area.

6. Conclusions

We performed a validation of CHIRPS precipitation dataset along
the Central Andes of Argentina with monthly data that covers a recent
period of 30 years (1987–2016). This kind of validation is un-
precedented in the study area given the number of rain gauges used and
the available period of records for a satellite product. This study used
observations from at least 45 rain gauges not included as anchor sta-
tions for the calculation of CHIRPS estimations, therefore it can be
considered an independent validation.

CHIRPS estimations reproduce adequately several characteristics of
precipitation along the CAA as the seasonal and interannual variability
and the spatial patterns of precipitation. In general, the ability of
CHIRPS data to capture the seasonal precipitation totals is higher in the
rainy season rather than in the dry season. This dataset shows a slight
underestimation (PB=−11%) of precipitation along Cuyo region,
particularly associated to the areas where the rainy season takes place
during the warm semester. However, there is a wet bias over North
Patagonia region (PB=65.8%) as a consequence of an overestimation
of precipitation mainly during the wet season –cold semester-, leading

to an average mean absolute error larger than 34mm. Over the rainiest
locations of North Patagonia, the overestimation of the higher values of
precipitation can be larger than 100mm per month, showing that the
performance of CHIRPS is dependent on the representation of the
dominant precipitation systems. Moreover, the complexity of the to-
pography can introduce uncertainties in precipitation estimations that
the blending with stations could not reduce, given the limited number
of anchor stations used in the construction of CHIRPS. In this sense,
stations located above 1000m.a.s.l. showed the lowest performance in
most of the validation statistics, although precipitation detection is
accurately captured. The use of the freely available data from the SSRH
in the blending procedure could improve the final CHIRPS product,
although the number of rain gauges is still scarce for the study area.

In general, the CHIRPS dataset, conceived primarily to support
agricultural drought monitoring, is a promising tool to assess pre-
cipitation variability over the CAA and particularly over Cuyo region.
This semi-arid region is vulnerable to climate variability, ranging from
drought conditions that generate wildfires to extreme precipitation
events that produce landslides and debris flows over the Andes. In this
sense, a continuous observing system updated regularly is essential to
monitor precipitation variations over Cuyo. Drought monitoring over
this region was traditionally based on the SPI (Penalba and Rivera,
2016). The use of the SPI with the CHIRPS estimations –a combination
recently applied over Africa (López-Carr et al., 2014); Chile (Zambrano
et al., 2017) and Southeast Asia (Guo et al., 2017)- can contribute to
improve flood and drought monitoring and understanding with an
adequate spatial detail and over a variety of time scales, likely leading
to enhanced climate services for water managers and agricultural
planners.

Fig. 10. Monthly regional time series of observed and estimated precipitation for the period 1987–2016. The difference between observations and CHIRPS is also
presented. a) average of stations with rainy season during the warm season, b) average of stations with rainy season during the cold season.
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