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Nitrogen mineralization indicators under semi-arid and
semi-humid conditions: influence on wheat yield and nitrogen
uptake
Juan M. Martínez a, Juan A. Galantini b, Matías E. Duval c, María Rosa Landriscinia,
Ramiro J. Garcíac, and Fernando Lópezc

aCentro de Recursos Naturales Renovables de la Región Semiárida, Universidad Nacional del Sur (UNS)-CONICET,
Bahía Blanca, Argentina; bComisión de Investigaciones Científicas (CIC), La Plata, Argentina; cDpto. Agronomía,
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ABSTRACT
The objectives were i) to assess indicators for potential nitrogen (N) miner-
alization and ii) to analyze their relationships for predicting winter wheat
(Triticum aestivum L.) growth parameters (yield and N uptake, Nup) in
Mollisols of the semi-arid and semi-humid region of the Argentine
Pampas. Thirty-six farmer fields were sampled at 0–20 cm. Several N miner-
alization indicators, wheat grain yield and Nup at physiological maturity
stage were assessed. A principal component (PC) analysis was performed
using correlated factors to grain yield and Nup. The cluster analysis showed
two main groups: high fertility and low fertility soils. In high fertility soils,
combining PCs in multiple regression models enhanced the wheat yield
and Nup prediction significantly with a high R2 (adj R2 = 0.71–0.83). The
main factors that explained the wheat parameters were associated with
water availability and N mineralization indicator, but they differ according
to soil fertility.

Abbreviations: N: nitrogen; SOM: soil organic matter; POM: particulate
organic matter; SOC: soil organic carbon; SON: soil organic nitrogen; POM-C:
particulate organic carbon; POM-N: particulate organic nitrogen; Nan: anaero-
bic nitrogen; Nhyd: hydrolyzable N; NO3-N: cold nitrate; N205: N determined by
spectrometer at 205 nm; N260: N determined by spectrometer at 260 nm; Pe:
extractable P; Nup: wheat N uptake; NO3-N: inorganic N in the form of nitrate;
FR: fallow rainfalls (March-Seeding rainfall); FLR: flowering rainfalls (October-
December rainfall); GFR: grain filling rainfall (November rainfall); CCR: crop
growing season rainfall (June-December rainfall); PCA: principal component
analysis; PC: principal component; MR: multiple regression
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Introduction

Nitrogen (N) is a major yield-limiting nutrient in agricultural areas, especially for grain crops (St. Luce
et al. 2011). Understanding N dynamics is crucial for enhancing N-use efficiency and sustainability of
production systems (Martínez et al. 2016). It is widely acknowledged that crop response to nitrogen
fertilizers is inversely related to the soil’s ability for making N readily available to plants (Curtin and
MacCallum 2004).

The Argentine Pampean region is known as one of the most important world grain-producing
areas, with wheat (Triticum aestivum L.), corn (Zea mais L.), and soybean (Glycine max L. Merr.) as
its main crops (Martínez et al. 2017). The wheat crop is the basis of the production systems in a wide
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region of the Southwest in Argentina´s Pampas (Martínez, Galantini, and Landriscini 2015). Its
yields are influenced by weather conditions and soil properties, forcing to maximizing the N use
efficiency.

Available soil N is primarily produced by mineralization of soil organic matter (SOM), which
supplies 50 to 80% of the N needed by the crop (Kundu and Ladha 1995) and can release N to
enhance crop yield in the short term or retain N to maintain crop productivity in the long term.
Soil organic N-forms account for as much as 90% of total N in the topsoil. Even though the
N-content in soils is high, it is estimated that only 1 to 3% of total organic N is mineralized
(Curtin and Wen 1999). Intensive farming practices over the last few years have resulted in
decreased SOM content in the Argentine Pampas (Duval et al. 2013). At the same time,
conservation systems such as no-tillage (NT) have affected the N-mineralization capacity of
soils, due to the increase of the active fraction of organic N as a result of crop residue
accumulation on the soil surface (Mikha and Rice 2004). However, the overall effect of this
fraction remains unclear in view of studies reporting that organic N enhancement under this
system is not necessarily associated with an increase in N-mineralization.

Most estimates on N-supply through soil mineralization are based on long-term aerobic incuba-
tions (Martínez and Galantini 2017), but this is a time-consuming method (Walley et al. 2002).
Research has focused on developing a number of chemical and biological methods or indicators that
can perform estimates in a fast and simple way (Martínez and Galantini 2017). Laboratory proce-
dures often fail to include the environmental factors governing mineralization rates. Chemical
methods help determine the pool size of mineralizable N alone, but they do not determine the
rate-regulating factors. Biological methods, instead, estimate the pool of mineralizable N and can
measure the substrate quality by developing a rate constant.

Some studies have shown that it is possible to explain in part the variability in crop yield by
considering soil attributes (Kravchenko and Bullock 2000; Shukla, Lal, and Ebinger 2004), N
mineralization indicators (Appel and Mengel 1993; Giroux and Tran 1987) or the combination
within soil properties and N mineralization indicators (Nyiraneza et al. 2009). Combining factors
could help to explain a greater proportion of the variability in crop yield and Nup. However, as was
mentioned by different authors (Bowerman and O’Connell 1990; Martínez, Galantini, and Duval
2018; Nyiraneza et al. 2009) using multiple regressions (MR) could result in multicollinearity
between the factors of the model. One way to reduce the multicollinearity and see the relationships
of all variables in different dimensions is using the principal component analysis (PCA). Principal
component analysis helps to avoid these problems by grouping highly correlated parameters into
principal components (PC). Those PCs can be used as a new set of independent variables for
regression analysis (Mallarino, Oyarzabal, and Hinz 1999; Martínez, Galantini, and Duval 2018;
Shukla, Lal, and Ebinger 2004).

The N mineralization methodologies can evaluate different mineralized pools of the total soil
N (Schomberg et al. 2009; Walley et al. 2002). On the other hand, Kay et al. (2006) reported that
estimates on fertilizer needs of crops, which are based on N mineralization indicators, should be
combined with weather conditions. As Kravchenko and Bullock (2000) reported, yield variability
is caused by several factors; however, the challenge is to identify measurable factors that, in
combination, describe an agronomically useful portion of crop variability. Our hypothesis was
that wheat yield and Nup can be better predicted by combining N mineralization indicators and
rainfalls during the crop growing season, however, this prediction is related to the soil organic
fractions (soil fertility). The objectives of this study were i) to assess indicators for potential N
mineralization and ii) to analyze their relationships for predicting winter wheat growth para-
meters (yield and Nup) in Mollisols of the semi-arid and semi-humid region of the Argentine
Pampas. In this study, PCA coupled with MR was used with a set of N mineralization indicators
and most important rainfalls that better explain the variations in wheat yield and Nup in soils
under these conditions.
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Material and methods

Study site: soil sampling and crop management

During 2010 and 2011 thirty-six (36) farmer fields cultivated with wheat under NT were sampled.
The sites were located in the semi-arid (600–700 mm isohyets) and semi-humid region (700–
800 mm isohyets) in the southwest of the Argentine Pampas (Figure 1).

Predominant soils were Mollisolls (Typic Argiudoll, Argiudoll and Argiustoll) (Soil Survey Staff
2010) developed in aeolian sediments (loess), with a wide range of depth fluctuation, texture, soil
organic carbon content and fertility (Álvarez and Lavado 1998). The rainfall gradient determines an
udic soil moisture regime for continental sites and ustic for sites next to the coast. Rainfall amount
and frequency are irregular for all sites, the rainiest seasons being in autumn (March-April) and
spring (September-October). All soils had been under continuous agriculture for 10–15 years under
NT. This system was characterized by the absence of tillage with over 30% residues covering the soil
surface in all fields. In general, herbicide (1–2 L ha−1 of glyphosate) was applied for weed control and
for initiating the chemical fallow. When farmers applied fertilizers, fields were fertilized with
10–20 kg P ha−1 year−1 as diammonium phosphate (18–46-0) at crop seeding. The wheat seeding
was approximately in June-July, whereas, the harvest was at the beginning or mid -December.

Three georeferenced sampling areas of about 50 m2 were selected in each field (n = 36); they were
representative of the fields to reduce spatial variability. A composite soil sample (16 and 20 soil
cylinders) was collected from each sampling area (replications) at each field. Sampling was per-
formed at 0–20 and 20–60 cm depths in winter, prior to wheat seeding. Site characteristics were
shown in Table 1. Data on annual mean, maximum and minimum temperature, annual and crop
growing season rainfall were collected from SMN (National Weather Service) weather stations.

Soil chemical and physical analyses

Soil samples collected at sowing in 0–20 cm depth were air dried and analyzed for the following soil
parameters: soil organic carbon (SOC) by dry combustion with a Leco automatic analyzer (Leco
Corporation, St Joseph, MI), soil total N (SON) by Kjeldahl method (Bremner 1996), extractable
phosphorus (Pe) (Bray and Kurtz 1945) and pH on a 1:2.5 soil-water suspension. In soil samples of

Figure 1. Site location in the southwest of the Argentine Pampas. Sites located within the 600–700 mm (CR = Coronel Rosales;
LO = Las Oscuras; CP = Coronel Pringles; S = Saldungaray) and 700–800 mm (T1 = Tornquist 1, T2 = Tornquist 2, Tornquist 3,
P = Pigüé) isohyet were classified as semi-arid and semi-humid, respectively.
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0–20 and 20–60 cm, available N as form of total inorganic N (NO3-N+NH4-N) was analyzed by
steam distillation (Mulvaney 1996).

Soil texture was estimated by particle size fractionation of SOM (Duval et al. 2013), subtracting
the percentage of SOC from each fraction (higher and lower than 53 microns) and estimating the
sand and the fraction silt plus clay. The soil chemical and physical properties are shown in Table 2.

Crop yield and crop N-uptake

At physiological maturity, the above-ground biomass of wheat was harvested manually from two
0.25 m2 areas per sampling point. The dry matter was determined after drying in a forced-air oven at
60°C for at least 72 hours. The grain was separated from the straw and they were both weighed. The
N concentration in the total aerial biomass (grain and straw) was determined by the standard micro-

Table 1. Soil and climatic characteristics of the sites.

Rainfall

Previous crop Tmax annual CCRc

Sites n Soil Clasificationa (%) MATb (°C) Tmin (mm)

Tornquist 1 (T1) 2 Typic
Argiudoll

Wheat (50)
Sunflower (50)

14 21 8 740 417

Tornquist 2 (T2) 3 Typic
Argiudoll

Barley(33)
Sunflower (33)
Oat (33)

14 21 8 756 388

Tornquist 3 (T3) 2 Typic
Argiudoll

Wheat (50)
Sunflower (50)

14 21 8 741 497

Pigüé (P) 4 Typic
Argiudoll

Soybean (100) 14 20 7 800 464

Coronel Rosales (CR) 3 Entic Haplustoll Barley (100) 15 21 9 664 285

Las Oscuras (LO) 12 Typic
Argiustoll

Wheat (50); Pea (25);Maize (25) 15 21 9 669 317

Coronel Pringles (CP) 2 Typic Haplustoll Wheat (50); Barley (50) 15 21 8 686 331

Saldungaray (S) 8 Typic
Argiustoll

Wheat (64); Sunflower(24); Virgin (12) 15 21 8 694 307

aSoil Survey Staff (2010). bMAT, mean annual temperature.cCrop growing season rainfall. Tmax, annual mean maximum tempera-
ture; Tmin; annual mean minimum temperature. n, number of fields per site. Previous crop, in parenthesis % of the previous crop
in the n fields per site. Predecessor crops: Wheat (Triticum aestivum L.); Barley (Hordeum vulgare L.); Sunflower (Helianthus annus
L.); Oat (Avena sativa L.); Soybean (Glycine max. L Merr.); Pea (Pisum sativum L.).

Table 2. Soil properties at 0–20 cm and nitrogen availability at 0–60 cm of the sites.

Sites n

SOC Available N Pe

pH

silt+clay

(g kg−1) (mg kg−1) (g kg−1)

T1 2 19.2(1.5) 8.1(4.0) 6(1.2) 6.3(0.2) 480(89)
T2 3 20.0(5.5) 7.4(7.6) 28(16) 6.4(0.1) 567(86)
T3 2 21.8(1.9) 6.7(7.4) 26(2.8) 6.4(0.4) 606(61)
P 4 14.3(5.0) 30(14) 15(5.4) 6.2(0.2) 411(171)
CR 3 14.4(1.5) 13 (13) 3(2.9) 6.1(0.2) 536(101)
LO 12 10.0(1.9) 11(7.7) 12(0.5) 6.0(0.2) 344(150)
CP 2 26.3(4.8) 7.9(4.2) 13(7.1) 6.5(0.8) 618(82)
S 8 21.3(7.2) 27(21) 10(8.5) 7.1(0.6) 523(67)

n, number of fields by site; SOC, soil organic carbon (g kg−1); Available N, soil inorganic nitrogen (NO3-N+NH4-N) at crop seeding at
0–60 cm (mg kg−1); Pe, extractable phosphorus (mg kg−1). Values in brackets indicate standard deviation.
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Kjeldahl method (Bremner 1996); the values obtained were then used to estimate Nup by the aerial
biomass of the wheat (kg N ha−1). Grain yield and Nup were considered as wheat parameters across
the manuscript.

Indicators of nitrogen mineralization

Several methods were evaluated to analyze the potential N-mineralization at 0–20 cm soil layer:
short-term anaerobic incubation (Nan) (Waring and Bremner 1964); hot chemical hydrolyzable N
(Nhyd) (Gianello and Bremner 1986); N205 and N260 (MacLean 1964); SON (Schomberg et al. 2009);
N in particulate organic matter (POM-N) (Sharifi et al. 2007), and NO3-N (Spargo et al. 2009). Data
are presented in concentrations (g kg−1; mg kg−1).

Anaerobic nitrogen
Anaerobic nitrogen (Nan) was determined following the method by Waring and Bremner (1964) in a
short-term anaerobic incubation. Briefly, 5 g of soil was put into a test tube and 25 mL of distilled
was added. The tube caps were securely tightened and then incubated at 40°C for 7 days under
anoxic conditions. After incubation, the samples were transferred to a distillation flask and 25 mL of
4 mol L−1 potassium chloride (KCl) was added; ammonium (NH4)-N was determined by steam-
distillation (Mulvaney 1996). The Nan was calculated by subtracting the quantity of inorganic N
-extracted with 2 mol L−1 KCl in non-incubated samples at room temperature- from the amount in
the incubated extract.

Chemical hydrolyzable nitrogen
Labile N was chemically extracted by soil digestion with a strong salt solution of 2 mol L−1 KCl, as
described by Gianello and Bremner (1986). The procedure consisted in digesting 3.00 g of soil in 20
mL of the solution at 100°C for 4 hours in a block digester. Then, the sample was cooled and NH4-N
was determined by steam distillation (Mulvaney 1996). The initial soil NH4-N was extracted at room
temperature and hydrolyzable N (Nhyd) was determined.

Cold nitrate-extraction
Briefly, 5.00 g of air-dried soil was added to 50 mL of 2 mol L−1 KCl. Samples were shaken for
30 min at 290 rpm and centrifuged. The extract was filtered and N in nitrate form (NO3-N) was
determined by steam distillation (Mulvaney 1996).

Determination by UV–visible spectrophotometry
The procedure was performed according to the method described by MacLean (1964). Five grams
of soil were added to 100 mL of 0.01 mol L−1 NaHCO3. The suspension was shaken for 15 min in
a 250mL Erlenmeyer flask. The samples were centrifuged and the suspensions were filtered
through a Whatman 42 filter paper. Then, absorbance was measured at different wavelengths
(200, 205, 210, 220, 230, 240, 250, 255, 260 and 270 nm). However, this study reported data for
205 (N205) and 260 nm (N260) wavelengths. When making measurements at 200, 205 and 210 nm,
two drops of concentrated HCl were added to remove carbonate wavelength peaks, as these
ranges may be absorbed. It is important to note that carbonates were not found in any of the
samples. Quartz cells and a T60U UV-visible spectrophotometer (PG Instruments) were used for
measuring.

Soil physical fractionation by particle size
Fractionation of SOM by particle size was carried out by wet sieving (Duval et al. 2013). Briefly, 50 g
of previously air-dried soil was sieved (2 mm) and dispersed in 120 ml glass vials with 100 ml of
distilled water. Ten glass beads (5 mm in diameter) were added to increase aggregate fragmentation
and reduce potential problems created by different sand contents. The samples were mechanically
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dispersed in a rotary shaker for about 16 hours (overnight) at 40 rpm to disintegrate the aggregates.
They were then passed through a pair of 53 and 100 micron diameter mesh sieves, which were
moved back and forth until the water passing through the finest mesh sieve was clear to the naked
eye. Three different fractions were thus obtained: i) a coarse fraction (100–2000 microns) containing
coarse particulate organic carbon (cPOM-C) and medium plus coarse sands; ii) a medium fraction
(53–100 microns) with the fine particulate organic carbon (fPOM-C) and very fine sand; iii) a fine
fraction (<53 microns) which included the mineral-associated organic carbon and silt plus clay
minerals. The fine fraction was not used in this study. Carbon content in the coarse and medium
fractions was determined using the same method as for SOC determination. Total particulate organic
carbon (POM-C) was obtained by adding cPOM-C and fPOM-C contents. The N in the cPOM-N
and fPOM-N (cPOM-N+ fPOM-N = POM-N) was determined using the same method as for SON.

Statistical analysis

The cluster analysis was performed for grouping soil according to soil organic fractions (SOC, SON,
POM-C; POM-N), using Ward’s minimum variance method (Ward 1963). The cluster cutting was
performed in 50% of the total distance (Balzarini et al. 2008). Differences between N mineralization
indicators by Cluster were analyzed using ANOVA. Descriptive statistics and differences of grain
yield and Nup were performed by groups of soil by ANOVA with least square difference at 0.05. The
N mineralization indicators were analyzed with descriptive statistics. Pearson´s correlation analysis
was performed among grain yield and Nup with N mineralization indicators and rainfalls: fallow
rainfalls (FR) (Mar-Jul), Flowering rainfall (FLR) (Sept-Oct), grain filling rainfall (GFR) (November)
and crop growing season rainfall (CCR) (Jul-Nov). The PCA was used to group the highly correlated
variables in terms of a few factors. It was performed on the significant correlated N mineralization
indicators and rainfalls to the wheat parameters. This multivariate analysis was employed as a data-
reduction tool to select the most appropriate factors, through which the number of independent
variables could be reduced and problems related to multicollinearity could be eliminated (Li et al.
2013; Martínez, Galantini, and Duval 2018). Only PCs with eigenvalues >1 were retained for the
regression analysis, because they explained the data variability. Within each PC, variables receiving
weighted loading values within 10% of the highest weighted loading were selected for each PC (Li
et al. 2013). Multiple regressions were performed using the PC>1 by multivariate analysis for
predicting grain yield and Nup (dependent variables) by means of the stepwise model with a
maximum P-value of 0.05 for input and output. The MR model was used to determine the best
combination of PC that maximize the prediction of them. All statistical analyses were performed
with Infostat software (Di Rienzo et al. 2013).

Results and discussion

Rainfall conditions

In general, rainfall was concentrated in the periods from January to March and September to
December, with variations between years (Figure 2). In 2010, rainfall was marked by periods of
drought with respect to the historical rainfall, during the winter months and the grain filling period.
In 2011, the drought was in September and October (spring), increasing significantly in November,
coinciding with the grain filling period of the wheat. Accumulated rainfalls by year were: 693 and
777 for 2010 and 2011, respectively.

Grouping soils by fertility

The cluster analysis based on soil organic C and N fractions showed two main clusters (Figure 3).
Cluster A contained five sites (n = 19) with high proximity, and Cluster B included three sites
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(n = 17). The differences between edaphic properties considered for cluster analysis are detailed in
Figure 4. Significant differences (P < 0.05) in SOC; POM-C; silt and clay, SON and POM-N were
found by grouping cluster, with higher values in Cluster A. This showed that soils could be grouped
according to their fertility: Cluster A, high fertility soils and Cluster B, low fertility soils. Because
many of the methods used to estimate N availability measure, in part, the release of N from some
component of the SOM pool (Walley et al. 2002), it is important to analyze the differences in SOM
and its fractions when analyzing the N mineralization indicators in different soils. The cluster
analysis allows separating soils in accordance with their fertility.

Wheat yield and N uptake at physiological maturity

Significant differences in grain yield and Nup were found between groups of soil. Wheat yields were
2823 and 2121 kg ha−1 for high fertility and low fertility soils, respectively (Figure 5). Considering
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the grain yield, a lower coefficient of variation (CV) was observed in low fertility soils, showing a
better stability in yields across sites (data not shown). The Nup were 91.3 and 71.4 kg ha−1 for high
fertility and low fertility soils, respectively (Figure 5). For this variable, no differences were obtained
in the CV regarding soil fertility (data not shown). It is important to note that separating soils
according to soil fertility allowed finding differences in grain yield and Nup.

Nitrogen mineralization indicators

The results of the N mineralization indicators are presented in Table 3. Broad ranges in values of N
mineralization indicators were observed considering all soils, thus showing a greater coefficient of
variation (CV = 35–80%) (data not shown). The ranges for each wavelength (N205 y N260) are similar
to those reported by Hong, Fox, and Piekielek (1990) in 49 N-fertilized maize (Zea mays L.) assays in
Pennsylvania, and by Sharifi et al. (2007) in the top 15 cm of soils under different crops and in
different climates. Serna and Pomares (1992) observed that the highest values of N205 and N260 were
found in sandy soils and the lowest values in clay soils; however, in this study no differences were
observed because the soils in the studied area are coarse-textured. The average Nan values varied
within a range also cited by other authors (Sahrawat 1983; Schomberg et al. 2009), who worked on
soils with different edaphic conditions. The lower standard deviation in Nhyd, confirmed the lower
variation in values as reported by Wang et al. (2001), who worked on different soils in Eastern
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Australia. However, these values were higher than those reported by Schomberg et al. (2009), who
carried out their research in the southeast of USA at 0–5 and 5–15 cm depths.

Considering groups of soil, significant differences between them were found in SON, POM-N,
Nan and Nhyd, with greater values in high fertility soils (Table 3). These differences between N
mineralization indicators evidenced that these indicators were different in accordance with soil
fertility.

Considering the correlations among N mineralization indicators (data not shown), highly sig-
nificant relationships (P < 0.01) were found between Nan and SON (r = 0.69), POM-N and SON
(r = 0.70); POM-N and Nan (r = 0.45); Nhyd and N205 (r = 0.41); Nhyd and Nan (r = 0.43). Analyzing
the indicators that showed significant differences between soil groups, in high fertility soils highly a
significant correlation (P < 0.05) was found between POM and SON (r = 0.53), whereas a significant
correlations between Nan and SON (r = 0.64) was found in low fertility soils.

Prediction of crop yield and nitrogen uptake at physiological maturity

Relationships between grain yield and crop N uptake with mineralization indicators
Analyzing the relationships between grain yield and Nup with the N mineralization indicators and
considering all data (n = 36), scarce and significant relationships (P < 0.05) were found (r = 0.36–
0.66) (Table 4). The lack of high correlations between N mineralization indicators and grain yield or
Nup suggests that N-cycling processes and crop productivity may be controlled by different sets of
factors in these soils (Turner et al. 1997). Regarding soil groups, in high fertility soils highly
significant and positive correlations were observed in grain yield and Nup with N260 and Nhyd

(r ≥ 0.73); whereas, no significant correlation was found in both crop variables with the N

Table 3. Indicators of nitrogen mineralization by site and soil group.

Sites Fields per site

N205 N260 SON POM-N Nan Nhyd NO3-N

(Absorbance) (g kg−1) (mg kg−1)

T1 2 1.37(0.04) 0.43(0.06) 1.96(0.01) 0.27(0.05) 52.1(33) 22.9(4.9) 8.5(9.5)
T2 3 1.80(0.26) 0.43(0.11) 1.7(0.55) 0.21(0.11) 55.1(19) 28.8(4.6) 9.3(7.4)
T3 2 2.62(0.80) 0.42(0.15) 1.8(0.12) 0.33(0.04) 50.6(3.1) 35.0(1.3) 15(5.9)
LO 12 1.55(0.60) 0.57(0.23) 1.29(0.32) 0.13(0.09) 29.7(10) 20.3(6.1) 3.9(1.2)
CP 2 1.07(0.33) 0.38(0.15) 1.14(0.32) 0.15(0.14) 36.5(8.1) 23.5(2.9) 20.1(15.4)
CR 3 1.61(0.56) 0.49(0.25) 1.02(0.22) 0.17(0.04) 14.6(4.2) 25.8(6.8) 5.1(4.7)
P 4 1.81(0.28) 0.87(0.52) 2.23(0.34) 0.36(0.07) 71.3(9.4) 35.9(8.7) 4.3(5.2)
S 8 1.58(0.63) 0.44(0.14) 1.92(0.39) 0.38(0.19) 47.7(22) 21.4(5.4) 6.0(7.4)
Cluster A 19 1.75(0.57) 0.52(0.30) 1.94(0.38) 0.33(0.14) 54.6(20) 27.2(8.3) 11.1(12.7)
Cluster B 17 1.50(0.57) 0.53(0.22) 1.22(0.31) 0.14(0.08) 27.9(11) 21.6(6.0) 13.2(6.7)
P-value 0.2091 0.9126 0.0001 0.0001 0.0001 0.0001 0.0289

Bold letters indicate significant differences (P < 0.05) in N mineralization indicators between groups of soil. N205, N determined by
spectrometer at 205 nm (absorbance); N260; N determined by spectrometer at 260 nm (absorbance); Nan, anaerobic N (mg kg−1);
Nhyd, N hydrolyzed by chemical digestion (mg kg−1), SON, soil total N (g kg−1); POM-N, N in particulate soil organic matter (mg
kg−1); NO3-N, inorganic N in the form of nitrate (mg kg−1). Values in brackets indicate standard deviation.

Table 4. Pearson´s correlations between crop variables and N mineralization indicators.

. Soils/group of soil

Nitrogen mineralization indicator

N205 N260 SON Nan Nhyd POM-N NO3-N

coefficient of correlation (r)

Grain yield All data 0.14 0.45 0.36 0.53 0.66 0.19 −0.48
A 0.16 0.73 0.28 0.51 0.78 −0.01 −0.55
B −0.10 −0.15 −0.07 0.19 0.18 −0.13 −0.18

N uptake All data 0.23 0.41 0.38 0.40 0.65 0.27 −0.30
A 0.31 0.75 0.37 0.33 0.75 0.18 −0.30
B −0.03 −0.16 −0.16 −0.01 0.28 −0.23 −0.25

In bold letter correlations significant at P < 0.05. See abreviations in Table 4.
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mineralization indicators in low fertility soils. Similar results were obtained by Walley et al. (2002),
who reported high relationships between Nhyd and wheat yield in the comparison of different
mineralization indicators under NT in semi-arid regions of Canada.

Relationships between grain yield and crop N uptake with crop growing season rainfalls
Considering all data, significant (P < 0.05) and positive correlations were found between grain yield
and Nup with FR; FLR; GFR and CCR (Table 5). Regarding soils groups, in high fertility soils were
found the same correlations in grain yield as considering all data, whereas, in low fertility soils only
significant correlations were found between grain yield with FR and FLR.

Grouping N-mineralization indicators in principal components

Regarding the significant correlated variables (mineralization indicators and rainfalls) with grain
yield, the PCA showed eigenvalues >1 for the first three PCs, which accounted for 81% of the
variance (Table 6). The results showed that factors that explained grain yield accumulation were
associated with water availability and to N mineralization indicators (NO3-N; N260). The first PC
explained 53% of the total variance and had high positive loadings for FR, FLR and GFR. The second
PC explained 15% of the variance and had positive loading for NO3-N. The third PC explained 13%
of the variance and had high and positive loading for N260. Considering the significant correlated
variables (mineralization indicators and rainfalls) with Nup, the PCA retained only the two first
PCs>1 accounting for 72% (Table 6). In this case, the factors that explained the variance were related

Table 5. Pearson´s correlations between crop variables and rainfalls during growing season.

Crop variable Soil/Groups of soil

Rainfalls

FR FLR GFR CCR

coefficient of correlation (r)

Grain yield All data 0,66 0,68 0,53 0,63
A 0,62 0,65 0,55 0,71
B 0,61 0,58 −0,01 0,48

N uptake All data 0,51 0,58 0,37 0,62
A 0,46 0,45 0,33 0,61
B 0,57 0,61 −0,03 0,53

In bold letter correlations significant at P < 0.05. FR, fallow rainfalls (March-Seeding rainfall); FLR, flowering rainfalls (October-
December rainfall); GFR, grainfilling rainfall (November rainfall); CCR, crop growing season (June-December rainfall).

Table 6. Results of principal component analysis (PCA) for correlated variables with grain yield and crop N uptake.

Grain yield (PCgy) N uptake (PCNup)

PC1 PC2 PC3 PC1 PC2

Eigenvalue 4.81 1.31 1.14 4.62 1.15
Proportion of variance 0.53 0.15 0.13 0.58 0.14
Total variance 0.53 0.68 0.81 0.58 0.72

Variable Eigenvectors

N260 0.11 −0.12 0.81 0.12 0.83
SON 0.30 0.59 0.04 0.33 −0.07
Nan 0.35 0.34 0.08 0.36 0.01
Nhyd 0.28 −0.12 0.46 0.28 0.48
NO3-N −0.22 0.70 0.09 - -
FR 0.41 −0.12 −0.17 0.42 0.14
FLR 0.43 −0.09 −0.16 0.43 −0.13
GFR 0.39 −0.004 −0.23 0.39 −0.23
CCR 0.38 −0.02 −0.02 0.38 −0.01

N260; N determined by spectrometer at 260 nm; Nan, anaerobic N; Nhyd, N hydrolyzed by chemical digestion, SON, soil total N; NO3-
N, inorganic N in the form of nitrate; FR, fallow rainfall; FLR, flowering rainfall; GFR, grain filling rainfall, CCR, crop growing season
rainfall.
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to water availability and with a N mineralization indicator (N260), being similar to the grain yield.
The first PC explained 58% of the total variance and had high positive loadings for FR, FLR and
GFR. The second PC explained 14% of the variance and had positive loading for N260. These results
indicated that rainfalls were the main factors affecting grain yield or Nup, because they explained the
majority of the variance in both wheat parameters (Table 6).

Prediction of yield and crop N uptake using multivariate analysis

Considering all data, combining PCs in MR models enhanced the wheat yield prediction (Table 7)
with a moderate coefficient of determination (adj R2 = 0.63; n = 36), however, the Nup prediction
was not substantially improved (adj R2 = 0.50). From the PCs generated from correlated variables to
grain yield and Nup (Table 6), the stepwise model selected 2 and 2 PCs for grain yield and Nup,
respectively (Table 7).

Analyzing the data according to soil fertility, in high fertility soils the prediction of grain yield
and Nup was improved significantly with a high R2 for both parameters (adj R2 = 0.71–0.83),
whereas in low fertility soils a scarce prediction was detected for both wheat parameters
(Table 7). These results confirmed the hypothesis that the prediction of wheat parameters
(grain yield and Nup) depends on the soil fertility. In this study, it would be verified that in
the most fertile soils (higher SOC content and organic fractions) the N mineralization indicators
could partially explain the wheat yield variability. Also, it could be observed that in high fertility
soils, the PC that explain the variability in grain yield and Nup included the rainfalls (FR, FLR,
GFR) and a N mineralization indicator (N260), whereas, in low fertility soils the main variable
that affect the wheat parameters was the PC highly influenced by the rainfalls (FR, FLR, GFR)
(Table 6). This could confirm that water factor is more important than N in low fertility soils.
This result could be attributed not only to the positive effect of SOC on water retention (Díaz-
Zorita, Buschiazzo, and Peinemann 1999) but also as a probable result of a high N mineraliza-
tion with a high SOM content (Alvarez and Grigera 2005; Álvarez, Álvarez, and Steinbach 2002).
In addition, Walley et al. (2002) suggest that in semi-arid regions water remains as the key factor
that controls the demand and availability of N. It is important to note that low fertility soils were
located in the semi-arid region of the Argentine Pampas. Moreover, due to the variability in the
rainfall frequency and the water deficit ocurred during the crop growing season (Figure 2), the
prediction of wheat parameters by rainfall was scarce in these soils, because the erratic rainfall in

Table 7. Prediction of grain yield and crop N uptake through multiple regressions.

Dependent
variable Soils/Group of soils n

Regressor
variable

Estimated
parameter Standard error P-value R2 Adj R2

Grain yield All data 36 Intercept 2492 107.5 <0.0001 0.65 0.63
PCgy 1 361.8 49.7 <0.0001
PCgy 2 304.4 102.3 0.0054

Cluster A Intercept 2256 143.0 <0.0001 0.85 0.83
PCgy 1 430.9 56.8 <0.0001
PCgy 3 466.3 97.8 0.0002

Cluster B Intercept 3374 365.6 <0,0001 0.47 0.44
PCgy 1 793.4 216.9 0,0023

N uptake All data 36 Intercept 81.9 3.4 <0.0001 0.53 0.50
PCNup 1 8.3 1.6 <0.0001
PCNup 2 9.7 3.2 0.0045

Cluster A Intercept 82.5 4.7 <0.0001 0.74 0.71
PCNup 1 7.7 1.9 <0.0001
PCNup 2 15.0 3.1 0.001

Cluster B Intercept 111.7 13.2 <0.0001 0.47 0.41
PCNup 1 25.1 7.8 0.0055

All prediction equations are constructed in the form y = β0 + x1β1+x2β2, where β0 is the intercept, β1, β2 are the parameter
estimates and x1, x2 are the new variables generated by PCA.
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these regions, does not often allow high yields (Martínez, Galantini, and Landriscini 2015;
Martínez et al. 2016).

These results may indicate that the relationships between wheat parameters and N mineralization
indicators could be due to fertility conditions, which in turn are highly influenced by the weather
conditions. For that reason, climatic variables should be used in these models to confirm these
relationships –especially in semi-arid and semi-humid regions-, in view of their strong influence on
crop yield and N-uptake. In addition to these results, Kay et al. (2006) reported that estimates on
fertilizer needs of crops, which are based on mineralization indicators, should be combined with
weather conditions. This is because the climate affects not only soil N-dynamics but also crop
response to N-fertilizer after the indicator had been measured.

Results obtained showed that grouping soils according to their fertility by the cluster analysis,
probably reduces the variability in the soil resources and increases the prediction of wheat para-
meters. Other studies (Robertson et al. 1997; Walley et al. 2002) had shown that with a high degree
of variability for all soil resources, it should not be expect a high degree of correlation between any
single measure of N availability and either crop growth or Nup. This study would allow a better
understanding about what is happening with N pools and the plant-soil systems in sites with low
water availability during the wheat growing season.

Conclusion

The main factors that explained the wheat grain yield and N accumulation were associated with
water availability and N mineralization indicators, but these relevant factors were different consider-
ing soil fertility.

Use of N mineralization indicators alone failed to predict wheat parameters accurately
independently of soil fertility in these Mollisols of the semi-arid and semi-humid region.
Instead, grain yield and Nup by wheat were predicted with a good degree of adjustment by
using MR combining PCs in soils with high fertility. On the other hand, the N260 seems to be a
promising indicator for evaluating grain yield and N accumulation in high fertility soils. Also,
the simplicity, speed, and cost effectiveness of this indicator suggests that it may use as a routine
soil N mineralization under these soil conditions. Therefore, the usefulness of these N miner-
alization indicators to make predictions for N mineralization and wheat growth on less fertility
soils may be limited, because the water factor was the main factor. For this reason, it is
important to group sites according to soil fertility.

Additional work is needed to relate the potential N mineralization indicator to the N availability
for the wheat response to allow appropriate adjustments in N fertilizer rates and management in this
environment with low water availability.
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