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Summary. Regression models relating investment demand with firms’ Tobin’s g and cash flow
are fraught with measurement errors which, in turn, cause endogeneity bias. We propose an
alternative solution to this problem based on modelling the interaction between the endoge-
nous Tobin’s q and the error term in the investment equation as a function of lagged values of
Tobin’s q. We then study the identification conditions and asymptotic properties of the resulting
estimator. Our analysis of a panel of US firms reveals a larger effect of Tobin’s g on firms’ in-
vestment demand than that obtained by using available estimators in the literature. Moreover,
the estimates highlight the importance of cash flow. We find mixed evidence on the relationship
between investment demand and firms’ cash flow with respect to different measures of financial
constraints. Nevertheless, this evidence is more supportive of the view that firms’ cash flows
have a weaker correlation to investment demand when financial conditions tighten.
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1. Introduction

Investment theory suggests that a correct measure for firms’ investment demand is marginal
Tobin’s ¢. Fazzari et al. (1988) developed estimators for the investment equation model, where
a firm’s investment is regressed on a proxy for investment demand (average Tobin’s ¢) and cash
flow. Following them, investment—cash flow sensitivities became a standard metric in the liter-
ature to examine the effect of financing imperfections on corporate investment (Stein, 2003).
These empirical sensitivities are also used for drawing inferences about efficiency in internal
capital markets (Lamont, 1999; Shin and Stulz, 1998), the effect of agency on corporate spend-
ing (Hadlock, 1998; Bertrand and Mullainathan, 2005), the role of business groups in cap-
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ital allocation (Hoshi ez al., 1991) and the effect of managerial characteristics on corporate
policies (Bertrand and Schoar, 2003). A related influential literature assesses the effect of
financial frictions on economic growth. See Bernanke and Gertler (1989), Holmstrom and
Tirole (1998), Kind and Levine (1993) and Kiyotaki and Moore (1997), among many others.
Nevertheless, empirical models proposed to assess the sensitivity of investment demand to firm
characteristics are usually fraught with the presence of measurement error. A typical example
is the use of the average Tobin’s ¢ for describing the investment—capital ratio or the choice
of proxy variables for capturing financial frictions (Hayashi, 1982). The introduction of error
when measuring these variables causes endogeneity bias in least squares estimators and leads
to erroneous interpretations of the effect of firm characteristics on investment demand. Thus,
Poterba (1988) introduced the idea that errors in measuring Tobin’s ¢ may be responsible for
the observed investment—cash flow sensitivities. If cash flow were correlated with investment
opportunities, which is not well measured by a proxy for the marginal Tobin’s ¢, investment—
cash flow sensitivities could arise. This argument minimizes the role of financing constraints in
determining the relationship between firms’ cash flow and investment.

Many studies intend to control for the measurement error in Tobin’s ¢, while analysing the
relationship between investment and cash flow. A common approach has been to use the in-
strumental variables (IVs) method together with ordinary least squares (OLS) and generalized
method-of-moments (GMM) estimators to correct the endogeneity problem (see, for exam-
ple, Almeida et al. (2010) and Lewellen and Lewellen (2016)). In this strand of literature, lags
of the observed Tobin’s ¢ are used as instruments, by assuming that they are uncorrelated
with the error term in the regression equation. Specifically, Almeida et al. (2010) employed
GMM methods using lagged Tobin’s ¢ as instruments for the measurement error problem.
Their results show the importance of both Tobin’s ¢ and cash flow in investment equation
models.

A related method in the literature is to use different proxies for the marginal Tobin’s ¢ as
alternative instruments. For instance, Cummins et al. (2006) found no evidence that cash flow
is a statistically significant determinant of investment in US companies. Agca and Mozum-
dar (2017), in contrast, found that cash flow is a statistically significant cause of investment
and investment—cash flow sensitivity is higher for financially constrained firms. (An alter-
native solution relies on the high order moments. This body of the literature addresses the
issue by developing measurement error consistent GMM estimators based on the third and
higher order moments of the joint distribution of the observed variables (see, for example, Er-
ickson and Whited (2000)). The high order methods, however, rely on very strong conditions
on unobservables and provide unstable and biased coefficient estimates in the presence of fixed
effects under heteroscedasticity, or in the absence of a high degree of skewness in the data.)

These methods for correcting measurement errors have several shortcomings for the specific
problem of estimating investment equation models. In fact, IV-based estimates might be invalid
in the presence of error persistence in the structural investment regression equation, which
is very likely if the error term contains an auto-correlated factor. In this case, the persistent
measurement error induces correlation between the I'V and the error term. Hence, empirically,
the standard IV corrections of the measurement error problem are inappropriate for obtaining
consistent estimates of the structural parameters in the investment equation.

The main contribution of this paper is to suggest an alternative solution to the measurement
error problem in investment models that explicitly exploits persistence in the error term. By
doing so we develop an econometric methodology that is suitable for assessing the effect of firm
characteristics measured with error on investment demand. Our solution is based on modelling
the joint interaction of the endogenous variable, ¢.g. the average Tobin’s ¢, and the error term as
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a function of polynomials of the lags of Tobin’s g. The framework allows for situations in which
no valid standard instruments are available, but there are additional variables that are related
to the joint interaction of the endogenous variable and the unobserved causes of the depen-
dent variable. These additional variables are defined as simultaneous variables. The intuition
of the main identification condition is that, by using the restriction proposed, the researcher
can approximate the endogeneity bias by using the simultaneous variables. We state sufficient
conditions on the primitives for the identification of regression coefficients. Motivated by this
identification result, we suggest an estimator of the structural parameters based on moment con-
ditions that arise from the use of the structural investment equation and an additional equation
proposed under our correction method. We also derive consistency and asymptotic normality
of the estimator and develop inference procedures.

We apply this methodology to a panel of US firms over the period 1974-2010 and observe
large differences across estimates of the effects of Tobin’s average ¢ and firms’ cash flow. Our
empirical findings invalidate the use of OLS and IV estimators due to serial persistence in the
error term of the investment regression equation. In contrast, our novel estimation procedure
reports estimates of Tobin’s average g-coefficient that are significantly larger than the OLS,
IV and GMM counterparts. The parameter that is associated with firms’ cash flow is also
statistically significant, suggesting that firms’ cash flow adds relevant information beyond that
provided by Tobin’s ¢ for describing firms’ investment demand.

To obtain deeper insights into the role of cash flow and the relationship with financial
constraints, we also classify firms into constrained and unconstrained by using several of the cri-
teria that were proposed in Almeida ez al. (2004), Moyen (2004) and Hadlock and Pierce (2010).
The results of our empirical analysis provide mixed evidence on the relationship between cash
flow and financial constraints that, nevertheless, is consistent with the existing literature on the
role of cash flow sensitivities in investment demand. More specifically, we find a higher sensi-
tivity of investment to cash flow for financially constrained firms, as characterized by smaller
and younger firms. These results are consistent with Fazzari et al. (1988), Almeida et al. (2004)
and Hadlock and Pierce (2010). Interestingly, we find the opposite result, which is consistent
with Kaplan and Zingales (1997), when financial constraints are characterized by variables that
are related to firms’ pay-out ratios and dividends. An additional robustness exercise consists in
analysing the effect of a credit supply shock on the relationship between investment demand and
firms’ cash flow. This analysis shows that firms’ cash flow has a weaker correlation to investment
demand when financial conditions tighten.

The paper is organized as follows. Section 2 overviews the measurement error problem in
investment models. Section 3 presents our solution to correct for endogeneity, derives a feasible
estimator and develops inference. Section 4 presents empirical evidence on the drivers of firms’
investment by using a panel of US firms. Finally, Section 5 concludes the paper. Appendix A
contains technical proofs and a discussion on why the IV estimator is inconsistent in the presence
of measurement errors’ serial persistence.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Measurement errors and endogeneity

In this section, we discuss why measurement errors on the marginal Tobin’s ¢ are common, and
why conventional IV methods cannot control for them under persistent measurement errors.
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2.1. Measurement errors on marginal Tobin’s q
The theory suggests that the correct measure for a firm’s investment demand is captured by
the marginal Tobin’s ¢. This measure stems from the relationship that equates firms’ marginal
benefit with marginal cost in equilibrium. (We refer readers to Abel and Eberly (1994) and
Erickson and Whited (2000) for a discussion on a microfounded model based on the neoclassical
theory of investment that helps in the motivation of the relationship between Tobin’s ¢ and
firms’ investment demand.) Nevertheless, the presence of financial constraints may distort this
relationship by introducing other factors that influence the firm’s optimal investment level.
More specifically, financial constraints create a wedge between internal and external funding
that invalidates theoretical arguments in the spirit of Modigliani and Miller’s (1958) capital
structure irrelevance proposition. In this scenario, a firm’s cash flow reflects the presence of
financial constraints and may contain information that is relevant for explaining the differences
in investment demand across firms.

Fazzari et al. (1988) proposed a regression specification of the investment equation that allows
the inclusion of additional explanatory variables to explain variation in the investment—capital
ratio as follows:

yil=a+6q;’;+'yCFi,+n,-l, i=1,....,n, t=1,...,T, (D

with y; = I;;/K;; the investment—capital ratio, CF;; = cfj;/K;; the cash flow—capital ratio, ¢}
represents the quantity ‘marginal ¢’ and 7, is the idiosyncratic structural error term, which is
assumed to be zero-mean white noise.

The g}i-quantity is unobservable and researchers use instead its measurable counterpart, the
average Tobin’s g. Hayashi (1982) showed analytically the differences between these quantities
for different production and cost functions. More specifically, he showed that

where ¢, denotes Tobin’s average ¢ and \;; is a quantity that captures the present discounted
value of current and future tax deductions attributable to past investments for a production
function exhibiting constant returns to scale and a cost function that is homogeneous of order
1. The quantity \;; captures other features of the production function such as the elasticity of
demand for the firm’s output for different market structures, e.g. when firms are price makers.

Further, following Cummins ez al. (2006), it is also possible to accommodate the possibility of
measurement error in the average Tobin’s g. Consider the following specification for the observed
Tobin’s ¢:

— 4 .
qit =qj; T+ Vi,

where ¢;; is the observable average Tobin’s ¢, which is measured as the average Tobin’s ¢, g7,
plus the error v;;. The above expressions imply that

a5 =qir — eir, 3

with e;; = \;; + vj; denoting a modified measurement error term. Then, plugging equation (3)
into the investment model (1), we obtain

vir =+ B(qir — eir) +YCFi +1ir,
=a+ Bqi +vCFir + €, 4)

where €;; = n;; — Be;; is correlated with g;; by the presence of the measurement error. This correla-
tion leads to endogeneity of the regressors and inconsistent parameter estimates. Furthermore,
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if g;; 1s correlated with the observable exogenous variables CF;; then the above regression equa-
tion would also entail the correlation between CF;; and ¢;; and the inconsistency of . We shall
assume hereafter that cash flow is measured without error and, hence, is uncorrelated with the
error term €;;.

2.2. Failure of instrumental variable methods

It has been common in the literature to employ IV estimators to resolve the statistical problems
that are induced by the presence of endogeneity in investment equation models. Almeida et al.
(2010) showed that, under some conditions, [V methods deliver estimated coefficients that are
robust and economically meaningful. These estimators employ lags of g;; as instruments for the
endogenous variable g;;.

Almeida et al. (2010) discussed the assumptions on the dynamics of the measurement error
to make IV methods valid. They found that, if the measurement error e¢;; in equation (3) is
independent and identically distributed across firms and time, and g¢;; is serially correlated,
then, lags of the variable with errors (e.g. ¢;;—2, gir—3 Or gi;—2 — qis—3) are valid instruments for
qir since they are correlated with g;, (instrument relevance condition) but uncorrelated with the
error term ¢;; (instrument exogeneity condition).

However, when both the marginal Tobin’s ¢ and its measurement errors exhibit serial
persistence, the IV approach, which employs the lags of the mismeasured Tobin’s ¢ as instru-
ments, fails to solve the endogeneity problem. In this case, as further discussed in Appendix B,
the instrument exogeneity condition is no longer valid because the IV (the lags of mismeasured
Tobin’s ¢) are correlated with the regression error term.

3. Econometric methodology

This section suggests an alternative method to obtain consistent parameter estimates in the
investment equation model. The methodology proposed introduces an auxiliary equation that
models the interaction term gjs€;; as a function of observable covariates. These covariates are
determined by polynomials of lagged values of average Tobin’s ¢, and their use is motivated by
the persistence of both the measurement error variable and the marginal Tobin’s ¢. The second
part of the section suggests an estimator based on the empirical counterpart of the identification
result and develops inference procedures.

3.1.  Econometric model and identification

3.1.1. A preview of the solution

For simplicity, we outline first the identification strategy of the structural parameters for the
simple case given by an investment equation that depends on only the marginal Tobin’s g.
Consider the following simplified model:

Vit =Bqi + €ir, (%)

where €;; =n;; — Be;; and e;; = \js + v;r. Assume that there is a set of observable variables Z;; such
that

E[Qitﬁit|6ht, Zit] =79, (6)

with ¢ being a vector of parameters that are different from 0. This condition introduces an
auxiliary equation given by
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Gir€ir = ZLisd + uir, @)

where u;, is an error term that is orthogonal to Z;; and qizt, by construction.
Given equation (7), the intuition of the solution is as follows. Note that ¢;; is not observable;
however, from equations (5) and (7), g;s€;; can be rewritten through the equation

Giryit =045 + qireir = Bg> + Lisd + uis.

The structural parameters of the investment equation can be identified through the introduction
of the auxiliary equation (6). To see this note that from equations (5) and (7)

uir =qir€ir — Lir@
=qit(Yir — Bqir) — Lit @
=iy — G (3. 01",
where q;, = (qizt, Zi;). We then consider the moment equation
E[q;;ui] =0,

so that we obtain E[(ﬂ{qi, yir —q;,(3,¢T)T}1=0. Finally, by distributing the expectation, we
have that

E[d;,qirviel = E[G56;,18, 9D

Given non-singularity of E [ngi,], this moment equation uniquely identifies 5 and ¢.

3.1.2.  General methodology

In what follows, we extend and formalize the above results and also accommodate an exogenous
regressor, 1.e. CF;;. (Galvao et al. (2017) discuss endogeneity bias modelling in a cross-section
context.) Identification of the parameters of interest is achieved by explicitly modelling the
interaction of the endogenous variable and the unobserved causes of the dependent variable
as a function of additional observable variables. In particular, we consider the case where the
variable g;s¢;; can be modelled by using additional variables. For notational simplicity, we sup-
press the subscripts (i,7) whenever there is no confusion. The following equation formalizes
modelling endogeneity:

Elgelz,x]=g(2), ®)

where ¢(-) is an unknown smooth function z, a k-vector of additional observable variables, and
x is the set of regressors, in this case x=[1, CF, ¢]. This is a general formulation to model the
endogeneity in the linear parametric model. For simplicity, we assume that g(-) is a known
function of z with unknown parameters ¢ such as g(z; ¢). But the analysis can be extended to
the case of unknown functional form of g(-), as we might approximate the unknown function
g(-) with one of the sieve bases (e.g. power series, Fourier series or splines). (See, for example,
Chen (2007) for more details on the method of sieves.)

A simple example of equation (8), that is convenient for exposition and estimation purposes,
is to assume the following polynomial approximation for g(z):

Elqge|z, X]=Z1¢, ®

where Z=(1,z,2%,...,2") and ¢ = (¢g, P, ..., q’)}l)T, which is a non-zero vector with ¢ #0.
Equation (9) is explicitly modelling the endogeneity of ¢ and requires observable variables z, the
simultaneous variables. We are interested in identifying and estimating the parameters (3, y) in
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equation (1). In practice, ¢ is unknown, and it is important to note that this parameter cannot
be directly estimated from equation (9) because € is unobservable. Hence, we consider the joint
identification and estimation of both (3,~) and ¢.

Consider now the structural model in equation (1) and define 8= (o, v, 8, ¢N)7T, 01 = (a, )T
and 8, =(3,¢")T, x=[1,CF, g] and x; = (1, CF). To ease notation, define y and § after net-
ting out the exogenous regressor x; and multiplying the resulting objects by ¢. Let y=¢g(y —
x1 E[x[x;]7 E[x] y]) and X = (g, Z), with §=q(q — x1 E[x{ x;] "' E[x] q]) and Z=(1,2,7°,
z'). Further, consider the following assumptions.

Assumption 1.

(a) The variable x is exogenous such that E[x] €] =0.
(b) The matrices E [x1 x1] and E[X X] are non- s1ngular
(c) We have ge=Z¢ +u, where ¢ #0 and E[x ul=

Assumption 1, part (a), states that CF (i.e. cash flow) is an exogenous regressor. In practice, we
propose to use polynomials of lagged values of average Tobin’s q as Z. Thus, assumption 1, part
(b), is satisfied if g;, is not perfectly linearly related to g;;— 1 and ‘Lz 1 and its higher order terms.
Finally, assumption 1, part (c), means that E[(g;— 1,q” Loy pDui] =0 and E[g;u;]=0
hold, where g;, is the product of ¢i; and g;; with CF}; netted out. Assumption 1, part (a), is a
standard condition in the corporate finance literature, and assumption 1, part (b), is satisfied in
practice. The two conditions in assumption 1, part (¢), crucially depend on the validity of Z. In
particular, the conditions depend on u;;, the residual projection of ge on Z, being uncorrelated
with X;;, where X = (g, Z) with §=¢q(q — xlE[xlTxl]_lE[xqu]). The identification condition 1,
part (c), requires that Z captures as much information as possible on ge so that the remainder is
not further correlated with the square of ¢ (after CF has been netted out). We expect that lags
of g;; contain useful information on g;; in the presence of auto-regressive time structure or any
other persistent process. The following theorem formalizes the identification results.

Theorem 1. Suppose that assumption 1 holds. Then, @ is uniquely identified as

01 =E[x]x1]7 E[x] y] - E[x]x1]" E[x] q]8,
0, = E[X"X] ' E[X"5].

It remains to address the empirical question of choosing an appropriate set of observable
variables for Z. The strategy that is pursued in this paper allows, contrary to IV methods, both
g* and e to be auto-correlated such that lags of ¢ can be used to achieve identification and
to produce consistent estimates of the parameters of interest. A correlation condition seems
very natural in this context if we consider that Tobin’s ¢ and, potentially, \; in equation (2) are
both persistent over time. Thus, the main objective is to verify assumption 1, part (c), under a
correlation condition. We formalize the result in the following proposition for the investment
equation where both ¢g* and e are allowed to be auto-correlated. We consider the investment
equation (5) that depends only on Tobin’s ¢, and the exogenous regressor, cash flow CF, can be
straightforwardly included by changing the notation a /a theorem 1.

Proposition 1. Suppose that the sequence of measurement errors follows e;; = h(ej;—1, q;‘;l)
for a measurable function £, ¢ is auto-correlated and g(z;;) can be approximated by a polyno-
mial of order m. Then, assumption 1, part (c), is satisfied, i.e.

Gir€ir =Lird + uj

where E[X}ui]=0 with i = (¢2, Zir), Zir= 1, qi—1, 471>+ -» 4" 1) and wuie =qamie — Baireir —
E[Bqgireir|2ir].
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First, the assumption on e;; in proposition 1 imposes an auto-correlation model on the mea-
surement errors. It also allows for the dependence between the lags of true Tobin’s ¢ and the
measurement error. The interpretation of this assumption is intuitive. In e;; =h(e;;—1, q?;fl) the
variable qi";_l is unobserved and could be interpreted as an innovation shock, which means that
the shock to the measurement error process of Tobin’s ¢ is driven by the past values of the
true unobserved Tobin’s g. The assumption on ¢;; also encompasses non-classical measurement
errors in that the true Tobin’s ¢ is correlated with measurement error (or true Tobin’s ¢ affects
levels of measurement error). This is very useful in practice since the size of the measurement
error could depend on the level of true Tobin’s ¢ (or firms’ expected stream of future marginal
benefits from using capital). For instance, the larger the true ¢*, the lower the measurement
error since larger firms usually have more refined accounting systems. Note that the condition
on e;; invalidates the instrument exogeneity condition in the IV model, but it is a key element in
the estimator proposed. Second, the assumption on ¢} being auto-correlated is mild and only
used to guarantee that the lags of observed Tobin’s ¢ are valid simultaneous variables. Finally,
the condition that g(z;;) can be approximated by a polynomial is commonly used in empirical
applications.

We note that the result in proposition 1 implies that under the stated conditions assumption
1, part (c), is satisfied, and hence a polynomial of the lags of average ¢ serves as covariates to
model the endogeneity that is implied by the measurement errors in the investment equation
model. The intuition behind this result is that the first-order lag of mismeasured g;; contains
sufficient information on the interaction of mismeasured ¢g;; and the regression error term e;;.

3.2. Estimation and inference

In this section we construct an estimator which is simple to implement in practice and derive

its asymptotic properties. We define this estimator as the S-estimator as we are specifically

modelling the simultaneous covariance between the endogenous variable and the error term.
An estimator of @ motivated by results in theorem 1 is

. | o T T -
0= (n > 11:X1zt> n Z le,,yn ( Z lenxln> ( Z Z’Hn%)

i=11=1 i=l1= i=lt= i=lt=

where x and y are sample analogues of x and y, which are obtained by replacing the expectations
with sample means, and where £ is the first element of §,. Implementation of the estimator is
simple and can be carried through a sequence of OLS estimations. First, compute £ and y and
estimate 65 by using OLS. These generated variables affect the asymptotic variance—covariance
matrix (see for example Pagan (1984)). Finally, given 3, 8; can be estimated by OLS.

Define Q= E[Xﬁi,-,], C = E[xlTitxlit] and Cr = E[xlTitqi,]. To establish the asymptotic proper-
ties of the estimator, consider the following assumptions. For simplicity, we consider a balanced
panel and the case of large n and fixed T.

Assumption 2.

(a) The data {(yir,Xir,Zi);i=1,2,...,n,t =1,2,...,T} are independent and identically
distributed across i.

(b) We have E[|yil|*] < oo, E[l|xi||*] < 00 and E[|| Zi||*] < o0

(¢) The matrices Q and C; are non-singular.
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The asymptotic properties of the S-estimator are summarized in the following result.
Theorem 2. Let assumptions 1 and 2 hold with E[u|X]=0 in place of E [iTu] =0. Then, as
n— 00,

6,50,

6,5 6,,
and

Jn(1—61) S NO,CT v T,

Jn(02—02) S N©, 0" ' MOV,

with V= var(3) and M = var{)ZTu — Gr(64) + Hs(6y)}, where G, r(6,), H and s(6) are defined
in the proof.

Given the result in theorem 2, general hypotheses on the vector 8 can be easily accommodated
by Wald-type tests. The Wald process and associated limiting theory provide a natural founda-
tion for testing the linear null hypothesis Hy: R@ =r, when r is known. In practice, to carry out
inference and to apply a Wald-type test we need a consistent estimator of the asymptotic vari-
ance matrix. As described in the above result, to estimate the asymptotic variance—covariance
matrix, we need to estimate both var(6,) = 0 'MQ~'/nand var(0,) = Cfl Cy VﬁCZCfl /n. The
latter is easily recovered from its sample counterparts, i.e.

M=

doX hlem

11=1

n T
ZZ m‘bt

:\r—ﬂ
0

3\»—

In addition, V; f] is the first element of the variance—covariance matrix Var(02) Finally, for the
estimation of the Varlancewovarlance matrix of @, we can consider its sample counterpart such
as Var(92) = Q MQ /n with

1 n T
722 Xit
ni=1r=1
U A “Tr  An A T
Y > Ryt — Gry(6g) + HSir(6y)) (Rjthis — GFir (64) + HSi1(6y))
i=1t=1
where
ﬁizzf’iz—ﬁitéza
n 1 n T T oA 1 n T T R
G==> > X;Vs,Xubr=—>" > X;(—qirX1ir,0,0)02,
ni=1=1 ni=1=1
R 1 n T T B 1 n T
HZ*Z ijtvé‘.yit Z ZX”( LInXIzr)
ni=1r=1 ’ ni=11=
1o T - A
”zt(5 <nZZX1”th) X]i;(qit_xlitéq)»
i=lr=1
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-1
§it(5y)= < Z Z Xlltxltt) X};l(yit —Xlit5y),

i=1t=1

N 1 n T T _1
(G Erxdxu) T

i=1r=1 i=1t=1

and

_1 n
y—( ZZXWXIU) szmyn

ni—1¢= ni—1s=

4. Empirical analysis for a panel of US firms

The purpose of this empirical analysis is twofold. First, we compare and statistically assess
the parameter estimates determining the relationship between corporate investment demand,
Tobin’s ¢ and firms’ cash flow obtained under various estimation procedures. We highlight
the differences between existing procedures such as OLS, IV and the GMM and our novel
S-estimator. Second, we carry out an exhaustive exercise to determine the effect of firms’ cash
flow on investment demand and assess whether this relationship depends on the extent of fi-
nancial constraints that are faced by firms. To do this, we estimate the investment regression
equation for several subsamples of financially constrained and unconstrained firms classified
according to different criteria as set out in Almeida et al. (2004), Moyen (2004) and Hadlock
and Pierce (2010).

4.1. Data

The data are taken from the COMPUSTAT® database and cover the period 1974-2010. The
data collection process follows an extension of that of Almeida and Campello (2007). The sample
consists of manufacturing firms with fixed capital of more than $5 million (with 1974 as the
base year for the consumer price index). Firms in the sample have growth of less than 100%
in both assets and sales. We keep observations with at least three lags. Summary statistics for
investment and cash flow are presented in Table 1. These statistics are similar to those reported
by Almeida and Campello (2007), among others. The sample corresponds to an unbalanced
panel of 3085 firms, with an average number of observations per firm of 10.60. For brevity, we
omit the discussion of these descriptive statistics.

Table 1. Investment model: descriptive statisticst

Variable Mean  Standard  Minimum — Maximum  Observations
deviation

Investment  0.2070 0.1465 0.0000 8.5031 32698

q 0.9295 0.4565 0.1786 22.7962 32698

CF 0.3512 0.6666 —83.0667 17.9674 32698

tData from COMPUSTAT, 1974-2010. The sample consists of manufacturing
firms with fixed capital of more than $5 million (with 1976 as the base year for
the consumer price index), and the sample firms have growth of less than 100%
in both assets and sales: observations with at least three lags.
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4.2. Empirical results

4.2.1. Comparison of estimation methods

We use first simple estimators that do not correct for measurement errors like OLS and least
squares fixed effects (FEs). We add FE methods to control for unobserved firm-specific effects
such as manager’s ability or geographical characteristics, and also for the unbalanced nature of
the sample. Second, we employ estimators that seek to correct for measurement error, which
are IV two-stage least squares and the GMM, and our proposed S-estimator where we model
the joint interaction of Tobin’s ¢ and the error term. For the second set of estimators, we use
data in levels as well as the demeaned version of the estimators for controlling for FEs. (For the
presentation, we do not report the results for the GMM and FE GMM cases. For both methods,
the results are very similar to the IV counterpart estimators. The results for these methods are,
nevertheless, available from the authors on request.)

The results for OLS and FE models are summarized in Table 2. These are the benchmark
estimates. Table 3 collects the results for the standard IV estimator and Table 4 for the FE
version of the I'V estimator. The results that were obtained from our simultaneous estimator
are collected in Tables 5 and 6, for the model in levels and demeaned data respectively. All
the reported methods use different combinations of lags of the endogenous variables (Tobin’s
¢) as instruments. In our model, these combinations of lags are interpreted as candidates to
model the joint interaction between the endogenous variable and the error term. The results for
different choices of lagged values of Tobin’s ¢ assess the robustness of our procedure to such
choice.

The OLS estimates show that both ¢ and CF have positive coefficients that are statistically
significant (see Table 2). In the OLS specification, we obtain a Tobin’s g-coefficient of 0.0726, and
a cash flow coefficient of 0.0521, which are likely to be biased. These results are also consistent
with those found in the OLS-related literature, in particular Agca and Mozumdar (2017) and
Almeida ez al. (2010). Next, we consider firm-specific FEs. The results are also in Table 2. The
estimate for Tobin’s ¢ increases to 0.0809 and for cash flow decreases to 0.0432, both being
statistically significant. These are, however, not statistically different from the OLS estimates.

We move our attention to models that correct for the measurement error in Tobin’s ¢. First, we
consider the I'V estimates, which are represented by a two-stage least squares estimator in Table
3. We report the value of the parameter estimates that are associated with ¢ and CF for various
choices of instruments based on lags of ¢; and q,2 such that each estimator builds on the previous

Table 2. Investment model: least squares modelst

Variable OLS FEs
q 0.0725% 0.0809%
(0.0089) (0.0078)
CF 0.0521% 0.0432%
(0.0153) (0.0122)
Constant 0.1213% 0.1167%
(0.0047) (0.0059)
Observations 32698 32698
R? 0.188 0.187
Number of firms 3085 3085

tStandard errors are in parentheses. For OLS and FEs we
use cluster robust standard errors by firm.
Ip<0.01.
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Table 3. Vs approach

Variable 11 12 13 1V 4 s Ve
Second stage
q 0.0463% 0.0520% 0.0529% 0.0529% 0.0524% 0.0524%
(0.0058) (0.0062) (0.0062) (0.0062) (0.0062) (0.0062)
CF 0.0513% 0.0514% 0.0515% 0.0515% 0.0515% 0.0515%
(0.0183) (0.0176) (0.0175) (0.0175) (0.0176) (0.0176)
Constant 0.146% 0.141% 0.140% 0.140% 0.140% 0.140%
(0.0047) (0.0042) (0.0042) (0.0042) (0.0042) (0.0042)
Observations 32698 32698 32698 32698 32698 32698
R? 0.095 0.098 0.098 0.098 0.098 0.098
First stage
CF —0.114 —0.128§ —0.129§ —0.129§ —0.129§ —0.129§
(0.0713) (0.0692) (0.0683) (0.0683) (0.0684) (0.0684)
qr—1 0.618% 0.826% 0.876% 0.867% 0.877% 0.877%
(0.0190) (0.0440) (0.0323) (0.0585) (0.0572) (0.0569)
qtz_l —0.0251% —0.0261% —0.0254% —0.0259% —0.0258%
(0.0054) (0.0055) (0.0077) (0.0078) (0.0077)
qi—2 —0.0412§§ —0.0295 —0.0982% —0.112%
(0.0183) (0.0252) (0.0193) (0.0284)
qtz_2 —0.0009 0.0005 0.0016
(0.0034) (0.0036) (0.0043)
qr—3 0.0527% 0.0712%
(0.0129) (0.0119)
7, —0.00158
(0.00135)
Constant 0.369% 0.204% 0.200% 0.198% 0.199% 0.196%
(0.0400) (0.0147) (0.0149) (0.0117) (0.0115) (0.0117)
Observations 32698 32698 32698 32698 32698 32698
R? 0.674 0.716 0.718 0.718 0.720 0.720

tCluster robust standard errors by firm are in parentheses.

ip<0.0L.
§p<0.1.
§§p < 0.05.

set of instruments added by one further lag of ¢ or ¢2. The results in Table 3 highlight the role
of adding more lags up to ¢,—3. The parameter estimates are very similar across estimators,
yielding values oscillating about 0.0524 and 0.0515 for Tobin’s ¢ and cash flow respectively, for
the IV estimator. Table 4 reports the estimates of the IV estimator that controls for FEs. The
results of this exercise are very similar to those obtained for the previous IV case.

Before presenting the results for the S-estimator, we assess the potential presence of correlation
in the investment equation by implementing Arellano and Bond (1991) tests for auto-correlation.
Table 7 reports the tests for auto-correlation of orders 1, 2 and 3 for the residuals of the OLS
and IV models, and of the corresponding counterpart models accounting for the presence of
FEs (FE and FE-1V). The evidence points to strong persistence in the error term even for the
residuals of IV models, which signals persistence in measurement errors in Tobin’s ¢ and, hence,
provides evidence that invalidates the IV methods.

The presence of persistence in measurement errors, thus, motivates our proposed estimator. To
provide further evidence on the suitability of our method for estimating the investment equation
model we discuss the following example. Suppose that we compute OLS residuals from Table 2,
column OLS, i.e. & =y;; — (doLs + BOquil +Y0LsCFi;). The evidence in the above paragraph
determines that this would be correlated with the lags of Tobin’s ¢. Fig. 1(a) shows that g;_;
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Table 4. FEs IVst

Variable FEIV I FEIV2 FEIV3 FEIV 4 FEIVS FEIV6

Second stage

q 0.0420% 0.0490% 0.0506% 0.0506% 0.0496% 0.0495%
(0.0027) (0.0024) (0.0026) (0.0026) (0.0026) (0.0026)
CF 0.038% 0.039% 0.039% 0.039% 0.039% 0.0394%
(0.0012) (0.0012) (0.0012) (0.0012) (0.0012) (0.0012)
Constant 0.154% 0.147% 0.146% 0.146% 0.147% 0.147%
(0.0027) (0.0026) (0.0026) (0.0026) (0.0027) (0.0027)
Observations 32698 32698 32698 32698 32698 32698
R? 0.005 0.067 0.068 0.068 0.068 0.068
First stage
CF —0.162% —0.167% —0.168% —0.168% —0.168% —0.168%
(0.0022) (0.0021) (0.0021) (0.0022) (0.0021) (0.0021)
qr—1 0.511% 0.674% 0.712% 0.719% 0.728% 0.728%
(0.0026) (0.045) (0.006) (0.0068) (0.0068) (0.0068)
q,z_1 —0.016% —0.017% —0.0179% —0.0183% —0.0183§
(0.0004) (0.0004) (0.0004) (0.0004) (0.0004)
qi—2 —0.032% —0.0426% —0.0982% —0.100%
(0.0034) (0.0058) (0.0070) (0.0076)
qtz_2 0.0008 0.0021 0.0022
(0.0004) (0.0043) (0.0004) (0.0046)
qi—3 0.0452% 0.0481%
(0.0032) (0.0055)
@, —0.0002
(0.0004)
Constant 0.354% 0.196% 0.352% 0.352% 0.353% 0.353%
(0.003) (0.0041) (0.0042) (0.0044) (0.0044) (0.0046)
Observations 32698 32698 32698 32698 32698 32698
R? 0.577 0.604 0.605 0.605 0.720 0.720
tCluster robust standard errors by firm are in parentheses.
ip<0.01.
§p <0.05.

is correlated with both ¢, and OLS residuals. A visual inspection reveals that the graph has a
clear negative slope in the direction given by Tobin’s ¢ but it is also related to the OLS residuals.
Fig. 1(b) displays the quantity &, x ¢; as a function of g;_;. The plot reveals a positive correlation
between the joint interaction of Tobin’s ¢ and the OLS residual with the first lag of Tobin’s g.
We complete the section by presenting results for two different versions (one in levels and
one with demeaned data using the within transformation) of the proposed S-estimator. The
results are presented in Tables 5 and 6. The coefficients for both Tobin’s ¢ and CF are statis-
tically different from 0. In fact, Tobin’s g-coefficient is almost twice as large as the standard
OLS estimate across models, and the cash flow coefficient is about 10% smaller than the cor-
responding OLS value. Thus, although the theory does not pin down the exact values that
this coefficient should take, one could argue that an estimator that solves measurement error
in the true ¢* in a standard investment equation should return a higher estimate for 3 when
compared with standard OLS estimates. This is so because the measurement error causes an
attenuation bias on the estimate for this coefficient. On the contrary, the IV procedure returns
estimates for Tobin’s ¢ that do not satisfy this condition, although they are statistically sig-
nificant. Further, the values of the parameter estimates are quite stable across exercises but
the comparison of the estimates across models highlights the relevance of including ¢;_; and
qtz_l in the set of observables Z compared with including ¢, > and beyond. (The choice of an
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Table 5. S-estimatorf

Variable S S2 S3 S4 S5 S6
q 0.1519% 0.1748% 0.1751% 0.1760% 0.1762% 0.17641
(0.042) (0.031) (0.031) (0.030) (0.030) (0.030)
CF 0.0555% 0.0554% 0.0554% 0.0554% 0.0554% 0.0554%
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Constant 0.0466% 0.0250% 0.0248% 0.0239% 0.0238% 0.0235%
(0.040) (0.030) (0.029) (0.029) (0.029) (0.028)
qr—1 —0.0950§ 0.0020 0.0759 —0.0303 —0.0390 —0.0488
(0.034) (0.021) (0.043) (0.054) (0.054) (0.057)
qtz_1 —0.0349%  —0.0362f  —0.0288%  —0.0284%  —0.0278§
(0.013) (0.012) (0.015) (0.015) (0.015)
G —0.0682 0.0399 0.0883 0.0469
(0.055) (0.045) (0.049) (0.040)
q,z_2 —0.0088 —0.0099 —0.0067%
(0.008) (0.008) (0.007)
qr-3 —0.0372% 0.0144
(0.014) (0.022)
@, —0.0044
(0.003)
Observations 32698 32698 32698 32698 32698 32698
tStandard errors are in parentheses.
ip<0.01.
§p<0.05.

appropriate polynomial Z;, is analogous to the I'V approach of which consistency heavily relies
on an appropriate selection of valid instruments. This empirical result highlights the impor-
tance of studying the optimal number of lags for this novel estimation method. We leave this
study for future research. As a check of robustness, we also considered in unreported exercises
higher order moments such as the cubes of the lags of ¢ but the results do not substantially
change.) The analysis of the results for the S-estimator using demeaned variables reported in
Table 6 sheds similar findings to those of Table 5. The magnitudes of the parameter estimates
for both Tobin’s ¢ and firms’ cash flows are, however, slightly higher. The role of ¢;_» and
higher order lags are more relevant than in the version of the S-estimator from the data in
levels.

The empirical findings in Tables 5 and 6 suggest that the effect of Tobin’s ¢ on the investment
capital ratio is greater than that estimated by OLS and IV. These findings are in themselves
evidence that the S-estimator is doing a good job of capturing the true variation in investment
opportunities. Low observed Tobin’s g-coefficients have been noted in the literature as a diagnos-
tic for the failure of the empirical investment model; however, the estimates that were obtained
from our proposed method are significantly higher. Furthermore, the sensitivity of cash flow
does not vanish after correcting for measurement error bias. This empirical observation was also
noted in Agca and Mozumdar (2017) and challenges previous literature minimizing the role of
cash flows in explaining the rate of investment. This interesting empirical finding is analysed in
more detail in the following section.

4.2.2.  The sensitivity of cash flow and financial constraints
The literature on the influence of cash flow on investment is very controversial. In this empiri-
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Table 6. S-estimator using demeaned variablest

Variable SFEI SFE?2 SFE3 SFE4 SFES SFEG6
q 0.173% 0.184% 0.184% 0.185% 0.185% 0.186%
(0.041) (0.036) (0.036) (0.036) (0.036) (0.035)

CF 0.0551% 0.0563% 0.0564% 0.0565% 0.0565% 0.0565%
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Constant 0.0115 0.0126 0.0126 0.0127 0.0128 0.0128
(0.004) (0.004) (0.004) (0.003) (0.003) (0.003)
qr-1 —0.0701% 0.0249 0.0623% 0.0225 0.0131 0.0118
(0.027) (0.026) (0.021) (0.025) (0.025) (0.025)

qt{l —0.0221% —0.0230% —0.0193§ —0.0188§ —0.0185§
(0.012) 0.011) (0.012) 0.011) (0.011)

qr-2 —0.0384 0.0164 0.0465% 0.0320%
(0.024) (0.014) (0.018) (0.018)
qt{z —0.0071% —0.0080§ —0.0065
(0.005) (0.005) (0.005)

qr-3 —0.0238% —0.0026%
(0.011) (0.012)
@, —0.0028
(0.002)
Observations 32698 32698 32698 32698 32698 32698

tStandard errors are in parentheses. All variables are previously demeaned with the within transformation.
ip<0.01.
§p<0.1.

cal exercise, we separate the analysis into firms that are financially constrained and those that
are not, and we assess the sensitivity of investment ratio to cash flow in each case. We follow
seminal contributions in the literature such as Almeida ez al. (2004), Moyen (2004) and Had-
lock and Pierce (2010) to characterize constrained and unconstrained firms. (There are other
influential studies proposing indices to characterize firms in terms of financial conditions such
as Kaplan and Zingales (1997) or Whited and Wu (2006); however, the nature of our database
does not allow us to compute these indices. We, nevertheless, believe that the empirical exercise
that is carried out below is quite comprehensive as it covers most of the distinctive features
characterizing each of the different indices.) In particular, we discuss four alternative schemes
to distinguish between constrained and unconstrained firms. The first two schemes have been
taken from Almeida et al. (2004), who proposed five schemes to distinguish between financially
constrained and unconstrained firms but, for brevity and availability of data, we focus on only
those schemes that are determined by the pay-out ratio and firms’ asset size. For completeness,
we reproduce here schemes 1 and 2.

Scheme 1. Firms are ranked on the basis of their pay-out ratio and assigned to the financially
constrained or unconstrained group of those firms in respectively the bottom or top three
deciles of the annual pay-out distribution. The pay-out ratio is computed as the ratio of total
distributions (dividends plus stock repurchases) to operating income. Financially constrained
firms have lower pay-out ratios (see Fazzari et al. (1988) and Almeida et al. (2004) for further
motivation on this finding).

Scheme 2. Firms are ranked on the basis of their asset size over the 1974-2010 period and
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Table 7. Arellano and Bond (1991) tests for auto-correlation in the residualst

OLS FEs 1Ve6 FEIV6

z p-value z p-value z p-value z p-value

1 73.14 0.000 47.66 0.000 18.78 0.000 18.82 0.000
43.23 0.000 11.80 0.000 12.71 0.000 7.61 0.000
3 30.74 0.000 —0.30 0.764 10.61 0.000 —1.12 0.265

tArellano and Bond (1991) tests for auto-correlation in the equation y;; = a+ B¢ + YCFj; + €js.

assigned to the financially constrained or unconstrained group of those firms in respectively the
bottom or top three deciles of the size distribution. The rankings are again performed annually.
Small firms are typically young, less well known and thus more vulnerable to capital market
imperfections so they are identified as financially constrained as opposed to large firms that are
identified as financially unconstrained.

We also propose a third scheme advocated in Moyen (2004) based on firms’ dividends rather
than on the pay-out ratios.

Scheme 3. Firms are ranked on the basis of dividends (sums of dividends on common
and preferred stocks) over the 1974-2010 period and assigned to the financially constrained
or unconstrained group of those firms in respectively the bottom or top three deciles of the
dividend payment distribution. The rankings are again performed annually.

As a further check of robustness, we also consider the classification of firms by using the
index proposed in Hadlock and Pierce (2010). (We are grateful to a referee for suggesting this
analysis.) This index is defined as a combination of firms’ asset size and age; more specifically,
the index is constructed as —0.737size 4 0.043size” — 0.040age.

Scheme 4. Firms are ranked on the basis of the Hadlock and Pierce (2010) index computed
over the 1974-2010 period. The financially constrained or unconstrained group is comprised of
those firms in respectively the top or bottom three deciles of the index distribution. The rankings
are again performed annually. In contrast with the previous schemes, and due to the definition
of the index, the constrained group is found at the top deciles of the distribution.

We proceed now to discuss the empirical findings that were obtained from running the invest-
ment equation separately for each group of firms.

Table 8 presents the estimates of the ¢- and CF-coefficients for scheme 1. This scheme classifies
firms with high and low pay-out ratios as financially unconstrained and constrained respectively.
There are significant differences in the magnitude of the Tobin’s g-parameter estimates across
groups. In particular, the sensitivity of Tobin’s ¢ to investment demand is several times higher
for constrained firms than for unconstrained firms. In contrast, we observe a greater sensitivity
of investment to firms’ cash flows for unconstrained firms than for constrained firms. This result
contrasts with the literature on investment that follows from Fazzari et al. (1988) and agrees
with the findings that were obtained in Kaplan and Zingales (1997). The comparison between
estimation methods also highlights important differences between the IV methodology and our
proposed S-estimators. These differences are particularly large for the analysis of Tobin’s ¢ for
constrained firms. For example, the FE IV 6 estimator for low pay-out ratios reports parameter
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Fig. 1. Lag of Tobin’s g as a function of OLS residuals and Tobin’s g: (a) consider G4 and Gg, grids
of size 50 of spaced points on the range of g; and the OLS residuals £&;—then on the plane given by
Gq % Ge With element (g4(h), g¢(/)), h,j=1,2,...,50, we compute the average g;_4 of all observations with
9q(h—2)< g1 < gg(h+2) and g (/) < q;-1¢ < g¢(/) (empty areas correspond to (£, g) cells with no obser-
vations); (b) g; multiplied by the OLS residuals &; versus q;_4
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Table 8. Investment model for unconstrained firms characterized by high and low pay-out ratiost

Variable OLS FEs e FEIV6 SE6 SFE6

High pay-out ratios (unconstrained)

q 0.0291% 0.0330% 0.0233% 0.0230% 0.0333% 0.0244%
(0.0048) (0.0053) (0.0055) (0.0050) (0.0049) (0.0050)

CF 0.0802% 0.0679% 0.0817% 0.0898% 0.0790% 0.0689%
(0.0102) (0.0107) (0.0106) (0.0099) (0.0013) (0.0010)

Constant 0.135% 0.136% 0.140% 0.136% 0.131% —0.008%
(0.0044) (0.0058) (0.0049) (0.0041) (0.0042) (0.0007)

Observations 11643 11643 11643 11643 11643 11643

Low pay-out ratios ( constrained)

q 0.1393% 0.1432% 0.1140% 0.1231% 0.2243% 0.2209%
(0.0144) (0.0213) (0.0122) (0.0133) (0.0498) (0.0478)

CF 0.0520% 0.0462% 0.0478% 0.0670% 0.0664% 0.0625%
(0.0100) (0.0079) (0.0118) (0.0199) (0.0083) (0.0090)

Constant 0.0625% 0.0602% 0.0850% 0.0721% —0.0146% —0.0028%
(0.0115) (0.0195) (0.0101) (0.0093) (0.0450) (0.0040)

Observations 9383 9383 9383 9383 9383 9383

tCluster robust standard errors by firm are in parentheses.

ip<0.01.

Table 9. Investment model for unconstrained firms characterized by large and small sizet

Variable OLS FEs e FEIVG6 SE6 SFEG6

Large size (unconstrained)

q 0.0425% 0.0484% 0.0406% 0.0417% 0.0350% 0.0343%
(0.0061) (0.0058) (0.0067) (0.0028) (0.0055) (0.0042)

CF 0.0772% 0.0571% 0.0775% 0.0574% 0.0784% 0.0578%
(0.0125) (0.0119) (0.0126) (0.0023) (0.0009) (0.0002)

Constant 0.128% 0.129% 0.130% 0.135% 0.135% 0.002%
(0.0059) (0.0067) (0.0061) (0.0030) (0.0050) (0.0003)

Observations 10839 10839 10839 10839 10839 10839

Small size (constrained)

q 0.0707% 0.0709% 0.0450% 0.0250% 0.0513% 0.0222%
(0.0102) (0.0116) (0.0081) (0.0057) (0.0103) (0.0070)

CF 0.119% 0.142% 0.127% 0.154% 0.1252% 0.1539%
(0.0110) (0.0146) (0.0116) (0.0153) (0.0033) (0.0018)

Constant 0.112% 0.104% 0.132% 0.140% 0.1273% —0.0048%
(0.0079) (0.0099) (0.0064) (0.0050) (0.0079) (0.0007)

Observations 9805 9805 9805 9805 9805 9805

tCluster robust standard errors by firm are in parentheses.
ip<0.01.

estimates equal to 0.123, whereas the estimators S 6 and S FE 6 report values of 0.2243 and

0.2209 respectively.

Table 9 presents the estimates of the ¢- and CF-coefficients for scheme 2. This scheme clas-
sifies large firms as financially unconstrained and small firms as financially constrained. The
results that are reported in Table 9 suggest a greater sensitivity of cash flows to investment for
constrained than for unconstrained firms. These results are in line with Fazzari et al. (1988),
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Table 10. Investment model for unconstrained firms characterized by high and low dividend payments+

Variable OLS FEs V6 FEIV6 SE6 SFE6

High dividend payments (unconstrained)

q 0.0333% 0.0412% 0.0251% 0.0271% 0.0369% 0.0028
(0.0047) (0.0048) (0.0051) (0.0024) (0.0040) (0.0041)
CF 0.0918% 0.0777% 0.0946% 0.0807% 0.0905% 0.0807%
(0.0100) (0.0137) (0.0102) (0.0032) (0.0013) (0.0008)
Constant 0.132% 0.130% 0.140% 0.143% 0.1290% 0.0004
(0.0050) (0.0068) (0.0053) (0.0028) (0.0036) (0.0005)
Observations 11292 11292 11292 11292 11292 11292
Low dividend payments ( constrained)
q 0.1362% 0.1590% 0.1011% 0.1160% 0.2179% 0.2007%
(0.0136) (0.0180) (0.0127) (0.0124) (0.0251) (0.0159)
CF 0.0504% 0.0464% 0.0457% 0.0384% 0.0614% 0.0549%
(0.0080) (0.0055) (0.0109) (0.0028) (0.0033) (0.0027)
Constant 0.0761% 0.0571% 0.108% 0.0968% 0.0023% —0.0035%
(0.0105) (0.0167) (0.0106) (0.0114) (0.0226) (0.0010)
Observations 9597 9597 9597 9597 9597 9597

FCluster robust standard errors by firm are in parentheses.
1p<0.01.

Table 11. Investment model for unconstrained and constrained firms characterized by the Hadlock—Pierce
indext

Variable OLS FEs 1V 6 FEIVG6 SE6 SFE6

Low Hadlock—Pierce index (unconstrained)

q 0.0522% 0.06087 0.0433% 0.04607 0.0450% 0.0398%
(0.0071) (0.0074) (0.0068) (0.0035) (0.0070) (0.0047)
CF 0.076% 0.057% 0.078% 0.058% 0.077% 0.065%
(0.0102) (0.0114) (0.0107) (0.0030) (0.0012) (0.0004)
Constant —0.123% 0.131% 0.132% 0.136% 0.129% —0.0013%
(0.0069) (0.0082) (0.0062) (0.0037) (0.0065) (0.0005)
Observations 11012 11012 11012 11012 11012 11012
High Hadlock—Pierce index (constrained)
q 0.0575% 0.0624% 0.0353% 0.0127% 0.0398% 0.0336%
(0.0098) (0.0096) (0.0085) (0.0085) (0.0113) (0.0127)
CF 0.132% 0.142% 0.136% 0.1523% 0.1357% 0.1324%
(0.110) (0.0131) (0.0114) (0.0061) (0.0023) (0.0015)
Constant 0.110% 0.102% 0.123% 0.141% 0.123% —0.0039%
(0.0078) (0.0081) (0.0068) (0.0069) (0.0087) (0.0009)
Observations 8435 8435 8435 8435 8435 8435

TCluster robust standard errors by firm are in parentheses.
ip<0.01.

Agca and Mozumdar (2017) and most of the empirical investment literature highlighting the
differences between external and internal financing for determining investment demand.

The contradictory results that are obtained from comparing Table 8 and Table 9 suggest that
the criteria that are used to define financial constraints can reflect different firms’ features. To
provide further empirical evidence on the effect of firms’ cash flows as a function of financial
constraints, we use the classification that is proposed in scheme 3 based on dividend payments.
The results reported in Table 10 provide empirical evidence that is similar to the analysis using
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Table 12. Arellano and Bond (1991) tests for auto-correlation in the residualst

OLS FEs v FEIV

z p-value z p-value z p-value z p-value
High pay-out
1 37.56 0.000 26.33 0.000 14.52 0.000 13.98 0.000
2 21.27 0.000 8.25 0.000 10.32 0.000 5.46 0.000
3 13.69 0.000 2.57 0.764 7.93 0.000 2.13 0.000
Low pay-out
1 35.26 0.000 22.13 0.000 9.35 0.000 12.74 0.000
2 19.34 0.000 4.51 0.000 5.40 0.000 3.62 0.000
3 15.43 0.000 —0.15 0.882 4.56 0.000 —0.41 0.685
Large size
1 61.06 0.000 45.62 0.000 13.19 0.000 12.48 0.000
2 40.14 0.000 15.94 0.000 11.48 0.000 8.00 0.000
3 30.90 0.000 4.44 0.000 9.74 0.000 2.56 0.010
Small size
1 34.63 0.000 21.43 0.000 11.30 0.000 10.89 0.000
2 17.88 0.000 3.69 0.000 7.73 0.000 2.68 0.007
3 11.95 0.000 —1.75 0.081 5.92 0.000 —1.78 0.076
High dividends
1 58.61 0.000 45.32 0.000 13.13 0.000 13.41 0.000
2 36.93 0.000 16.86 0.000 10.73 0.000 8.64 0.000
3 27.14 0.000 5.79 0.000 8.81 0.000 3.51 0.000
Low dividends
1 33.60 0.000 17.44 0.000 10.97 0.000 10.19 0.000
2 20.04 0.000 2.34 0.019 6.46 0.000 1.50 0.133
3 15.00 0.000 —0.92 0.360 5.66 0.000 —-1.25 0.211
High Hadlock—Pierce index
1 25.31 0.000 16.10 0.000 1291 0.000 7.93 0.000
2 10.58 0.000 0.69 0.492 7.62 0.000 0.38 0.707
3 5.39 0.000 -2.92 0.003 4.68 0.000 —2.10 0.000
Low Hadlock—Pierce index
1 46.87 0.000 30.72 0.000 12.19 0.000 5.96 0.000
2 31.63 0.000 14.07 0.000 11.27 0.000 8.70 0.000
3 25.73 0.000 6.89 0.000 9.56 0.000 4.83 0.000

tArellano and Bond (1991) tests for auto-correlation for subsamples classified according to different criteria.

pay-out ratios. Note, for example, the parameter estimates of Tobin’s g-coefficient. These find-
ings are very supportive of the idea that cash flow of firms paying larger dividends have stronger
predictive power for determining investment demand than low dividend firms’ cash flows.

As a further check of robustness, we consider scheme 4 based on the Hadlock and Pierce
(2010) index that classifies firms as a function of asset size and age. The classification of firms as
constrained and unconstrained according to this index is similar to the classification that was
obtained in scheme 2. Table 11 reports empirical results for the unconstrained and constrained
firms according to this index that are consistent with the classification of firms in terms of asset
size. In particular, the effect of firms’ cash flows is higher (around 0.1357) for constrained firms
than for unconstrained firms (0.077).



Solving Endogeneity with Invalid Instruments 709

These empirical findings are robust across estimation methods but exhibit large parameter
variability that challenges the validity of the various methods. To assess this formally, we com-
pute in Table 12 the Arellano and Bond (1991) test for serial auto-correlation of the residuals
that were obtained from the OLS and IV models, and the corresponding FE counterpart mod-
els obtained from the within transformation. The results show overwhelming evidence of serial
correlation in the residuals and shed important doubts on the validity of the IV methodology in
this context. These results provide further empirical support to choosing the alternative family
of simultaneous estimators that is proposed in this paper.

As a final separate exercise to assess the relationship between investment demand, Tobin’s ¢
and firms’ cash flow empirically, we study the effect of a credit supply shock on investment—
cash flow sensitivities for groups of financially constrained firms. (We are grateful to a referee
for suggesting this analysis.) Recent literature focuses on an alternative method to measure the
effect of liquidity on investment, which exploits financial shocks in a difference-in-differences
framework (see, for example, Lemmon and Roberts (2010), Almeida et al. (2011) and Duchin
et al. (2010)). In this paper, we do not consider a difference-in-differences framework but,
instead, compute the investment regression equation for two different periods separated by a
structural break defined by the passage of the Financial Institutions Reform, Recovery, and
Enforcement Act of 1989; see Lemmon and Roberts (2010). The passage of the Act led to
an immediate cessation of the $12 billion annual flow of capital to speculative grade firms
from savings and loans, while simultaneously forcing a sell-off of all junk bond holdings. Thus,
whereas the period before 1989 is characterized by the absence of credit and liquidity constraints,
after 1989 financially constrained firms faced a potentially disrupting financing environment that
could have led them to use more of the cash flows to finance investment.

As our database does not contain information on firms’ bond ratings, we proxy firms’ financial
constraints by using asset size and the pay-out ratio. (For brevity, we do not entertain constrained
firms characterized by dividends and the Hadlock—Pierce index. It is worth noting, though, the
strong positive correlation between the classification of firms in terms of the pay-out ratio

Table 13. Investment model for low pay-out firms before and after 1989+

Variable OLS FEs Ve FEIV6 SE 6 SFEG6
Before 1989
q 0.1075% 0.1000% 0.0710% 0.0427% 0.0852% 0.2184%
(0.0226) (0.0245) (0.0204) (0.0128) (0.0261) (0.0186)
CF 0.184% 0.131% 0.193% 0.131% 0.190% 0.0588%
(0.0512) (0.0494) (0.0565) (0.0093) (0.0059) (0.0037)
Constant 0.078% 0.097% 0.110% 0.151% 0.098% —0.0151%
(0.0173) (0.0228) (0.0152) (0.0123) (0.0230) (0.0015)
Observations 3616 3616 3616 3616 3616 3616
After 1989
q 0.132% 0.1615% 0.0938% 0.0970% 0.2323% 0.2184%
(0.0169) (0.0396) (0.0113) (0.0185) (0.0128) (0.0186)
CF 0.044% 0.037% 0.127% 0.0341% 0.0633% 0.059%
(0.0071) (0.0088) (0.0116) (0.0043) (0.0024) (0.0037)
Constant 0.058% 0.092% 0.132% 0.090% —0.0278% —0.0150%
(0.0131) (0.0095) (0.0064) (0.0162) (0.0111) (0.0015)
Observations 5767 5767 5767 5767 5767 5767

FCluster robust standard errors by firm are in parentheses.
ip<0.01.
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Table 14. Investment model for small firms before and after 1989+

Variable OLS FEs Ve FEIV6 SE6 SFE6
Before 1989
q 0.0428% 0.0309% 0.0174% —0.0002% 0.0385% 0.0145%
(0.0107) (0.0099) (0.0073) (0.0075) (0.0115) (0.0069)
CF 0.220% 0.303% 0.242% 0.324% 0.224% 0.292%
(0.0181) (0.0200) (0.0186) (0.0137) (0.0098) (0.0047)
Constant 0.115% 0.097% 0.132% 0.120% 0.118% 0.007%
(0.0092) (0.0100) (0.0071) (0.0073) (0.0076) (0.0007)
Observations 4140 4140 4140 4140 4140 4140
After 1989
q 0.0901% 0.1268% 0.0522% 0.0384% 0.0837% 0.0088
(0.0127) (0.0160) (0.0146) (0.0174) (0.0187) (0.0214)
CF 0.097% 0.105% 0.104% 0.117% 0.098% 0.1104%
(0.0108) (0.0133) (0.0117) (0.0057) (0.0036) (0.0034)
Constant 0.096% 0.063% 0.124% 0.131% 0.1006% —0.0091%
(0.0096) (0.0126) (0.0107) (0.0135) (0.0139) (0.0021)
Observations 5665 5665 5665 5665 5665 5665

tCluster robust standard errors by firm are in parentheses.
ip<0.01.

and dividends, and in terms of asset size and the Hadlock—Pierce index.) Table 13 reports the
estimates of the cash flow sensitivities and Tobin’s ¢ to investment by using the pay-out ratio
(scheme 1) as the classification criterion. Table 14 shows the counterpart estimates before and
after 1989 using firms’ asset size (scheme 2).

The results corresponding to both firms’ classifications are robust across estimation methods
and reveal a decrease on the effect of firms’ cash flows after 1989. These results provide further
empirical evidence suggesting that the positive correlation between investment demand and
firms’ cash flows decreases in periods that are characterized by tighter financial conditions. This
empirical finding is broadly consistent with the findings that were obtained from the analysis of
pay-out ratios and firms’ dividends, and the conclusions in Kaplan and Zingales (1997).

5. Conclusion

This paper addresses the measurement error problem arising in investment equations relating
firms’ investment demand with Tobin’s ¢ and cash flow. We have shown that serial correlation
in the measurement error variable invalidates standard corrections based on IV methods. To
solve the problem, we have proposed an alternative methodology that is based on modelling the
interaction between the endogenous regressor (the average Tobin’s ¢) and the error term as a
function of lags of the endogenous regressor. The solution yields a consistent and asymptotically
normal estimator that works under serial correlation of the structural equation error term and
enables us to make correct statistical inference.

An application to a panel of US firms reveals stark differences between the novel estimator and
existing competitors, highlighting the relevance of Tobin’s ¢ and firms’ cash flow for explaining
investment demand. More specifically, the S-estimator shows that the effect of these variables on
predicting investment demand is greater than those estimated by the OLS and I'V methodologies.
These findings are in themselves evidence that the S-estimator is doing a good job of capturing
the true variation in investment opportunities.
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The empirical analysis also contributes to the discussion on the differences of firms’ cash
flow on investment demand between financially constrained and unconstrained firms. We find
mixed evidence on the effect of firms’ cash flows on investment demand between financially
constrained and unconstrained firms. More specifically, whereas we observe higher sensitivity
to cash flows for financially constrained firms defined by smaller and younger firms, we find
a similar finding for the group of unconstrained firms characterized by high pay-out ratios
and dividend payments. Nevertheless, the natural experiment consisting of studying the effect
of a credit supply shock on the relationship between investment demand and firms’ cash flow
supports the view that cash flow has less predictive power under tighter financial conditions.

Appendix A: Proof of the theorems

A.1.  Proof of theorem 1
We prove theorem 1 by showing that solutions to a system of equations are unique if and only if assumption
1, part (b), holds. We first note that from assumption 1, part (a), E[x]€]=0 we have

E[x]y]— E[x{x,]0) — E[x{ ]3=0. (10)
From assumption 1, part (c), and the definition of 8, and 6,, we also obtain

u=qe—7Lo

=q(y—x10,—qpB)—Zop

=qy—qx1(E[x{x|] " E[x{ y] — E[x] x;]"' [?q]ﬁ) 7B—Lo
=q(y—x E[x{ x|] " E[x{y])) —q(g — x| E[x{ x;] ' E[x{q]) 3 — Z¢
—§—X6,.

Then from E[X u]= E[X" (5 —X0,)] =0, we have

~T ~

E[X"5]— E[X"X]0, =0. an

The conclusion immediately follows by equations (10) and (11) and assumption 1, part (b).

A.2. Proof of proposition 1
We first recall that ¢; =17, — Be;; such that

Gir€ir = Gir (Nis — Beir)

=quNit — Bqireir + E[Bqireir i) — E[Bqireir|2i]

=g(zZi) +uj
where u;; =gy — Bquen — E[Bquen)zy], and g(z;,) = E[Bqiei|2:,] # 0 because g is auto-correlated. In
addition, by assumption g(z;) can be approximated by a polynomial of order m; hence we have that
‘]zrfn— lt¢+utt

Now, from the above equation, it remains to show that E[x uy]=0 where X;; = (¢%,Z;) Wlth Z,=

(1, qir— l,q”_l,...,q” ). We do this by proving E[u;|q:, ;] =0 because this implies that E[ u;] =0.
From the definition of u;, above

ETui|qir, 2i] = Elqumic — Bqiceir — E[Bqirein Zid]|qir Zi]
=qu EMilqir, Zie) — E[Bqieiqir, 2is) — E[BqieiZi]
= q:‘tE[n[tlf]it» Zi/] - B%(E[en |Gic» Zit] - E[eit |Zit])
:0’
since E[7;qi, 2;]=0 by the zero-mean white noise process of n;;, and since E[e;|qi;, z;;]= E[e;|z;] by the

fact that by assumption 2 e;, =h(e;—1, g;r_,) implies that e; = h(g;—1) for a measurable function /(-). This
completes the proof.
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A.3. Proof of theorem 2

We show the asymptotic distribution of the proposed estimator by taking into account the problem of the
generated variables. This is an extension of the problem of the generated regressor in Pagan (1984). Recall
that

. 1o 7 . *llnTT 1o T *llnTT )
0= => > Xy X =Xy — | = 20 2 Xy X =22 Xy qi | B
ni=1=1 n i=1=1 ni=11=1 n i=1=1
and
A ST 1 "It
02: ZZ le XlIyI[
ni=1:=1 ni=1=1

Also recall that X = (g(q — x16,), Z) with §, = E[x] xi]” 'E[x]q], and y=q(y —x,6,) with 6, = E[x]x,]™'
x E[xTy]. In addition, define the sample analogues X=(q(qg—x q) Z) with

-1
( szlnxl”) szlnqlh
ni=i; i=1lt=
and y=q(y —x; é,) with
R 1 .
< )P meln> =20 2 Xy i
nj=1:=1 nj=1:=1
We first show the asymptotic properties of 6,. We note that, since ¥y =Xi0> +u;,, we have
yA;z =X;0> +uy — Xy — Xi) 02 +ij1 - }7;,-
By plugging the equation above into the definition of 6, we obtain

-1
n T 1 n T R . 5 R B
02=02+< ZE Tx,1> ;ZZXﬁ{un—(x,-,—xit)02+(y,»,—yi,)},
i=1rt=1

i=lt=

so that
n o 1 n T R R 5 R 5
Vn(@,—6,) =0 lJn; S R {ui — (Ri —Xi) 02 + (5, — 5,)
i=lt=1
= A_I(Al—Az-i-As) (12)
with 0 =(1 /n)E,’.;lZ,T:l%iT,ﬁ,»,,where Ar=n(1 /)2 ST Ky, Ay=/n(1/n) S SL X5 (%, —%,,)0; and
Ay=/n(1/n)X_ XL, X, (9, — ¥;,). We note that
Q_;ZZ AT Att_>E[X Xtt]— (13)
i=1t=

by Slutsky’s theorem and the law of large numbers. We also note that, by a Taylor series expansion,
— Vi S5t SE o ) Vi, 8 +o,(0.
i=lt= i=11=1

with Vs, Xi = (— gx1,0F ). Since E[u;|X;]=0, we have E[V,gqx u;]=0. Thus, we obtain

1 n T

- E Z V‘5qxltult _Op(l)

nj=11=1
Since \/n(éq —6,)=0,(1), it follows that

\/n sznutt—'_op(l) (14)

ni=1=1
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By a similar argument, we have that

Azz( ZZX,IV(g x,,Bz) \/n(é -6, )+0p(l)—JnG(5 —bg) +0,(1),

n ==

with G = E[x Vs,Xi0>]. Since
,\ n T T 11 n T T
XX | =35> Xy G
i=1r=1 ni=1r=1

and ¢, = E[x[ x;]"'E[x]q], A, can be rewritten as

Ay=G.i/n Z Zrl,(cs )+0,(1),

i=lt=

with
T -1
rir(éq) = ( X—lruxln‘> X-lr[j (‘1:‘; - Xliréq)
i=11=1
and E[r;(6,)]=0 by the law of iterated expectations. Similarly, we obtain

A= ( sznvéx&n) «/n(‘§>'_6>')+0p(1)=\/"H(‘§y_5y)+0p(1)>

i=lt
with Vs 5, = —gx; and H = E[X], V;, 3,,]. Since
—1
1 n T T
Z le,,xm =220 Xy i
i=11= ni=1=1

and §, = E[x{x,]'E[xTy], A3 can be rewritten as

A3=H\/n22s,,(6 )+ o,(D),
i=lt=
with
-1
Sit(§y):< szlttxllt> Xﬁlrit(yif_x”‘é“)’

i=lt

and E[s;;(6,)] =0 by the law if iterated expectations.
By plugging equations (13)—(16) into equation (12), we have

Jn(6s— )= [wz S S R s — Gra (8, + Hsu(6)} | +0,(1).
i=lt=1
As a result, we show the consistency of 92:
éz—p> 92+ Q71 X 0202
To show asymptotic normality, we have that

(0, —8,) 5 Q7'NO, M) =N, Q' MO,
with M = var{X}u; — Gr;(,) + Hs;,(6,)}, by the Lindeberg-Lévy central limit theorem.

713

15)

(16)
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We now show the asymptotic properties of 8. We note that

n 1n T 711 n T
0,= (* ZZXIT,-,XU;) ” D> (X101 + i S +e)

ni=1=1 i=11=1

12 T Tirar o
- (* Z leT,-,Xlir> (; Z leirqn> B

ni=11=1 i=11=1

n i1 t=1 i=11=1

1 n T AN .
=6, - (f szﬁ,xli,) (f szﬁ,qi,) (B=B)+0,(1).

By the law of large numbers we have

n 1 n T
_ T P T _
Ci=-> Y xxuu— E[x;x1;]=Ci,
nj=1=1
A 1 n T T p T
C= " meql‘z — E[xy;,qi1]=Ca,
i=lt=1

so that we show the consistency of 0::
é] _p) 01 —CIICZQ;I X 0291,

where Qjp is the element in the Q-matrix that corresponds to the estimation of 3. To show asymptotic
normality, we note that

A | n T VAR & A
Vi@-0)=- (L E5xlxi ) (G E ) Va5,
i=11=1 i=1t=1
Then, we obtain
Jn(0 —6,) > C;'CNO, V;) = N, € C,V;CICTY,

where V; is the variance of 8.

Appendix B: Inconsistency of instrumental variables estimator in the presence of
serial persistence

Consider, for instance, auto-regressive models of order 1 (AR(1)) for driving the marginal Tobin’s ¢:
a5 = p'asy + W an

where |p7) <1 and w! is an independent and identically distributed and zero-mean process, and the mea-
surement errors

eiz=h(€fz_1,q?;,1), (18)

as stated in proposition 1. (There is no constant term in the process for g;* without loss of generality.)
From equation (3), the endogenous variable ¢;, can be rewritten as

qir = q?; t+ei
=gy + Wi, +ei "
= pqi—1 + Wi, +hlei-1,q;_))-

As a result, g;, is correlated with ¢;;_; so g;,_; satisfies the instrument relevance condition. Namely, from
equation (19), g;;— is

Git—1=pqi—2 + WZ_l + h(ei—2, q:_z).

If {qi—2, Wl _|.qF ,,en_2} are uncorrelated with €, =n; — Be;,, the variable g;,_; satisfies the instrument
exogeneity condition. Then, I'V methods which employ ¢;;_1 as an instrument produce consistent estimators
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of B and . We note that higher order lags of ¢;, also satisfy the exogeneity condition and, hence, can be
also used as IVs.

However, in practice, it is highly likely that current period measurement error is correlated with the
first-order or higher order lags of the measurement error. This is so if \;, or v;, exhibit some persistence.
For example, consider the process of the measurement errors as in equation (18). The measurement errors
are persistent in the sense that the last period measurement error e;,_; affects the current period e;. In
this case, the instrument exogeneity condition is no longer valid because the instrument ¢;;_1 = p?qi;—» +
wi |+ h(ei—a,qi_,) is correlated with the error term,

€ir =My — Bei =Myt —ﬁh(eu_],q?;l), (20)

through the lag of Tobin’s ¢, ¢;'_,, and the lag of the measurement error, ;1. As a result, the IV approach
that was proposed by Almeida ez al. (2010) also fails to obtain consistent parameter estimates.

This is partly addressed in the study that was carried out by Agca and Mozumdar (2017) by including
longer lags of the instruments in the dynamic GMM approaches that were employed by Cummins et al.
(2006) and Almeida et al. (2010). However, the dynamic GMM approaches still fail to work if the measure-
ment errors are persistent. For instance, if we assume, instead, the second-order lag of the average Tobin’s
g as instrument, g;,—» = p?qi—3 + wi_, +h(ei—3,q;_3), then, from equation (20), we have

€ =1 — Ph(ei—1, qiﬂ;fl) =Mt — 6}1{}1(6,-,,2, q;:z)s qz71}~

This algebra reveals that the IV is still correlated with the regression error term ¢;, through ¢;¥_, and e;;_». In
fact, the dynamic GMM approach is more efficient in that it provides smaller variance of the estimator by
imposing a proper weighting matrix when the error term is heteroscedastic and auto-correlated. However,
the estimator is inconsistent if the I'Vs are correlated with the error term. Thus, employing higher order lags
of the IV and imposing a proper weighting matrix are not sufficient conditions to control for measurement
errors in the average Tobin’s g.
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