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Discontinuous Reinjection
Probability Density Function
in Type V Intermittency
This paper reports theoretical and numerical results about the reinjection process in type
V intermittency. The M function methodology is applied to a simple mathematical model
to evaluate the reinjection process through the reinjection probability density function
(RPD), the probability density of laminar lengths, and the characteristic relation. We
have found that the RPD can be a discontinuous function and it is a sum of exponential
functions. The RPD shows two reinjection behaviors. Also, the probability density of lam-
inar lengths has two different behaviors following the RPD function. The dependence of
the RPD function and the probability density of laminar lengths with the reinjection
mechanisms and the lower boundary of return are considered. On the other hand, we
have obtained, for the analyzed map, that the characteristic relation verifies �l � e�0:5.
Finally, we highlight that the M function methodology is a suitable tool to analyze type V
intermittency and there is a very high accuracy between the new theoretical equations
and the numerical data. [DOI: 10.1115/1.4041577]

1 Introduction

Chaos is an essential subject in engineering, biology, physics,
chemistry, etc. Intermittency is a standard route to chaos, where
trajectories alternate regular or laminar phases and chaotic bursts
or nonregular phases. The laminar phases correspond to regions of
pseudo-equilibrium or pseudo-periodic solutions, while the burst
ones are regions where the trajectory is chaotic. Therefore, a sys-
tem can evolve from regular to chaotic behavior by intermittency.

Traditionally, intermittency has been classified into three differ-
ent types namely I, II, and III according to the system Floquet
multipliers or to the local Poincar�e map eigenvalues [1–4]. How-
ever, more recent research has included other intermittencies
types such as V, X, on-off, in-out, eyelet, and ring [5–10].

Several physical phenomena show chaotic intermittency, like
turbulent flows, Rayleigh-B�enard convection, forced nonlinear
oscillators, plasma physics, and electronic circuits [11–19]. Addi-
tionally, intermittency was used to model the behavior in econom-
ics and medicine systems [20–22]. Therefore, a more accurate
description of chaotic intermittency would help to improve the
knowledge about all these phenomena.

Poincar�e maps are useful tools to study chaotic intermittency
[1,2,4]. The local map and the reinjection mechanism characterize
the intermittency behavior. The local map is defined around the
vanished or unstable fixed point. The reinjection mechanism maps
back the trajectories from the chaotic zone to the laminar one,
which is described by the reinjection probability density function
(RPD). Then, the correct evaluation of the RPD function has con-
siderable influence to describe the chaotic intermittency phenom-
enon accurately. The RPD function evaluation, from experimental
or numerical data, is not a simple task due to the vast amount of
data needed and the statistical fluctuations induced in the numeri-
cal computations and the experimental measurements. Accord-
ingly, many approaches have been implemented to represent the
RPD function, where the most common one was to consider a
constant RPD (uniform reinjection). There were other approaches
to build the RPD, but they used specific characteristics of the non-
linear processes, and these RPDs cannot successfully employ in
other nonlinear systems [23,24].

The M function methodology, developed in the last years, is a
broader methodology to evaluate RPD functions. It includes the
uniform reinjection as a particular case, and it has shown to be
very accurate for a broad class of maps showing type I, II, and III
intermittencies [4,25–35]. This methodology has been recently
applied to type V intermittency obtaining continuous and nonuni-
form RPDs [36]. In this paper, we implement the M function
methodology to describe discontinuous RPD functions for type V
intermittency. We show that this methodology works accurately
for type V intermittency and the reinjection processes may include
discontinuous RPDs. Besides, we find that the characteristic rela-
tions can acquire other forms than those previously published.

Baueret et al. [37,38] and Fan et al. [39] introduced type V
intermittency, and it appears when a nondifferentiable point
(NDP) and a stable fixed point collide forming a channel between
the bisector line and the map. However, a tangent bifurcation does
not happen because the local map is nondifferentiable or discon-
tinuous at this point. We highlight that two maps with different
slopes describing a “V” compose the local map.

The Hindmarsh–Rose model of neuronal activity showed type V
intermittency [40–42]. The intermittent behavior displayed in the
recurrence between irregular bursting and phases close to a period-
3 bursting. The intermittent chaotic bursting and spiking from theo-
retical models and biological experiments were studied [41,42].
Therefore, the theoretical and numerical results introduced in this
paper could help to improve the knowledge about these systems.

A review about type V intermittency has been recently carried
out in Refs. [4] and [36].

2 Methods and Models

In this section, we first introduce a brief description of the M
function methodology, which is a theoretical framework that
describes the intermittency reinjection process for a broad class
of maps and dynamical systems. Later, the piecewise one-
dimensional map used in this paper is described.

2.1 The M Function Methodology. Evaluation of the
Reinjection Probability Density Function. Let us consider a
general one-dimensional map: xnþ1¼F(xn). The RPD function,
/(x), specifies the probability density that trajectories are rein-
jected into a point x inside the laminar interval, i.e., the statistical
behavior of the reinjection trajectories, which depends on the spe-
cific form of F(x) [1,2,4].
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In this methodology, the reinjection probability density function
is not directly calculated from the data series. An auxiliary func-
tion, M(x), is previously evaluated [4,25–30]

MðxÞ ¼

ðx

x̂

s/ sð Þ dsðx

x̂

/ sð Þ ds
; if

ðx

x̂

/ sð Þ ds 6¼ 0;

0; otherwise

8>>>>><
>>>>>:

(1)

where x̂ is the lower boundary of reinjection point, i.e., the closest
reinjection point to the unstable fixed point.

The evaluation of M(x) from numerical or experimental data
series is straightforward:

MðxÞ ffi 1

N

XN

j¼1

xj (2)

where the data set (reinjection points) fxjgN
j¼1 must be sorted from

the lowest to the highest, i.e., xj � xjþ1 [25–32].
Previous studies have found that M(x) satisfies a linear approxi-

mation for a broad class of maps showing type I, II, III, and V
intermittencies [25–28,30,36]:

MðxÞ ¼
mðx� x̂Þ þ x̂; if x̂ � x � c;

0; otherwise;

(
(3)

Note that the nonlinear map drives the reinjection process, and it
determines the parameter m � (0, 1).

From Eqs. (1) and (3), the RPD function can be obtained
[25,26,28,30,36]

/ðxÞ ¼ b að Þ x� x̂ð Þa; with a ¼ 2m� 1

1� m
(4)

where the normalization parameter, b(a), results

b að Þ ¼ aþ 1

c� x̂ð Þaþ1
(5)

For m¼ 1/2 (a¼ 0), the uniform RPD can be recovered, i.e.,
uniform reinjection is obtained as a particular case of the new
theoretical formulation. However, the RPD can leave from
the uniform reinjection, e.g., limx!0 /ðxÞ tends to zero, when
1/2<m< 1 (a> 0) and to infinity when 0<m< 1/2 (a< 0).

2.2 The Model: A Piecewise One-Dimensional Map. Maps
defined on intervals of the real line are an essential tool in nonlin-
ear dynamics and chaos [1,2,4,36,43]. In this work, we analyze
piecewise maps, F(x), described in the interval y0 � x � yn

FðxÞ ¼

f1ðxÞ; y0 � x < y1;
f2ðxÞ; y1 � x < y2;
:
:
:

fnðxÞ; yn�1 � x � yn

8>>>>>><
>>>>>>:

(6)

Let us consider a piecewise one-dimensional map showing
type-V intermittency

FðxÞ ¼

F1ðxÞ ¼ a1xþ e; ~x � x < 0;

F2ðxÞ ¼ eþ xþ a2x2; 0 � x < xm;

F3ðxÞ ¼ ~x þ
ym � ~xð Þ ym � xð Þc

ym � xmð Þc
; xm � x � ym

8>>>><
>>>>:

(7)

where ym ¼ FðxmÞ ¼ 1; ~x is the lower boundary of return [4,36],
0< a1< 1 is the slope of the straight line, a2 is the coefficient of
the quadratic term in F2(x), and finally e is the control parameter.
If ~x ¼ 0, the map is defined inside the interval [0, 1]. Note that
F1(x) is a linear function and F2(x) corresponds to the local map
for type I intermittency. The F3(x) function generates the reinjec-
tion process, and it depends on the exponent c. Therefore, this
map allows analyzing distinct types of reinjection mechanisms
using different values of c. Figure 1 shows the map.

This map was used in Ref. [36] to describe nonuniform RPDs
for type V intermittency. Here, we obtain discontinuous RPDs
only modifying the lower boundary of return.

The map can have three fixed points

x1 ¼
e

1� a1

;

x2 ¼
�e
a2

� �0:5

;

x3 ¼ ~x þ 1� ~xð Þ 1� x3ð Þc

1� xmð Þc

(8)

If e< 0, the fixed point x1 is less than zero and x2 is higher than
zero. Also, x1 and x2 disappear for e> 0, and they are equal zero if
e¼ 0. For e¼ 0, the fixed points x1 and x2 collide in one fixed
point x0¼ 0.

The map (7) has a nondifferentiable point at x¼ 0, which col-
lides with the fixed point x0 for e¼ 0. The fixed point vanishes
and type-V intermittency can appear for 0< e� 1.

The iteration procedure–governed by a1, a2 and e–gives
increasing values of xn generated from an initial one, close to
Fð~xÞ. A chaotic burst–govern by F2(x) and F3(x)—occurs when
x> 0 becomes large enough, ending when the trajectory is rein-
jected into a point inside the laminar zone. Then, a new iterative
process–governed by e, a1 and a2 is developed producing larger
values of the new successive iterative points.

In a previous paper, we considered reinjection processes where
the lower boundary of return is equal to the lower boundary of the
laminar interval [36]. Therefore, we could study type V intermit-
tency with continuous and nonuniform RPDs. Now, we shall
analyze tests in which the lower boundary of return does not
match the lower boundary of the laminar interval, more

Fig. 1 Map described by Eq. (7). The parameters are c 5 2,
e 5 0.001, a1 5 0.5, a2 5 1. x0 is the vanished fixed point and ~x is
the lower boundary of return. A trajectory moving through ~x is
also indicated.
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specifically ~x < x0 � c (where x0� c is the lower boundary of the
laminar interval). Then, trajectories coming from ~x � x < x0 � c
could reinject in the laminar interval. Therefore, two different
cases can appear:

(a) All trajectories passing through the lower boundary of
return match the lower boundary of the laminar interval:
Fnð~xÞ ¼ x0 � c for some n.

(b) No iteration of the lower boundary of return matches the
lower boundary of the laminar interval: Fnð~xÞ 6¼ x0 � c for
all n.

To study the intermittency behavior in this map, we shall carry
out several numerical experiments or tests considering different
reinjection processes for the case (a). Note that we can always
turn a case (b) into a case (a) by moving the laminar interval
slightly.

3 Results

We consider three tests, which verify Fnð~xÞ ¼ x0 � c for some
n. The first test uses the following parameters: c¼ 1, e¼ 0.001,
a1¼ 0.9, a2¼ 1, Nj¼ 30,000, c¼ 0.1128 and ~x ¼ �1:00006. Nj is

the number of reinjected points. Note that ~x ¼ F�20ðx0 � cÞ.
Therefore, for this test, there are two reinjection mechanisms. One
of them is directly generated by F3(x) in Eq. (7); this mechanism
is the same one evaluated in Ref. [36]. The second mechanism
corresponds to points reinjected from values x< x0� c. Then,
some points placed in the interval ½~x; x0 � cÞ will be reinjected in
the interval D1¼ [x0� c, xs), being xs¼F(x0� c) a singular point
where M(x) is a nondifferentiable function. Note that D1 is a sub-
interval of the laminar interval [x0� c, x0þ c] [4,31].

Figure 2 shows the bifurcation diagram for the map (7) with
c¼ 1, a1¼ 0.9, a2¼ 1 and ~x ¼ �1:00006. The clearer points indi-
cate the chaotic behavior for the first test (see Figs. 3–7). From the
figure, there is a stable fixed point for e< 0; however, for e> 0,
there is chaotic behavior. To describe this behavior, we show in
Fig. 8(b) the evolution of the map iterations (time series) corre-
sponding to the clearer points in Fig. 2 (e¼ 0.001> 0). From this
figure, we can observe intermittency. Figure 8(a) shows the time
evolution for e¼�0.001< 0; for this case, the fixed point x0¼ x1

is stable.
Figure 3 shows the numerical and theoretical M(x) functions.

The theoretical M(x) function is calculated using Eq. (1). In this
figure, the laminar interval is divided into two subintervals:
D1¼ [x0� c, xs) and D2¼ [xs, x0þ c]. D1 possesses reinjected
points coming from x< x0� c and from x> xm> x0þ c. However,
the interval D2 only receives points from x> xm> x0þ c.

Figures 4 and 5 show the M(x) functions inside the intervals
D1¼ [x0� c, xs) and D¼ [x0� c, x0þ c] respectively. Note that to
obtain Fig. 5, reinjected points coming from x> xm are only
considered. Points reinjected from x< x0� c are placed inside

Fig. 2 Bifurcation diagram for map (7) with c 5 1, a1 5 0.9,
a2 5 1 and ~x 5 21:00006. Clearer points correspond with the
first numerical test.

Fig. 3 M(x) function for map (7) with c 5 1, e 5 0.001, a1 5 0.9,
a2 5 1, Nj 5 30,000, c 5 0.1128 and ~x 5 21:00006. Clearer line is
the numerical data and the continuous line represents the theo-
retical M(x) function.

Fig. 4 Numerical Mi(x) function D1 5 [x0 2 c, xs] for map (7)
calculated using only reinjected points coming from x < x0 2 c.
Parameters: c 5 1, e 5 0.001, a1 5 0.9, a2 5 1, Nj 5 30,000,
c 5 0.1128 and ~x 5 21:00006. From this figure we obtain: mi ffi
0:5006 and ai ffi 20:00249.

Fig. 5 Numerical Ms(x) function inside D 5 [x0 2 c, x0 1 c] for
map (7) obtained for reinjected points coming from x > xm.
Parameters: c 5 1, e 5 0.001, a1 5 0.9, a2 5 1, Nj 5 30,000,
c 5 0.1128 and ~x 5 21:00006. From this figure we calculate:
ms ffi 0:5089 and as ffi 0:03623.
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the subinterval D1; the numerical function Mi(x) is calculated
only using these points. Mi(x) is a linear function with slope
mi ffi 0:5006 and ai ffi �0:00249 (see Fig. 4). Points reinjected
from x> xm> x0þ c are distributed along all the laminar intervals

[x0� c, x0þ c]; the numerical Ms(x) function is evaluated using
these points, and it is shown in Fig. 5, which is also a linear func-
tion (ms ffi 0:5089 and as ffi 0:03623).

As the M(x) function has a nondifferentiable point (see Fig. 3),
the RPD is discontinuous at this point. With /1(x), we restrict
the analysis to the interval [x0� c, xs) and with /2(x), we
consider only points x � xs (see Eq. (9)). Therefore, the RPD
results:

/ðxÞ ¼
/1ðxÞ ¼ /iðxÞ þ /sðxÞ; x0 � c � x < xs;

/2ðxÞ ¼ /sðxÞ; xs � x � x0 þ c

(
(9)

where

/iðxÞ ¼ b ðx� x0 þ cÞai ;

/sðxÞ ¼ b k ðx� x0 þ cÞas
(10)

The RPD, /(x), is obtained by superimposing two reinjection
processes represented by /i(x) and /s(x), where /i(x) and /s(x)
are calculated using trajectories coming from x< x0� c and
x> x0þ c, respectively.

To find the parameters mi and ms, we first sort the numerical
data and apply the M function methodology as described in
Sec. 2. Then, we can calculate the functions /i(x) and /s(x) using
Eq. (10).

Fig. 6 RPD for map (7) with c 5 1, e 5 0.001, a1 5 0.9, a2 5 1,
Nj 5 30,000, c 5 0.1128 and ~x 5 21:00006. Points are numerical
results and the continuous line represents the theoretical RPD
calculated using Eqs. (9)–(11).

Fig. 7 Probability density of the laminar length for c 5 1,
e 5 0.001, a1 5 0.9, a2 5 1, Nj 5 30,000, c 5 0.1128 and ~x 5
21:00006. Points represent the numerical data, and the line the
theoretical results calculated using Eqs. (9), (10), (18) and (19).
(b) is an enlargement of (a) for reinjected points inside of D2

interval.

Fig. 8 Iterative evolution of the map (7) with c 5 1, a1 5 0.9,
a2 5 1 and ~x 5 21:00006. (a) uses e 5 20.001 < 0 and x0 5 x1 is a
stable fixed point. (b) considers e 5 0.001 > 0, the iterative pro-
cess shows intermittency.
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Consequently, the exponents ai and as are obtained from

ai;s ¼
2mi;s � 1

1� mi;s
(11)

being mi the slope of the following function:

MiðxÞ ¼ miðx� x0 þ cÞ þ x0 � c (12)

which is defined in [x0� c, xs), and it considers only reinjected points coming from x< x0� c; and ms is the slope of

MsðxÞ ¼ msðx� x0 þ cÞ þ x0 � c (13)

which is calculated using only reinjected points coming from x> xm> x0þ c and it is defined in [x0� c, x0þ c].
The factor b is the normalization parameter, and it results

b ¼ xs � x0 þ cð Þ1þai

1þ ai
þ k

2cð Þ1þas

1þ as

 !�1

(14)

To obtain the global M(x) function, we again apply the M function methodology described in Sec. 2. Then, Eqs. (15) and (16) give
the global M(x) function. We highlight that this function has a nondifferentiable point at x¼ xs.

The factor k, in Eq. (10), is used to evaluate the different number of reinjections in the interval D1 with respect those for D2. This
parameter is obtained using the definition of M(x). Because the global M(x) function does not depend on the parameter b, we can obtain
the factor k from it. To carry out this task, the global M(x) function should be evaluated at some point xy> xs, i.e., My¼M(xy). Then, it
is possible to explicitly obtain the factor k, which is expressed by Eq. (17). In a few cases, it could be necessary to calculate k using the
Eq. (17) evaluated at two points called (xy1, My1) and (xy2, My2); the factor k will be the mean value: k¼ 0.5(k1þ k2).

For x0� c � x< xs

MðxÞ ¼

ðx

x0�c

s/i sð Þdsþ
ðx

x0�c

s/s sð Þdsðx

x0�c

/i sð Þdsþ
ðx

x0�c

/s sð Þds
¼

cþ xð Þ1þaið�cþ x 1þ aið Þ
1þ aið Þ 2þ aið Þ þ k cþ xð Þ1þas �cþ x 1þ asð Þð Þ

1þ asð Þ 2þ asð Þ
cþ xð Þ1þai 1þ aið Þ�1þ k cþ xð Þ1þas 1þ asð Þ�1

(15)

For x � xs

MðxÞ ¼

ðxs

x0�c

s/i sð Þ dsþ
ðxs

x0�c

s /s sð Þ dsþ
ðx

xs

s/s sð Þ dsðxs

x0�c

/i sð Þ dsþ
ðxs

x0�c

/s sð Þ dsþ
ðx

xs

/s sð Þ ds

¼
cþ xsð Þ1þai �cþ xs 1þ aið Þð Þ 1þ aið Þ 2þ aið Þ½ ��1 þ xs þ 1þ að Þ � c½ � 1þ asð Þ 2þ asð Þ½ ��1 k � 1ð Þ cþ xsð Þ1þas þ k cþ xð Þ1þas

h i
cþ xsð Þ1þai 1þ aið Þ�1 þ k cþ xð Þ1þas 1þ asð Þ�1

(16)

k ¼ 1þ as

1þ ai

xs � x0 þ cð Þ1þai

� �
xs 1þ aið Þ þ x0 � cð Þ 2þ aið Þ�1 �My xs � x0 þ cð Þ1þaiÞ

My xy � x0 þ cð Þ1þas � xy � x0 þ cð Þ1þas

� �
xy 1þ asð Þ þ x0 � c
� �

2þ asð Þ�1
(17)

Figures 3 and 6 show the global nondifferentiable M(x) and the discontinuous RPD functions respectively for c¼ 1, e¼ 0.001,
a1¼ 0.9, a2¼ 1, Nj¼ 30,000, c¼ 0.1128 and ~x ¼ �1:00006. From these figures, we can observe a very good accuracy between the
numerical data and the theoretical Eqs. (9), (10), (11), (15) and (16).

Another useful statistical function to describe chaotic intermittency is the probability density of the laminar lengths, w(l), which is a
global property of the map [1,4]. The laminar length, l(x, c), is the number of iterations that a trajectory performs inside the laminar
interval; and the probability density of the laminar lengths gives the probability of finding laminar lengths between l and lþ dl [1,4]

w l; cð Þ ¼ / X l; cð Þ½ �
���� dX l; cð Þ

dl

���� (18)

where X(l, c) is the inverse of l(x, c). For the map (7), ðdXðl; cÞ=dlÞ can be approximated by (if e� 1 and a1< 1 but close to 1)

dX l; cð Þ
dl

¼ eþ x a1 � 1ð Þ; x < 0;

dX l; cð Þ
dl

¼ eþ a2x2; x � 0

(19)
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Note that dX(l, c)/dl is a nondifferentiable function. From
Eqs. (19), l(x, c) can be evaluated

l x; cð Þ ¼ ln eð Þ � ln a1 � 1ð Þxþ eð Þ
	 

	 a1 � 1ð Þ�1 þ a2eð Þ�1=2 arctan c

ffiffiffiffiffi
a2
p ffiffi

e
p

� �
; x < 0;

l x; cð Þ ¼ arctan c

ffiffiffiffiffi
a2
p ffiffi

e
p

� �
� arctan x

ffiffiffiffiffi
a2
p ffiffi

e
p

� �� 

a2eð Þ�1=2; x � 0

(20)

Figures 7(a) and 7(b) show w(l) for the same parameters of the
previous figures. Points represent the numerical data, and the line
is the theoretical result calculated using Eqs. (9), (10), (18) and
(19). Figure 7(b) is an enlargement of Fig. 7(a), which only shows
w(l) for points reinjected inside of D2 interval. The probability
density of the laminar lengths has two behaviors, one for l � 65
corresponding to the reinjections in the interval D2, and other one
for l> 65 for reinjections in the interval D1. We can observe a
very good accuracy between numerical data and theoretical
results.

This test shows that a discontinuous RPD function can appear
in type V intermittency. The laminar interval has two subintervals
with different RPD inside each one. It is a new behavior, different
from those previously described [36–39]. However, the RPD is
constant in each subinterval.

To evaluate a nonconstant RPD in each interval, we consider a
reinjection process governed by c 6¼ 1. We use the same parame-
ters of the previous test, but now c¼ 0.5. Figures 9 and 10 show
the numerical and theoretical M(x) and RPD functions. Line corre-
sponds to theoretical results and the numerical data are indicated
in red. Again, the laminar interval has two subintervals, D1¼ [x0 –
c, xs) and D2¼ [xs, x0þ c], where M(x) and /(x) have different
behaviors. Therefore, to evaluate the theoretical RPD, we have
implemented the M function methodology described by Eqs.
(9)–(17). Figure 10(b) is an enlarged image of Fig. 10(a) inside
the D2 interval.

To obtain the exponents ai and as, we use the numerical data
show in Figs. 11 and 12 respectively: ai ffi 0:0389 ðmi ffi 0:5095Þ
and as ffi 0:08847 ðms ffi 0:5212Þ.

From Figs. 10(a) and 10(b), we can note that the RPD inside
each subinterval D1¼ [x0� c, xs) and D2¼ [xs, x0þ c] increases as
x increases. Also, the theoretical results have a high accuracy with
respect the numerical data.

Figure 13 shows the probability density of the laminar lengths,
calculated by Eq. (18), for the same parameters as the previous
figures. Note the outstanding accuracy between the numerical data
with the analytical results.

Furthermore, we carried out several numerical tests with
c¼ 1.5 using the M function methodology to obtain the RPD func-
tion. Similarly to the previous cases, the RPDs are discontinuous.

Fig. 10 RPD for map (7). The parameters are: c 5 0.5, e 5 0.001,
a1 5 0.9, a2 5 1, Nj 5 30,000, c 5 0.1128 and ~x 5 21:00006. Points
represent the numerical data, and the continuous line corre-
sponds to the theoretical RPD calculated using Eqs. (9)–(11).
(b) is an enlarged image of the (a) inside the D2 interval.

Fig. 11 Numerical Mi(x) function inside D1 5 [x0 2 c, xs) for
map (7) obtained using only reinjected points coming from
x < x0 2 c. The parameters are: c 5 0.5, e 5 0.001, a1 5 0.9, a2 5 1,
Nj 5 30,000, c 5 0.1128 and ~x 5 21:00006. Mi(x) is a linear func-
tion with slope mi ffi 0:5095.

Fig. 9 Function M(x) for map (7). The parameters are:
c 5 0.5, e 5 0.001, a1 5 0.9, a2 5 1, Nj 5 30,000, c 5 0.1128 and
~x 5 21:00006. Clearer line is obtained from numerical data, and
the darker one is calculated using Eqs. (15)–(17).
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Tables 1 and 2 show the values of ai and as for c¼ 0.5, 1, 1.5
and for two lower boundaries of return ~x ¼ �1:00006 and
~x ¼ �0:15844993141289437.

From these tables, we can note that ai and as depend on c. For
c< 1, ai and as are higher than 0; for c¼ 1, ai ffi as ffi 0; and for
c> 1, ai and as are lower than 0. Also, we can observe that ai

and as depend on ~x. Therefore, the reinjection process, i.e., ai and
as, depends on dF3(x)/dx valuated at different points: a—around

x¼ ym, b—for F�1ðx0 � cÞ � x � F�1ðx0 þ cÞ, i.e., around
x¼F�1(x0) (see Refs. [4] and [34]).

3.1 Influence of the Lower Boundary of Return. This sec-
tion analyzes the influence of the lower boundary of return, ~x, on the
reinjection process. To carry out this task, the lower boundary of return
can get different values, but the other parameters do not change.

The first test set uses the following parameters: c¼ 1.5,
e¼ 0.001, a1¼ 0.9, a2¼ 1, Nj¼ 30,000, c¼ 0.1128 and different
~x. The results are summarized in Table 3

If we consider that the lower boundary of return matches the
lower limit of the laminar interval, ~x ¼ x0 � c, there in not rein-
jection from x< x0� c; and the only reinjection process is pro-
duced by x> xm. In this case, the following relation should be
satisfied [4,25,34]:

a ¼ 1

c
� 1 (21)

On the other hand, also as is influenced by ~x, because as

depends on the reinjection trajectories coming from F3(x). When
~x ! �1, the function F3(xn) is almost linear with constant and
finite jdF3ðxnÞ=dxj, where xnþ1¼F(xn) are the reinjected points.
Therefore, when ~x ! �1; as ! 0. Conversely, when ~x
approaches to x0� c, then as 6¼ 0.

Hence, it is important to highlight that the distance between the
lower boundary of return, ~x, and the lower limit of the laminar
interval, x0� c, has a strong influence on the reinjection process.

3.2 The Characteristic Relation. The characteristic relation
sets the relationship between the average laminar length, �l, and
the control parameter, e. The average laminar length is [4]

�l ¼
ðx0þc

x0�c

/ðxÞlðx; cÞdx (22)

where /(x) and l(x, c) are given by Eqs. (9) and (20), respectively.
For xs � x0, the average laminar length results

�l ¼ �l1 þ �l2 þ �l3 (23)

where

�l1 ¼
ðxs

x0�c

/1ðxÞ lðx; cÞjx<x0
dx

�l2 ¼
ðx0

xs

/2ðxÞ lðx; cÞjx<x0
dx

�l3 ¼
ðx0þc

x0

/2ðxÞ lðx; cÞjx>x0
dx

(24)

Table 2 ai, as, mi and ms for different values of c. The other
parameters are e 5 0.001, a1 5 0.9, a2 5 1, Nj 5 30,000, c 5 0.1128
and ~x 520:15844993141289437.

c ai as mi ms

0.5 0.30308 0.70238 0.5658 0.62995
1.0 �0.00651 0.00597 0.49837 0.50148
1.5 �0.2037 �0.14965 0.4433 0.45956

Table 3 ai and as for different values of ~x . The parameters are
c 5 1.5, e 5 0.001, a1 5 0.9, a2 5 1, Nj 5 30,000, and c 5 0.1128.
The last column indicates the number of needed iterations from
~x to x0 2 c.

~x ai as Iterations

�0.126444444444444 �0.33774 �0.20727 1
�0.158449931412894 �0.20367 �0.14965 3
�0.342186145207406 �0.1084 �0.05874 10
�0.6527 �0.0856 �0.00871 16
�1.00006 �0.08264 �0.03137 20

Table 1 ai, as, mi and ms for different values of c. The other
parameters are e 5 0.001, a1 5 0.9, a2 5 1, Nj 5 30,000, c 5 0.1128
and ~x 521:00006.

c ai as mi ms

0.5 0.0389 0.08847 0.5095 0.5212
1.0 0.00249 0.03623 0.5006 0.508897
1.5 �0.082642 �0.03137 0.47845 0.492032

Fig. 12 Numerical Ms(x) function inside D2 5 [xs, x0 1 c] for
map (7) obtained for reinjected points coming from x > xm. The
parameters are: c 5 0.5, e 5 0.001, a1 5 0.9, a2 5 1, Nj 5 30,000,
c 5 0.1128 and ~x 5 21:00006. Ms(x) is a linear function with
slope ms ffi 0:5212.

Fig. 13 Probability density of the laminar length, w(l), for map
(7). The parameters are: c 5 0.5, e 5 0.001, a1 5 0.9, a2 5 1,
Nj 5 30,000, c 5 0.1128 and ~x 5 21:00006. Points represent the
numerical data, and the line the theoretical results calculated
using Eqs. (9), (10), (18) and (19).
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The last equation only possesses analytical solution in few
cases, such as: ai¼ as¼ 0 and ai¼ as¼ 1. For ai¼ as¼ 0, the rela-
tions between �l1; �l2; �l3, and e are settled down in Eqs. (25), (26),
and (27) respectively.

�l1 ¼ b 1þ kð Þ a1 � 1ð Þ�1
ln eð Þ þ arctan c

ffiffiffiffiffi
a2

e

r !
a2 eð Þ�1=2

 !"

	 cþ xsð Þ þ cþ xsð Þ a1 � 1ð Þ�1

#

� a1 � 1ð Þ�2b 1þ kð Þ eþ a1 � 1ð Þxsð Þln eþ a1 � 1ð Þxsð Þ½
� e� a1 � 1ð Þcð Þln e� a1 � 1ð Þcð Þ� (25)

�l2 ¼ �b k xs þ
ln eð Þ

a1 � 1

e
a1 � 1

þ xs

� �
2
664

� eþ a1 � 1ð Þxsð Þln eþ a1 � 1ð Þxsð Þ
a1 � 1ð Þ2

þ
arctan c

ffiffiffiffiffi
a2

e

r !

a2e

3
77775
(26)

�l3 ¼
0:5 b k ln eþ a2 c2ð Þ � ln eð Þ

	 

a2

(27)

Figure 14 shows the relation lnð�lÞ ¼ �lðlnðeÞÞ, i.e., the character-
istic relation. The line represents the theoretical results given by
Eqs. (23)–(27), and the red points are the numerical data. Note the
outstanding accuracy between the numerical and theoretical
results. A linear function with slope sn � st ��0.47 can express
the characteristic relation (where sn corresponds to the numerical
data and st to the theoretical approach). Therefore, the characteris-
tic relation results

�l ¼ e�b (28)

with b � 0.5. We highlight although the RPD is discontinuous,
the characteristic relation still satisfies Eq. (28).

We can find another analytical expression for the characteristic
relation if we assume ai¼ as¼ 1. This last condition could be
verified when F1ð~xÞ ¼ x0 � c and c¼ 0.5, but in this case, the
number of reinjected points from x< x0� c is very much reduced

(less than 1 for 300 global reinjections) and the accurate evalua-
tion of parameters k and b is very difficult. Note that the theoreti-
cal characteristic relation has a strong dependence on b and k;
then the results are susceptible with the number of reinjected
points from x< x0� c. As the relation between reinjected points
from x< x0� c and the total reinjected points is minimal, we can
introduce errors in the analytical evaluation. Therefore, we calcu-
late the characteristic relations using direct numerical integration.
Besides the numerical integration of both, theoretical and numeri-
cal results, allows us to use different values of c (not only c¼ 0 or
c¼ 1).

We study several tests with c¼ 1.5 and e¼ 0.001� 0.0000001.
To obtain �l, we use Eqs. (9), (18) and (19), from which we carry
out the numerical calculation of the following integral:

�l ¼
ðlm

0

wðlÞ l dl (29)

We consider two sets of tests. Both groups have similar param-
eters, and they only differ in the number of iterations that the tra-
jectories need to reinject from ~x to x0� c. For the first test, the
reinjection process from ~x to x< x� 0� c needs 20 iterations.
The second one uses F1ð~xÞ ¼ x0 � c; therefore, the process needs
only one iteration to reinject from points x< x0� c. Table 4 shows
~x for different e.

Figure 15 shows the results. The upper and lower lines corre-
spond for tests with 20 and 1 iterations between ~x and x0� c. In
both cases, points and lines represent the numerical and theoreti-
cal results, respectively, which have a very high accuracy. When
trajectories need only 1 iteration to be reinjected (lower line), the
numerical and theoretical slopes are sn ffi �0:46 and st ffi �0:467.
On the other hand, for trajectories with 20 iterations, the slopes
are: sn ffi st ffi �0:47. Also, for these cases, Eq. (28) is verified
with b � 0.5.

Table 4 ~x , ai and as for different values of ~x to maintain 1 itera-
tion from ~x to x 5 x0 2 c. The parameters are c 5 1.5, a1 5 0.9,
a2 5 1, Nj 5 30,000, and c 5 0.1128.

e ~x ai as

0.001 �0.126444 �0.3306678 �0.201
0.0001 �0.125444 �0.3306678 �0.201
0.00001 �0.125344 �0.34637 �0.2241
0.000001 �0.125334 �0.3292 �0.2112
0.0000001 �0.125333 �0.324895 �0.21541

Fig. 15 Characteristic relation for c 5 1.5, e 5 0.001–0.0000001,
a1 5 0.9, a2 5 1. The number of iterations from ~x to x0 2 c are 1
and 20 for the lower and upper lines respectively. Points:
numerical data. Line: theoretical approach.

Fig. 14 Characteristic relation for c 5 1, e 5 0.001–0.0000001,
a1 5 0.9, a2 5 1, the number of iterations from ~x to x0 2 c is 20.
Points: numerical data. Line: theoretical approach given by
Eqs. (23)–(27).
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The average laminar length is higher for trajectories needing 20
iterations to go from the ~x to the laminar interval in comparison
with those needing only 1 iteration (see Fig. 15). It happens
because the reinjection processes, govern by ai and as, are differ-
ent. Tables 4 and 5 give ai and as. When the process needs only
one iteration ai ��0.33 and as ��0.21; however, when it needs
20 iterations, ai � as � 0. Therefore, �l acquires similar values for
processes with c¼ 1.5 and trajectories with 20 iterations from ~x to
x0� c and processes with c¼ 1. The ~x influence on the RPD and
other functions, such as the characteristic relation, is significant
because as the distance j~x � ðx0 � cÞj increases the influence of c
reduces.

We emphasize that three tests with different values of c and ~x
were analyzed, and the characteristic relation �l � e�0:5 was
verified.

4 Analysis and Conclusions

We applied the M function methodology to describe the reinjec-
tion process for type V intermittency. This methodology had
worked accurately for type I, II, and III intermittencies where the
local map is continuous, and for type V intermittency with contin-
uous RPD. In this paper, we have shown that this methodology
also works accurately for type V intermittency with discontinuous
RPDs. It can capture very well the RPD function, and other inter-
mittency statistical properties (probability density of the laminar
lengths and average laminar length), for different reinjection
mechanisms.

Two elementary functions compose the local map of Eq. (7),
one is linear and the other one quadratic. The used laminar inter-
val was symmetrical around the vanished fixed point. We have
shown that, even for this simple map, the RPD can be a discontin-
uous function. It happens because there are two reinjection mech-
anisms if the lower boundary of return is less than the lower limit
of the laminar interval, ~x < x0 � c. One of them is produced by
trajectories coming from points x< x0� c, and the other one from
trajectories coming from x> xm> x0þ c.

The laminar interval has two subintervals, within each one of
them the RPD function has different behavior. The subintervals
are D1¼ [x0� c, xs) and D2¼ [xs, x0þ c], being xs is a singular
point where the RPD is discontinuous. D1 receives trajectories
coming from x< x0� c and x> xm; however, D2 only receives tra-
jectories from x> xm. The RPD is a sum of exponential functions
with exponents ai and as, to obtain its analytical expression is only
necessary to evaluate the slope mi and ms of the M(x) function
where mi and ms are calculated using reinjected points from
x< x0� c and x> xm respectively.

We have evaluated the influence of the lower boundary of
return, ~x, on the RPD. We have found that ~x has a substantial
impact on the RPD: when the distance j~x � ðx0 � cÞj increases the
influence of c reduces, and the reinjection process resembles the
reinjection process for c¼ 1.

Besides, the influence of c on the RPD was studied. The expo-
nents ai and as decrease when c increases, and ai � as � 0 for
c¼ 1. However, in all cases, the RPD is discontinuous.

Similarly to the RPD, the probability density of the laminar
lengths also has two distinctive behaviors, one for reinjections

inside the subinterval D1 and the other one for reinjections in the
subinterval D2.

For all analyzed tests, with different values of c and ~x, the char-
acteristic relation could be written as: �l � e�0:5.

Finally, we highlight that the obtained theoretical equations for
the reinjection probability density, the probability density of the
laminar lengths, and the characteristic relation showed an out-
standing accuracy regarding the numerical data for different val-
ues of c, e, and ~x.
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