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3Department of Physics, University of Michigan, 450 Church St., Ann Arbor, MI 48109, USA
4INAF, Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34131 Trieste, Italy
5Harvard-Smithsonian Center for Astrophysics, 60 Gardner Street, Cambridge, MA 02138, USA
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ABSTRACT
We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray
scaling relations between total masses and observable quantities such as X-ray luminosity, gas
mass, X-ray temperature, and YX. Three sets of simulations are performed with an improved
version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following:
non-radiative gas, star formation and stellar feedback, and the addition of feedback by active
galactic nuclei (AGN). We select clusters with M500 > 1014 M�E(z)−1, mimicking the typical
selection of Sunyaev–Zeldovich samples. This permits to have a mass range large enough
to enable robust fitting of the relations even at z ∼ 2. The results of the analysis show a
general agreement with observations. The values of the slope of the mass–gas mass and mass–
temperature relations at z = 2 are 10 per cent lower with respect to z = 0 due to the applied mass
selection, in the former case, and to the effect of early merger in the latter. We investigate the
impact of the slope variation on the study of the evolution of the normalization. We conclude
that cosmological studies through scaling relations should be limited to the redshift range
z = 0–1, where we find that the slope, the scatter, and the covariance matrix of the relations
are stable. The scaling between mass and YX is confirmed to be the most robust relation, being
almost independent of the gas physics. At higher redshifts, the scaling relations are sensitive
to the inclusion of AGNs which influences low-mass systems. The detailed study of these
objects will be crucial to evaluate the AGN effect on the ICM.

Key words: methods: numerical – galaxies: clusters: general – galaxies: clusters: intracluster
medium – X-rays: galaxies: clusters.

1 IN T RO D U C T I O N

Clusters of galaxies are the largest gravitationally bound structures
in our Universe and according to the hierarchical process of structure

�E-mail: rasia@oats.inaf.it
†Einstein and Spitzer Fellow.

formation they are the latest to form. Due to these characteristics,
they can provide stringent constraints on the cosmological parame-
ters (such as the amplitude of the linear power spectrum, the amount
of matter, and that of dark energy) that determine the growth rate of
structures (e.g. Borgani & Kravtsov 2011; Planelles, Schleicher &
Bykov 2015).

In this respect, one of the most powerful cosmological measure-
ments is the evolution of the mass function (Borgani & Guzzo 2001;
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Voit 2005; Vikhlinin et al. 2009; Allen, Evrard & Mantz 2011).
However, the measurement of cluster masses via X-ray or gravi-
tational lensing is complicated and questioned by the presence of
possible biases caused by several factors, such as lack of hydro-
static equilibrium or triaxiality. For this reason, in order to infer
masses for a large number of objects, it is preferable to resort to
relations between the total mass and some observable quantities that
are relatively easy to measure, the so-called mass proxies (Hilton
et al. 2012; Takey, Schwope & Lamer 2013; Giles et al. 2016). From
an observational point of view, these relations need to be calibrated
by measuring the total masses, via weak-lensing or X-ray analyses,
for a smaller, but optimal, set of galaxy clusters.

In X-ray studies, the most commonly used mass proxies are the
gas mass, Mg, which can be extracted from the surface bright-
ness profile, the temperature, T, which is solidly estimated from
X-ray spectra with, at least 1000 counts, and their combination,
YX = Mg × T (e.g. Maughan 2014; Mantz et al. 2016, for recent and
detailed studies on X-ray scaling relations). The YX parameter was
first introduced as a mass proxy closely related to the total thermal
content of the intracluster medium (ICM) by Kravtsov, Vikhlinin &
Nagai (2006). In that paper, through the analysis of hydrodynamical
simulations, the authors proved the advantages of this quantity as a
mass proxy over gas mass and X-ray temperature. Specifically, gas
mass and temperature react in opposite directions to any breaking
of self-similarity (see Section 3.2) caused, for example, by non-
gravitational effects. In the computation of the product of the two
quantities, the deviations from the self-similar (SS) behaviour com-
pensate each other, keeping the YX evolution closer to the expected
SS one. In addition, the M–YX relation is characterized by a small
scatter. Indeed, the gas mass and temperature respond in opposite
ways to the effects of, e.g. mergers and energy feedback from active
galactic nuclei (AGNs; Kravtsov et al. 2006; Fabjan et al. 2011). In
case of an encounter, the gas mass immediately increases while the
temperature, at first, decreases due to the presence of the smaller,
and thus colder structure (Poole et al. 2007; Rasia et al. 2011). The
feedback by AGNs reduces the gas mass by expelling some gas from
the core and, at the same time, it heats the ICM. These opposite and
compensating responses of the two quantities make their product,
YX, independent of the dynamical state or on the central AGN ac-
tivity (see however, Le Brun et al. 2014 for a different conclusion).
For all these reasons, YX has been widely adopted in cosmological
applications of galaxy clusters.

Another X-ray measurement frequently represented in the analy-
sis of scaling relations is the X-ray luminosity because it can easily
be derived from few tens of net photon counts (e.g. Giles et al. 2017,
and references therein). The L–T relation has been historically im-
portant because from its first determination it was clear that it pro-
vides information on the physics of the cluster core (e.g. Fabian
et al. 1994) and on the phenomena of feedback by stars or AGNs
(e.g. Markevitch 1998; Maughan et al. 2012). These connections
are also the origin of the large scatter of this relation as well as of
the associated M–LX relation. Due to this characteristic, the appeal
of LX as mass proxy is limited. However, the inverted relation, i.e.
between the luminosity and the mass (the LX–M relation), still plays
an important role in establishing the selection function of X-ray sur-
veys (e.g. Nord et al. 2008; Vikhlinin et al. 2009; Allen et al. 2011),
since it determines the connection between the survey flux limit and
the minimum mass that can be observed at a given redshift.

From this discussion, it is clear that in the past 10–15 yr, scaling
relations have been largely studied in observational samples. Up to
date, their analysis has rarely been extended beyond z ∼ 0.5–0.6
(Reichert et al. 2011; Maughan et al. 2012; Giodini et al. 2013). The

collection of high-redshift systems will grow thanks to future opti-
cal missions like eROSITA1(Merloni et al. 2012), Euclid2 (Laureijs
et al. 2011), LSST3(Ivezic et al. 2008), and to millimetric surveys
such as SPT-3G (Benson et al. 2014) and CMB-S4. These iden-
tify clusters through the small distortions of the cosmic microwave
background (CMB) radiation caused by the inverse Compton scat-
tering of the CMB photons that interact with the ICM electrons.
The phenomenon, called Sunyaev–Zeldovich (SZ) effect, has al-
ready enabled the detection of a good number of objects at z ≥
1 (Menanteau et al. 2013; Bleem et al. 2015). Once the clusters
will be detected, a possible follow-up will be provided by current
or future X-ray observatories, first of all, Athena.4 The selection
functions characterizing the samples from these future surveys are
very different one from the others (Weinberg et al. 2013; Ascaso
et al. 2017): the SZ-selected samples, such as those of the South
Pole Telescope (SPT) or the Atacama Cosmology Telescope (ACT),
extend to less massive objects at higher redshifts, and thus are the
most suitable for high-redshift searches. The limiting mass of the
mentioned optical surveys, instead, will be almost constant up to
z ∼ 1 and then will grow at earlier epochs. The efficiency of opti-
cal detection is, therefore, expected to drop at z = 1–1.2. Finally,
the forecast for eROSITA limits the cluster discovery at z ∼ 0.8–1
because of the dimming of the X-ray emission at large distances.

Over the last decade, the theoretical community has also
spent a significant effort in the modelling of scaling rela-
tions by taking advantage of hydrodynamical simulations (see
Borgani & Kravtsov 2011 for a review). Special attention was ded-
icated to the effects of feedback from stars (Nagai, Kravtsov &
Vikhlinin 2007b) and AGNs (Puchwein, Sijacki & Springel 2008;
Short & Thomas 2009; Short et al. 2010; Gaspari et al. 2014; Le
Brun et al. 2014; Martizzi et al. 2014; Pike et al. 2014; Planelles
et al. 2014; Hahn et al. 2017), to the evolution of the relations up to
z ∼ 1 (Fabjan et al. 2011; Battaglia et al. 2012; Le Brun et al. 2017;
Planelles et al. 2017), and to developing a theoretical framework
to exploit the simultaneous analysis of multiple signals (Stanek
et al. 2010; Evrard et al. 2014). This paper, based on a set of simula-
tions that include a new model for gas accretion on to supermassive
black holes and for the ensuing AGN feedback, and an improved
implementation of hydrodynamics, extends the analysis of scaling
relations out to z = 2 in view of what future observational facilities
will provide. We particularly focus on the selection function typi-
cal of SZ surveys which is demonstrated to be effective in finding
high-z objects (see Section 2.1).

This work analyses a set of simulations that have been shown
to naturally form cool-core (CC) and non-cool-core (NCC) clusters
(Rasia et al. 2015). In particular, we have already shown for these
simulations that entropy, gas density, temperature, thermal pressure,
and metallicity profiles of the two populations of clusters reproduce
quite well observational results (Rasia et al. 2015; Biffi et al. 2017;
Planelles et al. 2017). For this reason, we expect that in our sim-
ulated clusters a balance between the simulated level of radiative
cooling, which forms stars, and the included amount of AGN feed-
back, which heats the gas, is reached as the systems evolve and
interact with the cosmological environment. However, although the
agreement with observations is remarkable, there still are several
limitations affecting the simulations. For example, the processes

1 http://www.mpe.mpg.de/eROSITA
2 http://www.euclid-ec.org
3 http://www.lsst.org
4 http://www.the-athena-x-ray-observatory.eu
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linked to the stellar population and the BH activity are treated with
sub-grid models, and some phenomena, such as kinetic feedback
by AGNs, magnetic fields, dust production and disruption, or metal
diffusion, are not implemented into the code yet. As specified in
Rasia et al. (2015), this model should, therefore, be intended as
effective. On the same note, as we will discuss in the next section,
our sample is not a volume-complete sample. For this reason, the
emphasis of our discussion is directed on the effect of the physics
and on the evolutionary trends of the relations rather than on the
precise values of the parameters of the best-fitting relations.

The paper is organized as follows: in Section 2, we provide a
short description of the simulated sample and motivate our sample
selection. Section 3 presents the computation of ICM structural
quantities, the mass-proxy relations, the luminosity-based relations,
and fitting methods. In Section 4, we examine the validity of our
simulated data by comparing to observations at low (z ≤ 0.25)
and intermediate (zmedian ≈ 0.5) redshifts. Section 5 is dedicated to
exploring the evolution of scaling relations from z = 0 to z = 2.
Finally, a summary of the results and conclusions are given in
Section 6.

All the quantities for the scaling relations are evaluated at R500

defined as the radius of the sphere whose mean density is 500 times
the critical density of the universe at the considered redshift. In
general, M� is the mass of the sphere of radius R� and density �

times the critical density of the universe at the proper redshift. The
virial radius is expressed accordingly to Bryan & Norman (1998).
For our cosmology, �vir ≈ 93 at z = 0. Throughout the paper, the
symbol log10 indicates the decimal logarithm and the uncertainty
at 1σ on the best-fitting parameters represents the 68.4 per cent
confidence maximum-probability interval.

2 SI M U L ATI O N S

Our analysis is based on three sets of simulations of galaxy clusters
with varying subgrid physics. These are selected from a parent DM-
only cosmological volume of 1 h−3 Gpc3 (Bonafede et al. 2011)5

and re-simulated at higher resolution and with the inclusion of
baryons. We compute the scaling relations at eight different times
corresponding to z = 0, 0.25, 0.5, 0.6, 0.8, 1, 1.5, and 2.

The re-simulated Lagrangian regions are chosen around the 24
most massive clusters with mass MFoF

6 >1 × 1015 h−1 M� plus 5
isolated groups with M200 = [1–4] × 1014 h−1 M�. The Lagrangian
regions surrounding each cluster are chosen to be large enough that
no contaminating low-resolution DM particle is found out to five
virial radii from the centre of each cluster. Their particles, identified
at redshift z = 0, are traced back to redshift z ∼ 70, which is about
50 Myr earlier than the starting redshift of the parent DM simu-
lation to ensure the validity of the Zeldovich approximation. The
particle number is increased to achieve a better spatial and mass
resolution, furthermore, the baryonic component is added. The ini-
tial conditions for the re-simulations are produced by a zoomed-
initial technique (ZIC, Tormen, Bouchet & White 1997). We refer
to Bonafede et al. (2011) for a full description of the re-simulation

5 We define h ≡ H0/(100 km s−1 Mpc
−1

) = 0.72, where H0 is the Hubble
constant.
6 Friends-of-Friends (FoF) refers to the algorithm in which a pair of particles
are considered to belong in the same group or object (i.e. friends) when their
separation distance is smaller than a given linking length. In our simulations,
the linking length is equal to 0.16 in unit of the mean separation of dark
matter particles.

technique. The re-simulations are carried out with an improved
version of the GADGET-3 smoothed particle hydrodynamics (SPH)
code (Springel 2005) where we included a number of improve-
ments as described in Beck et al. (2016). In short, these allow the
SPH method to perform better in hydrodynamical standard tests
including weak and strong shocks, gas mixing, and self-gravitating
clouds.

The cosmological setting is a �CDM model with cosmologi-
cal parameters consistent with the WMAP-7 constraints (Komatsu
et al. 2011): �m = 0.24, �� = 0.76, ns = 0.96 for the primordial
spectral index, σ 8 = 0.8 for the amplitude of the power spectrum
of the density fluctuations, and H0 = 72 km s−1 Mpc−1 for the Hub-
ble parameter. When comparing our models to observational data
– presented in Section 4 – we rescale the latter to the simulated
cosmology.

The Plummer-equivalent gravitational softening of the DM par-
ticles is set to 3.75 h−1 kpc in physical units up to z = 2 and in
comoving units at higher redshifts. The gravitational softening of
the gas (3.75 h−1 kpc), stars (2 h−1 kpc), and black hole particles
(2 h−1 kpc) are fixed in comoving coordinates at all redshifts. The
minimum value of the smoothing lengths is limited to 0.1 per cent of
the gravitational softening. For the computation of SPH quantities
related to the gas, we employ the Wendland C4 interpolating kernel
with 200 neighbours (see Beck et al. 2016 for more details). The
mass of the DM particle is 8.47 × 108 h−1 M� and the initial mass
of the gas particle is 1.53 × 108 h−1 M�.

We analyse three sets of simulations. These have the same initial
condition for the 29 regions, but they differ in the astrophysical
processes included. Comparing the results obtained from the three
sets allows us to qualitatively assess their origin. Different results
among the three samples imply that the scaling relations are affected
by the astrophysical phenomena diversely implemented in the three
sets. Vice versa, if the results are consistent, then, the behaviour
of the scaling relations is determined by gravity, which drives the
interactions with the environment and the large-scale structures, and
by the hydrodynamical forces that, hence, take place.

In the following, we describe the three sets, tagged as NR, CSF,
and AGN, from the simplest to the most complex:

(i) NR (Non-radiative). These simulations are carried out with the
same code used by Beck et al. (2016). The main variations with re-
spect to the standard GADGET code include the following: the choice
of a higher order Wendland C4 kernel function; a time-dependent
artificial viscosity scheme; a thermal diffusion term (or artificial
conduction) that improves the treatment of contact discontinuities
and promotes fluid mixing. The performance of this code with re-
spect to other particle- or grid-based codes is described in Sembolini
et al. (2016b) and Sembolini et al. (2016a). These works show how
the thermodynamical properties of the ICM for the clusters simu-
lated with the improved GADGET version (G3-XArt in those papers)
are quite similar to those produced by grid codes, AREPO, and the
most modern SPH schemes (Sembolini et al. 2016a).

(ii) CSF (Cooling, star formation and stellar feedback). The ra-
diative runs consider metal-dependent radiative cooling rates ac-
cordingly to Wiersma et al. (2009), where 15 different elements
(H, He, C, Ca, O, N, Ne, Mg, S, Si, Fe, Na, Al, Ar, Ni) are
followed; the effect of a uniform UV/X-ray background radiation
(Haardt & Madau 2001); the feedback by supernovae (SN), as orig-
inally prescribed by Springel & Hernquist (2003) with a mass load-
ing parameter equal to 2; the chemical model by Tornatore et al.
(2007) to account for the metal enrichment from SN II, SN Ia,
and asymptotic giant branch (AGB) stars (for further details see
Planelles et al. 2014; Biffi et al. 2017). Kinetic feedback from the
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outflows driven by supernova is included. The wind velocity is set
equal to 350 km s−1.

(iii) AGN. This set of simulations is the same as the CSF one, but with
the addition of AGN feedback. This feedback channel is modelled
following Steinborn et al. (2015), who improved the original model
by Springel, Di Matteo & Hernquist (2005). In the new model, we
consider both radiative and mechanical feedback generated from gas
accretion on to black hole, both being released into the surrounding
gas as thermal energy. The radiative and mechanical efficiencies
depend on the (Eddington-limited) accretion rate and the black hole
mass, allowing for a smooth transition between radio and quasar
modes. The coupling efficiency between the energy radiated from
the black hole and the gas is expressed though the factor εf = 0.05.
In addition, the model separately treats the accretion of cold gas
and hot gas. Only for the accretion of the cold gas, we boost the
Bondi rate by a factor of 100, so as to mimic the effect of the cold
accretion mode, as discussed by Gaspari, Temi & Brighenti (2017).

The thermodynamical and chemodynamical properties, and the
dynamical state of the simulated clusters of this sample are also
presented in Rasia et al. (2015), Villaescusa-Navarro et al. (2016),
Biffi et al. (2016), Planelles et al. (2017), and Biffi et al. (2017). The
AGN simulations of the main clusters of the 29 regions are presented
in Rasia et al. (2015). The entropy and iron profiles of the CC
and NCC populations are shown to agree with observational data.
The observed anticorrelation between the core entropy and core
enrichment level is also reproduced (Biffi et al. 2017). The different
behaviour between the two classes is confirmed in the pressure
profiles: in the central part of the CC systems the pressure is higher
by an amount that reflects the observational gap measured from SPT
and Bolocam data (Planelles et al. 2017). The increase in CC central
thermal pressure is larger than the deepening of the gravitational
potential arising from a more pronounced adiabatic contraction.
As a consequence, the bias in the hydrostatic-equilibrium masses
measured in the core (R < R2500) of CC objects is found to disappear
or to be negligible (Biffi et al. 2016).

2.1 The sample

The sample includes all the objects in the high-resolution La-
grangian regions with M500 > 1014E(z)−1 M�, where E(z) = H(z)/
H0 = (�M × (1 + z)3 + ��)1/2. The number of clusters in the AGN

run selected at the redshifts of interest and the corresponding mass
range are presented in Fig. 1. In the following, we will comment on
the most important implications related to the sample selection.

2.1.1 The limitation on 29 Lagrangian regions

The majority of the simulated regions (24 to be precise) are centred
around massive clusters. Therefore, we could expect that a good
fraction of our smallest objects lies in a particularly rich environ-
ment. This condition could influence some of their properties. In
particular, these systems might be subject to gas depletion or over-
heating. We check whether any of these two conditions are present
in our sample by comparing the results of the NR set with those
obtained by Le Brun et al. (2017), who analysed a cosmological
box. We selected the NR runs to avoid the comparison between
samples simulated with different ICM prescriptions. We found that
their best-fitting relations are passing through the middle of the dis-
tribution of our clusters in both the (M–Mg) and (M–Tsl) planes and
at both redshifts, z = 0 and z = 1.5. We conclude that our smallest
objects are not particularly gas poor or unusually hot for their mass,

Figure 1. The vertical bars indicate the mass range for the AGN sample at the
various redshifts: z = 0, 0.25, 0.5, 0.6, 0.8, 1, 1.5, and 2. For each redshift,
the upper limit corresponds to the mass of the most massive cluster, while
the lower limit is equal to 7 × 1013E(z)−1h−1 M�. The respective number
of haloes is 58, 75, 93, 88, 91, 74, 60, and 36. The bottom, top, and central
lines of the rectangle represent the 25th, 75th, and 50th percentiles of the
mass distribution, respectively.

and thus are representative of the object population in the lowest
mass bins. To further prove this point, we study the behaviour of
the five groups at the centre of the remaining Lagrangian regions.
These objects do not have a massive cluster in their vicinity and
have a small mass, two of them are close to our limiting mass. All
five groups are located in the middle of the distribution of our entire
sample in all of the runs.

2.1.2 The upper mass limit

Another concern, linked to the restriction of the volume analysed,
is connected to the representativeness of our most massive systems
at higher redshifts.

The upper mass limit shown in Fig. 1 represents the mass of the
most massive system found at each redshift. This value might also
be affected by the restriction of our study to 29 Lagrangian regions
especially at high redshift. Indeed, in our study, we automatically
include all the progenitors of our z = 0 sample and exclude all ob-
jects outside the high-resolution re-simulated region. It is expected
that most of the progenitors of massive objects are still massive at
z ∼ 1 or above. Although, it might be that a halo considered very
massive at z = 2 stops its growth and remains of about the same
mass at z = 0 (see fig. 7 in Muldrew, Hatch & Cooke 2015). This
could happen if the accretion was as fast and intense as to conglom-
erate into the object most of the surrounding material and to create
an underdense region all around. That cluster, which was one of the
most massive ones at high redshift, will become a relatively small
object with respect to the entire cluster population at z = 0. Because
of that, it most likely could be excluded by our selection based on
z = 0 masses. This explains the concern of missing some of the
most massive z = 2 clusters.
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To evaluate the extent and consequences of this aspect, we com-
puted the predicted number of clusters above a certain mass at differ-
ent redshifts by using HMFcalc (Murray, Power & Robotham 2013).
We consider the functional form of the Halo Mass Function pro-
posed by Watson et al. (2013) using the formulation that includes
the redshift evolution. We further set the cosmology according to the
cosmological parameters of our simulations. We forecast that the
parent box, with a volume of (1 h−1 Gpc)3, at z = 2, z = 1.5, and z = 1
should have at least four objects with mass M500, respectively, above
9.12 × 1013h−1 M�, 1.66 × 1014h−1 M�, and 3.07 × 1014h−1 M�.
In our sample, above the same mass limits there are three clusters
at z = 2 and z = 1 and two systems at z = 1.5. Considering the
Poisson errors, these numbers are consistent with the expectation.

Therefore, we conclude that even if we are not considering a
volume-limited sample at z > 1, there is a statistically good repre-
sentation of massive objects among the clusters selected within the
29 Lagrangian regions. This allows us to study the scaling relations
over a sufficiently large mass range, which spans from a factor of
10 at z = 1 to ∼5 at z = 2.

2.1.3 The lower mass limit and the variation with redshift

The lower mass limit of our selection reproduces the same depen-
dence on E(z) as of the SZ-selected clusters (e.g. see fig. 6 from
Bleem et al. 2015, for the SPT sample). Our choice is aimed at max-
imizing the statistical size of our simulated sample and enlarging
the z > 1 mass range in order to robustly derive the scaling relations
in single redshift bins.

Indeed, applying to our 29 Lagrangian regions the selection func-
tions typical of X-ray or optical surveys, whose lower mass limits
are, respectively, increasing and nearly constant with redshift, would
have returned a poor statistics, especially at high redshift. Looking at
specific future surveys of clusters, we recall that the limiting mass
of the selection function of eROSITA (Borm et al. 2014) rapidly
grows with redshift from 1014 M� at z = 0.2 to 4 × 1014 M� at
z = 0.7, while that of Euclid (Sartoris et al. 2016) will be almost
constantly equal to 1.1 × 1014 from z = 0 to z ∼ 1 and will grow
afterwards. Considering the rapid decline of the cosmological mass
function, these missions will not cover as large mass range as future
SZ surveys.

Our high-redshift samples, i.e. at z = 1, z = 1.5, and z = 2, include
74, 60, and 36 objects, respectively, numbers comparable to studies
on local observed scaling relations, and, as previously said, extend
in mass by a factor ranging from almost 5, at z = 2, to 10, at z = 1.

The smallest system at z = 2 contains more than 3.5 × 104

particles providing good estimates of global quantities. We do not
extend the sample to smaller systems, even if we would have ob-
tained numerically robust global measures, because, again, none of
the planned missions will reach such small masses.

As we will further discuss in the next sections, our choice will
have some impact on the computed evolution of the scaling rela-
tions. In fact, our selection excludes at z = 0 the smallest groups of
galaxies, that are known to cause a break of the power-law fitting
of the LX–T and LX–M relations. We will, therefore, model these
relations as single power laws, thus avoiding a more complicated
parametrization (see however, the detailed analysis performed by
Le Brun et al. 2017). The same benefit is nevertheless not present
at high redshifts, when the SZ selection is indeed sampling smaller
mass systems, which are affected by a drastic reduction of the gas
fraction (Dai et al. 2010). The scaling relations involving the gas
mass can still be fitted by a single power law – since less massive

objects will be present at z > 1 but the overall sample population
will be different (see Section 5.1).

3 M E T H O D O F A NA LY S I S

3.1 Computing ICM quantities

In the following, we briefly describe how we compute the relevant
quantities from our simulated data sets.
Masses The total mass, M, is calculated by summing the contribution
of all the species of particles (dark matter, gas, and stars) within R500.
For the gas mass, Mg, we sum the hot gas component. In the case of
multicomponent particles,7 we include all particles containing less
than 10 per cent of cold gas, and therefore no star-forming particles.
In each region, the mass of the hot gas contained in all the particles
with a cold gas fraction larger than 10 per cent is less than 0.01 per
cent of the total hot gas of the region, and thus is negligible.
Temperature We consider both the mass-weighted temperature and
the spectroscopic-like temperature (Mazzotta et al. 2004). To com-
pare with observations (Section 4) we consider the same aperture
used in the observational samples (R/R500 < 1), while to derive our
results (Section 5) we exclude the contribution of the core, defined
as the region within 15 per cent of R500 (0.15 < R/R500 < 1).

The mass-weighted temperature is provided by

Tmw =
∑

i miTi∑
i mi

, (1)

where mi and Ti are the hot-gas mass and temperature of the ith
gas particle. The spectroscopic-like temperature is introduced to
ease the comparison with X-ray observations and the formula was
derived considering the non-flat response of the instruments on
board of Chandra and XMM–Newton:

Tsl =
∑

i ρimiT
0.25
i∑

i ρimiT
−0.75
i

, (2)

where ρ i is the particle gas density (Mazzotta et al. 2004, see also
Vikhlinin 2006). For this computation, we used only particles emit-
ting in the X-ray band with Ti > 0.3 keV.
The parameter YX. As previously said, this parameter is equivalent
to the product of the gas mass and the core-excised temperature
within R500 and it is a powerful proxy for the total thermal content
of the ICM because it is almost insensitive to the physical processes
included in simulations (Stanek et al. 2010; Fabjan et al. 2011;
Battaglia et al. 2012; Sembolini et al. 2014) and to the dynamical
status of the clusters (Poole et al. 2007; Rasia et al. 2011; Kay
et al. 2012). YX is derived from X-ray observations, and therefore
we adopt the core-excised spectroscopic-like temperature in its ex-
pression:

YX = Mg × Tsl. (3)

As specified above, in Section 4 the observational quantities,
which we compare to, are available only within the fixed aperture
of R500 (Mahdavi et al. 2013, and its erratum), therefore, exclusively
in that section and in Figs 2 and 3, we compute YX without excising
the core.

7 The gas particles can be multiphase, carrying information on both the hot
and cold gas. The cold phase provides a reservoir for stellar formation.
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Figure 2. Comparison between scaling relations at z = 0 and those derived from local observations (z < 0.25). In clockwise order, we plot the M–Mg, M–Tsl,
L–M and M–YX relations. The observational data are taken from Mahdavi et al. (2013) and Mahdavi et al. (2014, , magenta), and Lieu et al. (2016, , brown).
They are shown with 1σ error bar. The cyan arrows associated with the Mahdavi et al. points represent the change of the quantities after correcting (i) the total
mass by 25 per cent as suggested by Hoekstra et al. (2015) and (ii) the other quantities by the amount estimated within our AGN sample (see the text for details).
In each panel, the solid black line represents the best-fitting relation of the AGN sample shown with black asterisks; the grey shaded area is the associated
1σ scatter around the best fit; the dashed and dash–dotted lines represent the best-fitting relations of the NR and CSF runs, respectively. The luminosities are
bolometric, none of the simulated and observed quantities is core-excised, and the observed data are rescaled to the cosmology adopted in the simulation.

X-ray Luminosity The bolometric luminosity is computed by sum-
ming the contribution of the emissivity, εi, of all gas particles within
the sphere of radius R500:

L =
∑

i

εi =
∑

i

ne,inH,i�(Ti, Zi)�Vi, (4)

where ne, i, nH, i are number densities of electrons and hydrogen
atoms, respectively, �Vi = mi/ρ i is the particle’s volume and �

is the interpolation of the cooling function pre-calculated in a fine

grid of temperatures and metallicities starting from the values of
temperature, Ti, and global metallicity, Zi, of each gas particle.8 The

8 We recall that, in our simulations, the ratios of the abundances of the
elements such as oxygen or silicon over the iron abundance are typically
close to the solar value (Biffi et al. 2017). Furthermore, the influence of
boosted single element line does not substantially increase the bolometric
luminosity.
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Figure 3. Comparison between simulated scaling relations at z = 0.5 and those derived from intermediate redshifts observations. We selected the clusters
from z = 0.42 and z = 0.55 with a median value equal to 0.52 from Mahdavi et al. (2013) and Mahdavi et al. (2014) and the objects with redshift between 0.43
and 0.52 with a median value equal to 0.45 from Lieu et al. (2016). In clockwise order, we plot the M–Mg, M–Tsl, L–M, and M–YX relations. Symbols and
lines are identical to those of Fig. 2.

cooling-function tables are created by assuming the APEC model
(Smith et al. 2001) in XSPEC and by integrating over the [0.01–100]
keV energy band.

3.2 The scaling relations and the self-similar prediction

The total mass of a cluster can be related to the various ICM quan-
tities presented in the previous sections through simple power-law
models. Kaiser (1986) analytically derived the functional shapes
of the expected scaling relations under the assumption of virial

equilibrium between the kinetic and thermal energy of a galaxy
cluster and its gravitational potential (a recent extension of the for-
malism is provided in Ettori 2015). According to this model, called
SS, the cluster total mass is the only parameter that defines both ther-
mal and dynamical properties of the ICM (e.g. Giodini et al. 2013
and references therein). Clusters with different mass are simply the
scaled-up or -down version of each other. The self-similarity stems
from the fact that there is no preferred scale in the problem as grav-
ity and the initial power spectrum are scale-free (or SS). In this
context, the total mass is the only variable of the problem. For this
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reason, the scaling relations are often presented with the mass as
independent variable, especially in theoretical and numerical stud-
ies. However, from a practical and observational perspective, the
scaling relations are adopted to derive the total mass of the clusters
once the mass-proxy quantities are measured. We will resort to this
presentation for all relations linking the total mass to a mass proxy
(Mg, T, and YX). On the other hand, we will also consider the L–T
and L–M relation with the bolometric luminosity as dependent vari-
able because both relations are observationally used to derive the
flux limit corresponding to a certain mass or temperature.

In the following, we will describe the mass-proxy relations (1, 2,
and 3) and the luminosity-based relations (4 and 5) together with
their expected dependence with redshift parametrized as power of
E(z) valid for a �CDM background cosmology (see e.g. Borgani
& Kravtsov 2011). Note that in Kaiser (1986), the redshift evolu-
tion was modelled in terms of powers of (1 + z) as expected for
an Einstein-de-Sitter universe. In all relations, we treat the normal-
izations, C, as constants, although in general they depend on the
internal structure of the system.
(1) The M–Mg relation. The total mass and the gas mass are linearly
related:

M = CMgE(z)0Mg, (5)

without any dependence on redshift.
(2) The M–T relation. The total mass is related to the temperature
according to

M = CT E(z)−1T 3/2. (6)

(3) The M–YX relation. From equations (3)–6, the SS scaling of YX

with cluster mass is given by

M = CYXE(z)−2/5Y
3/5
X . (7)

(4) and (5) The luminosity relations: L–T and L–M. Assuming
thermal bremsstrahlung emission, the bolometric luminosity can be
related to the total mass by

L ∝ E(z)2T 1/2f 2
gasM, (8)

where fgas ≡ Mg/M ≡ 1/CMg is the gas fraction. Given the expres-
sion of the M–Mg and M–T relations (equations 5 and 6), the SS
form for the L–T relation is expressed as

L = CLT E(z)T 2, (9)

and for the L–M relation as

L = CLME(z)7/3M4/3. (10)

3.3 Fitting method

To study the evolution of the parameters of the scaling relations, we
fit them through a generic expression:

log10F = log10C + γ log10E(z) + βlog10(X/X0), (11)

F can either represent the total mass, M500, or the X-ray luminosity,
LX. In the first case, X is assumed to be one of the mass prox-
ies: Mg, Tmw, Tsl, YX. In the second case, X stands either for the
spectroscopic-like temperature or for the total mass. The value of
each pivot point, X0, is listed in Table 1. These are independent
from z to facilitate the study of the evolution of the normalization.
The values of the pivot points are close to the median values of the
variables (Mg, Tmw, Tsl, YX, and M) of the entire AGN sample that
includes the objects from all the redshifts. At first, we fix γ to the

Table 1. For each scaling relation listed in column 1, we report the key
parameters of equation (11): the pivot point, X0 (second column), the SS
slope, β (third column), and the SS evolution parameter, γ (fourth column).

Relation X0 β γ

M–Mg 1 × 1013 h−1M� 1 0
M–T 3 keV 3/2 −1
M–YX 3 × 1013 h−1M�keV 3/5 −2/5
L–Tsl 3 keV 2 1
L–M 1 × 1014 h−1M� 4/3 7/3

SS expectation values (also listed in Table 1) and we derive C and β

at each independent redshift (Sections 5.1 and 5.2). Later, to study
the evolution of the normalization, we let γ free to vary (Section
5.3).

We used three different algorithms implemented in IDL routines
to fit the data. Two of them are robust statistical methods commonly
used in recent observational studies (see Sereno 2016, for a review)
while the last method is more appropriate to analyse data from
numerical sets where the two variables are independently derived
and their calculation does not have any associated error. We found
that the best-fitting parameters derived from the three techniques
agree within 1σ . Therefore, we will show the exact values obtained
only from the third method with only the exception of the results
in Section 5.3 where we are forced to use the first program (see
below). The IDL routines employed are as follows:
(i) linmix_err.pro adopts a Bayesian approach described in
Kelly (2007) to investigate the parameter space and to perform the
linear regression in logarithmic space. The routine is applied to the
single linear regression with C, β, and the intrinsic scatter σ as
free parameters. This method allows us to treat the intrinsic scatter,
σ , estimated via the method of Monte Carlo Markov Chains, as a
free parameter. Exclusively, when we treat γ as an additional free
parameter (Section 5.3), we use the mlinmix_err.pro routine
to adopt a fitting function that is not a simple power law.
(ii)bces.pro is a least-squares bisector method (Isobe et al. 1990)
that applies a linear regression that accounts for any possible corre-
lation between the errors associated with the two variables and the
intrinsic scatter in the data (Akritas & Bershady 1996).
(iii) robust_linefit.pro (with the bisector flag switched on)
uses a two-variable linear regression and does not make any distinc-
tion between dependent or independent variables. As the others, it
controls the influence of outliers. For all these characteristics, we
consider this as the most suitable approach for our analysis. The
best-fitting parameters derived with this method and the previous
one do not have any error associated. To estimate their uncertainty,
we apply a bootstrapping method with 105 iterations. The best-
fitting parameters and their uncertainties are the means and standard
deviations of the distributions derived from this technique.

4 C OMPARI SON BETWEEN SI MULATED AND
OBSERV ED SCALI NG R ELATI ONS

4.1 Observational data sets

In this section, we qualitatively compare our theoretical predictions
for the scaling relations to some observational results. For the mass-
proxy relations, due to uncertainties associated with the amplitude
of the X-ray hydrostatic mass bias derived both in observations
(von der Linden et al. 2014; Khatri & Gaspari 2016; Maughan
et al. 2016) and simulations (Nagai, Vikhlinin & Kravtsov 2007a;
Rasia et al. 2012; Biffi et al. 2016), we prefer to refer to masses esti-
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mated via the gravitational lensing technique. More specifically, we
refer to Lieu et al. (2016) and Mahdavi et al. (2013). Nevertheless,
we remark that potential biases in weak-lensing mass measurements
are also present (Meneghetti et al. 2010; Becker & Kravtsov 2011;
Bahé, McCarthy & King 2012). Indeed, the weak-lensing masses
of the last sample were corrected in a subsequent study from the
same group (Hoekstra et al. 2015).

Lieu et al. (2016) performed weak-lensing analysis of 38 clus-
ters out of the 100 brightest clusters of the XXL survey (Pierre
et al. 2016) to derive their lensing masses using the Canada–France–
Hawaii Telescope Lensing Survey (e.g. Heymans et al. 2012; Erben
et al. 2013) shear catalogue. The X-ray temperatures of the 38
clusters are measured by the XMM–Newton telescope in a central
region (within 300 kpc). To compare with them, we also calculated
the spectroscopic-like temperature within the same aperture.

The second sample contains 50 galaxy clusters in the redshift
range 0.155 < z < 0.55. The optical data are taken from the Cana-
dian Clusters Comparison Project (CCCP; see Mahdavi et al. 2013;
Hoekstra et al. 2015), while the X-ray properties are based on
the combined data from the Chandra Observatory and the XMM–
Newton telescope. In the following and in the figures, we consider
the values taken from the tables provided in the erratum by Mahdavi
et al. (2014).

4.2 Comparison to observations at local and intermediate
redshifts

We present the comparison between our AGN-simulated scaling re-
lations and those obtained from observational samples. We stress
that this comparison can only be qualitative since all samples are
differently selected. The simulations at z = 0 are associated with
observed clusters at z < 0.25 in Fig. 2, while the z = 0.5 simu-
lated set is matched to a sample of objects with redshift between
0.42 and 0.55 with median values equal to 0.5 in Fig. 3. Each figure
shows four scaling relations: M–Mg, M–Tsl, M–YX, and L–M. In this
section, all properties are measured within R500 without any core
excision in order to be consistent with the observed quantities. For
the comparison, the observational measurements of M, Mg, YX, and
L, which depend on h−1, h−5/2, h−5/2, and h−2, respectively, have
been rescaled according to the value of the Hubble parameter of the
simulation.

In general, we observe a good consistency between simulations
and observations for the three relations M–Mg, M–YX, and L–M,
especially considering that the Mahdavi et al. (2013) measurements
of the masses should be increased by ∼25 per cent accordingly to
the revised work from the CCCP group (Hoekstra et al. 2015). In
the most recent paper, the authors provide new measurements after
accounting for several corrections of key sources of systematic
errors in the cluster mass estimates. Unfortunately, they did not
present the updated values of the X-ray quantities which might
change because of the different radius related to the new mass
profile. Using our AGN sample, we estimate that a variation in mass
of 25 per cent corresponds, on average, to an increase of gas mass,
temperature, and bolometric luminosity of about 25, −2, and 5 per
cent, respectively. These changes are represented by the cyan arrows
in the figures.

The good agreement in the normalization of the M–Mg relation
assures that the simulated gas fraction is realistic over the mass
range investigated. However, our AGN-simulated clusters appear to
be colder than those at the same mass obtained from observations.
At fixed mass, the temperatures of Mahdavi et al. (2013) are higher
than our simulated values by about 30 per cent (21 per cent) at

z = 0 (z = 0.5). This discrepancy is reduced to 12 per cent once we
considered the corrected values of total mass (Hoekstra et al. 2015)
and the estimated correction for the temperature. In the low-mass
range, we also observed a temperature discrepancy of ∼24 per cent
in comparison to Lieu et al. (2016) at z = 0. We recall that the
temperature in this work (brown circles in the figures) is measured
within an aperture of 300 kpc rather than within R500. The data points
should then be compared with the simulated M–Tsl,300kpc relation,
shown in the figures with a red line. Comparing with this line, we
found 1σ consistency between our best-fitting relation and that of
Lieu et al. (2016). In the luminosity–mass plane, our AGN simulated
clusters lie in the same region of the observed data. We notice,
however, that at fixed mass, some of the observed clusters are less
luminous than all our simulated clusters. This leads to an offset of
30 per cent in the normalization. A possible explanation could be an
overly peaked gas distribution in the simulated sample. However, the
gas fraction profiles of our simulated clusters are in good agreement
with observations (Simionescu et al. 2017) and we believe that this
effect, if in place, could play only a minor role. The majority of this
discrepancy, instead, is likely due to the different sampling choices,
related for example to the dynamical state of the clusters and to a
diverse procedural treatment of the simulated and observed data.
In our analysis, indeed, we do not mask any subclumps present
within R500. For example, we verify that two simulated objects that
in Fig. 2 are a factor 6–8 more luminous than the overall (either
observed or simulated) population are experiencing a major merger
with a substructure that already crossed R500 of the main haloes. The
luminosity of these two clusters is, thus, boosted (Torri et al. 2004)
by the additional contribution of the large merging system, which
would be removed in any observational analysis.

To investigate in a deeper manner the influence of the central
regions, we compare the L–T relation measured in the two categories
of cool-core and non-cool-core (Fig. 4) clusters. The two simulated
classes are taken from Rasia et al. (2015) and refer to the main
haloes of the 29 re-simulated regions. The distinction between the
two classes was established on the basis of the pseudo-entropy level
of the objects, which is derived through the following expression:

σK = (TIN/TOUT)

(EMIN/EMOUT)1/3
, (12)

where the spectroscopic like temperature, T, and the emission mea-
sure, EM, are computed in the IN region, r/R180 < 0.05, and in the
OUT region, 0.05 < r/R180 < 0.15. We apply the cut of σ K < 0.55 to
define CC clusters. Those with larger values are classified as NCC
clusters.

Overall, the simulated L–T relation is in line with the observed
scaling, in particular in terms of the slope. There is an offset in
the normalization of slightly less than 50 per cent, which is mainly
produced by the combination of simulated lower temperatures and
slightly higher luminosities. Nevertheless, it is reassuring that, as
found in observations, the simulated CCs (blue) tend to have larger
luminosities than the NCC (black) systems due to a denser core
that produces a more peaked surface brightness profile. To illustrate
the effect of the physics of the AGN feedback model, we overplot
in Fig. 4 the results from very high resolution ideal hydrodynam-
ical simulations which can isolate the impact of two major modes
of AGN feedback (cf. Gaspari et al. 2014), namely tightly self-
regulated AGN feedback (dashed red line) and a thermal quasar
blast (dash–dotted cyan line). The self-regulated AGN feedback
(typically mediated via chaotic cold accretion on to the super mas-
sive black hole, Gaspari & Sa̧dowski 2017) tends to preserve the
long-term CC structure, only mildly steepening the cluster L–T; it
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Figure 4. The z = 0 AGN-simulated luminosity–temperature relation is
shown in blue and black asterisks, respectively, for cool-core and non-
cool-core systems (Rasia et al. 2015). For comparison, the cool-core and
non-cool-core clusters observed by Mahdavi et al. (2013) are reported with
filled and open magenta circles, respectively. The solid line is the best-
fitting simulated L–T relation, and the two dashed lines represent the results
taken from Gaspari et al. (2014) referred to two modes of AGN feedback:
self-regulated (dashed red) and thermal quasar blast (dashed cyan).

has been shown to be crucial to reproduce several properties of hot
haloes, including gently quenching cooling flows (e.g. McNamara
& Nulsen 2012 for a review). The quasar blast instead promotes a
drastic overheating/evacuation (already at the poor cluster regime),
raising the cooling time above the Hubble time and rendering most
of the low-temperature system NCCs, which is inconsistent with
data (e.g. Sun et al. 2009, Hudson et al. 2010, McDonald et al. 2013).
In this case, the luminosity is rapidly growing with the temperature
(L ∝ T3.8). Our sample never experiences such a steep relation, not
even at z ≥ 1. The presence of cool cores in combination with a
reasonable L–M relation implies that a regulation of the cooling-
heating balance is effective in our simulations since the collapse of
the systems. Our effective AGN subgrid model seems to be closer
to the gentler self-regulated AGN feedback evolution, preventing
a strong evacuation of the central gas. We remark that preserving
quasi-thermal equilibrium of hot haloes, as observed, is a major
and difficult constraint to obtain in simulations, which often display
either overcooling (e.g. Hahn et al. 2017) or overevacuation (e.g.
Puchwein et al. 2008).

5 EVO L U T I O N O F I C M SC A L I N G R E L AT I O N S

In this section, we explore the evolution from z = 0 up to z = 2 of the
six scaling relations: M–Mg, M–Tmw, M–Tsl, M–YX, L–Tsl, and L–M.
We will discuss in more detail the scaling relations involving the
gas mass and temperature since all the others are tightly connected
to these.

We remind that in this section all the temperatures are obtained
excluding the central region (<0.15 R500). We will comment on
the effect of the exclusion/inclusion of the core but we anticipate
that excising the core produces a minimal variation. Indeed, the

temperature difference is below 1 per cent in our AGN sample and
below 2 per cent in observational samples (Maughan et al. 2012)
once we compare the temperature measured in the entire sphere
within R500 or excising the inner core region. Nevertheless, we
decided to follow the standard choice, made to avoid the influence
of the uncertainties related to the status of the core (i.e. presence of
CCs or NCCs) on the evolution study.

We apply the fitting procedures described in Section 3.4 and we
use the fitting function expressed by equation (11), and the pivot
points listed in Table 1. The parameter of the evolution, γ , is here
fixed to the SS expectations introduced in Section 3. The results, in
terms of best-fitting parameters and 1σ uncertainties, are related to
the robust_linefit method and are reported in Tables 2 and 3
for all relations, ICM physics treatments, and for different redshifts.

5.1 The slope

The evolution of the slopes of the scaling relations, β, is shown
in Fig. 5 for all six scaling relations and ICM physics. For the
following discussion, we remind that the expected values of the
fitting parameters for the SS predictions are listed in Table 1.
(1) The M–Mg relation. We observe that the three runs produce
shallower gas slope than the SS prediction (β = 1). The NR value
is mildly lower (2–3 per cent) than the SS value mostly due to the
fact that smaller mass systems can lose a fraction of their gas as a
consequence of violent major encounters. This finding is not related
to the sample selection applied as we explained in Section 2.1,
indeed, also in the non-radiative cosmological box of Le Brun et al.
(2017) they found that the Mg–M relation has a slope equal to
1.02, which corresponds to 0.98 once the relation is inverted to be
compared with ours. We confirm previous results from the literature
that compared radiative and non-radiative runs and find that the
slope in the radiative runs is significantly smaller (10–15 per cent)
than one (Stanek et al. 2010; Battaglia et al. 2013) due to the
conversion of part of the hot gas into stars by the process of radiative
cooling which is more efficient in low massive systems.

The M–Mg relation is approximately constant over time for the NR

run (see Table 2) confirming the expectations: the total mass and the
gas mass grow simultaneously. Indeed, dark matter and gas increase
in mass by the same fraction when the mass growth happens via
slow accretion (due to constant ratio between the densities of the gas
and DM components in the cluster outskirts, e.g. Rasia, Tormen &
Moscardini 2004) or via major mergers (due to a relatively constant
gas fraction in system of comparable mass, e.g. Planelles et al. 2013;
Eckert et al. 2016, and reference therein). For this reason, the slope
of the NR run is very close to 1 and does not significantly evolve
with time.

As for the radiative simulations, the CSF set presents a regular
shift of the Mg–M relation towards higher normalization as redshift
decreases (see the shift from the red dashed line for z = 2 clus-
ters to the black dashed line for z = 0 objects in Fig. 6), but there
is no drastic change in the slope value (see also Fig. 5). This is
caused by the continuous reduction of the gas content for the active
stellar production that consumes some of the hot gas. On the other
hand, when the AGN feedback has been effective for some time, it
maintains a higher level of hot gas. Clearly, the AGN feedback is
able to effectively balance the radiative cooling, and thus to prevent
the overcooling and the consequent removal of gas from the hot
phase, which characterize the CSF runs. The impact of AGN feed-
back, however, depends on the cluster mass, and thus introduces a
modification of the slope as we will further discuss in the following.
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Table 2. Best-fitting normalization, slope, and scatter of the M–Mg, M–Tmw, M–Tsl, and M–YX relations for the NR, CSF, and AGN runs. The parameters are
obtained by fitting equation (11) with X0 and γ given in Table 1. The values of the scatter are derived by applying equation (16) at fixed mass proxy and at
fixed total mass.

M–Mg NR CSF AGN
z log10C β σ M σMg log10C β σ M σMg log10C β σ M σMg

0.0 13.854 ± 0.005 0.973 ± 0.005 0.018 0.018 14.079 ± 0.007 0.882 ± 0.009 0.027 0.031 13.938 ± 0.008 0.930 ± 0.009 0.024 0.026
0.25 13.841 ± 0.003 0.981 ± 0.005 0.017 0.017 14.046 ± 0.004 0.891 ± 0.006 0.025 0.029 13.926 ± 0.004 0.928 ± 0.007 0.022 0.024
0.5 13.838 ± 0.002 0.981 ± 0.004 0.013 0.013 14.030 ± 0.002 0.898 ± 0.005 0.020 0.022 13.928 ± 0.003 0.915 ± 0.006 0.019 0.021
0.6 13.834 ± 0.002 0.982 ± 0.005 0.015 0.015 14.021 ± 0.002 0.898 ± 0.006 0.021 0.024 13.922 ± 0.004 0.921 ± 0.008 0.023 0.025
0.8 13.825 ± 0.002 0.981 ± 0.005 0.014 0.014 14.002 ± 0.002 0.903 ± 0.007 0.020 0.022 13.915 ± 0.003 0.910 ± 0.008 0.022 0.024
1.0 13.823 ± 0.002 0.986 ± 0.008 0.017 0.017 13.997 ± 0.002 0.904 ± 0.009 0.020 0.022 13.912 ± 0.003 0.905 ± 0.013 0.025 0.027
1.5 13.816 ± 0.002 0.999 ± 0.013 0.017 0.017 13.979 ± 0.004 0.909 ± 0.012 0.020 0.022 13.910 ± 0.004 0.881 ± 0.016 0.025 0.028
2.0 13.817 ± 0.004 0.988 ± 0.017 0.015 0.016 13.967 ± 0.007 0.899 ± 0.018 0.022 0.025 13.902 ± 0.010 0.825 ± 0.028 0.032 0.038

M–Tmw NR CSF AGN
z log10C β σ M σTmw log10C β σ M σTmw log10C β σ M σTmw

0.0 14.349 ± 0.007 1.509 ± 0.025 0.051 0.034 14.240 ± 0.007 1.637 ± 0.025 0.046 0.028 14.301 ± 0.007 1.613 ± 0.027 0.051 0.031
0.25 14.352 ± 0.006 1.536 ± 0.022 0.052 0.034 14.244 ± 0.006 1.642 ± 0.020 0.049 0.030 14.293 ± 0.006 1.652 ± 0.024 0.052 0.031
0.5 14.379 ± 0.006 1.508 ± 0.025 0.050 0.033 14.272 ± 0.005 1.622 ± 0.025 0.044 0.027 14.313 ± 0.005 1.640 ± 0.023 0.042 0.026
0.6 14.388 ± 0.006 1.507 ± 0.026 0.053 0.035 14.279 ± 0.005 1.589 ± 0.028 0.055 0.034 14.312 ± 0.004 1.650 ± 0.021 0.040 0.024
0.8 14.376 ± 0.005 1.500 ± 0.026 0.051 0.034 14.281 ± 0.005 1.598 ± 0.029 0.050 0.032 14.310 ± 0.004 1.633 ± 0.024 0.040 0.025
1.0 14.386 ± 0.008 1.455 ± 0.040 0.061 0.042 14.297 ± 0.006 1.585 ± 0.036 0.060 0.038 14.317 ± 0.005 1.671 ± 0.037 0.048 0.029
1.5 14.417 ± 0.014 1.489 ± 0.052 0.058 0.039 14.331 ± 0.009 1.512 ± 0.047 0.051 0.034 14.341 ± 0.010 1.678 ± 0.050 0.046 0.027
2.0 14.398 ± 0.021 1.413 ± 0.073 0.056 0.039 14.320 ± 0.014 1.467 ± 0.072 0.046 0.031 14.335 ± 0.015 1.619 ± 0.075 0.041 0.025

M–Tsl NR CSF AGN
z log10C β σ M σTsl log10C β σ M σTsl log10C β σ M σTsl
0.0 14.416 ± 0.016 1.597 ± 0.057 0.121 0.076 14.227 ± 0.012 1.731 ± 0.048 0.083 0.048 14.293 ± 0.009 1.702 ± 0.047 0.081 0.048
0.25 14.426 ± 0.012 1.569 ± 0.051 0.107 0.068 14.257 ± 0.009 1.700 ± 0.035 0.081 0.048 14.301 ± 0.009 1.741 ± 0.042 0.078 0.045
0.5 14.476 ± 0.015 1.527 ± 0.058 0.118 0.077 14.297 ± 0.010 1.701 ± 0.048 0.088 0.051 14.322 ± 0.008 1.740 ± 0.041 0.065 0.037
0.6 14.498 ± 0.017 1.560 ± 0.063 0.126 0.081 14.308 ± 0.009 1.656 ± 0.049 0.089 0.054 14.321 ± 0.008 1.712 ± 0.042 0.068 0.039
0.8 14.457 ± 0.014 1.492 ± 0.057 0.104 0.070 14.297 ± 0.009 1.654 ± 0.055 0.078 0.047 14.313 ± 0.007 1.695 ± 0.042 0.060 0.035
1.0 14.447 ± 0.019 1.378 ± 0.069 0.104 0.075 14.310 ± 0.011 1.573 ± 0.066 0.086 0.055 14.321 ± 0.010 1.663 ± 0.059 0.068 0.041
1.5 14.475 ± 0.026 1.447 ± 0.081 0.108 0.075 14.358 ± 0.016 1.494 ± 0.069 0.094 0.063 14.350 ± 0.016 1.635 ± 0.076 0.072 0.044
2.0 14.421 ± 0.027 1.339 ± 0.080 0.082 0.062 14.335 ± 0.023 1.425 ± 0.089 0.077 0.054 14.350 ± 0.024 1.571 ± 0.105 0.064 0.041

M–YX NR CSF AGN
z log10C β σ M σYX log10C β σ M σYX log10C β σ M σYX
0.0 14.064 ± 0.009 0.610 ± 0.009 0.049 0.080 14.128 ± 0.007 0.585 ± 0.007 0.037 0.063 14.063 ± 0.006 0.602 ± 0.008 0.037 0.061
0.25 14.064 ± 0.006 0.609 ± 0.008 0.046 0.076 14.122 ± 0.004 0.587 ± 0.005 0.035 0.059 14.059 ± 0.004 0.608 ± 0.006 0.033 0.055
0.5 14.087 ± 0.005 0.608 ± 0.010 0.050 0.082 14.125 ± 0.004 0.592 ± 0.007 0.037 0.063 14.066 ± 0.003 0.602 ± 0.006 0.028 0.046
0.6 14.091 ± 0.006 0.614 ± 0.011 0.054 0.088 14.126 ± 0.004 0.587 ± 0.007 0.039 0.067 14.066 ± 0.003 0.601 ± 0.007 0.030 0.050
0.8 14.076 ± 0.005 0.603 ± 0.009 0.045 0.074 14.118 ± 0.004 0.589 ± 0.008 0.034 0.058 14.063 ± 0.003 0.597 ± 0.006 0.025 0.043
1.0 14.082 ± 0.006 0.586 ± 0.014 0.049 0.084 14.120 ± 0.005 0.582 ± 0.012 0.040 0.068 14.066 ± 0.004 0.591 ± 0.010 0.032 0.054
1.5 14.091 ± 0.009 0.611 ± 0.019 0.050 0.082 14.135 ± 0.008 0.578 ± 0.015 0.043 0.074 14.085 ± 0.007 0.580 ± 0.014 0.034 0.059
2.0 14.072 ± 0.014 0.586 ± 0.023 0.041 0.071 14.121 ± 0.015 0.562 ± 0.021 0.041 0.074 14.086 ± 0.012 0.553 ± 0.020 0.032 0.057

Table 3. Similar to Table 2 but for the L–Tsl and L–M relations. The values of σ L are derived at fixed Tsl in the upper panel and a fixed total mass in the bottom
panel. The other measurement of the scatter is obtained at fixed luminosity.

L–Tsl NR CSF AGN
z log10C β σ L σTsl log10C β σ L σTsl log10C β σ L σTsl

0.0 0.857 ± 0.023 2.155 ± 0.083 0.180 0.083 0.154 ± 0.033 2.881 ± 0.103 0.192 0.067 0.497 ± 0.026 2.903 ± 0.086 0.189 0.065
0.25 0.897 ± 0.018 2.075 ± 0.079 0.162 0.078 0.279 ± 0.021 2.765 ± 0.092 0.180 0.065 0.537 ± 0.021 2.958 ± 0.098 0.176 0.059
0.5 0.988 ± 0.015 2.008 ± 0.062 0.135 0.067 0.406 ± 0.017 2.755 ± 0.087 0.164 0.059 0.586 ± 0.017 3.101 ± 0.104 0.150 0.048
0.6 1.032 ± 0.020 2.154 ± 0.080 0.132 0.061 0.439 ± 0.016 2.743 ± 0.084 0.155 0.057 0.590 ± 0.017 3.021 ± 0.088 0.147 0.049
0.8 1.023 ± 0.017 2.050 ± 0.067 0.128 0.062 0.487 ± 0.016 2.714 ± 0.091 0.155 0.057 0.606 ± 0.019 3.159 ± 0.109 0.156 0.049
1.0 1.031 ± 0.027 2.107 ± 0.097 0.133 0.063 0.525 ± 0.015 2.631 ± 0.080 0.132 0.050 0.612 ± 0.018 3.146 ± 0.0102 0.131 0.042
1.5 1.008 ± 0.032 1.964 ± 0.103 0.127 0.065 0.603 ± 0.020 2.267 ± 0.102 0.135 0.060 0.660 ± 0.023 3.242 ± 0.134 0.133 0.041
2.0 1.001 ± 0.045 2.033 ± 0.136 0.096 0.047 0.615 ± 0.033 2.223 ± 0.132 0.088 0.040 0.655 ± 0.054 3.268 ± 0.262 0.171 0.052

L–M NR CSF AGN
z log10C β σ L σ M log10C β σ L σ M log10C β σ L σ M

0.0 0.294 ± 0.031 1.345 ± 0.049 0.155 0.116 −0.229 ± 0.034 1.661 ± 0.055 0.192 0.116 −0.006 ± 0.034 1.701 ± 0.060 0.224 0.131
0.25 0.332 ± 0.024 1.320 ± 0.052 0.160 0.121 −0.129 ± 0.022 1.625 ± 0.051 0.179 0.110 0.042 ± 0.024 1.699 ± 0.061 0.194 0.114
0.5 0.359 ± 0.016 1.312 ± 0.039 0.138 0.105 −0.048 ± 0.017 1.615 ± 0.057 0.168 0.104 0.056 ± 0.016 1.770 ± 0.057 0.170 0.096
0.6 0.348 ± 0.013 1.380 ± 0.040 0.118 0.086 −0.034 ± 0.018 1.659 ± 0.059 0.170 0.102 0.073 ± 0.018 1.758 ± 0.056 0.168 0.096
0.8 0.400 ± 0.012 1.375 ± 0.045 0.117 0.085 0.048 ± 0.016 1.640 ± 0.058 0.156 0.095 0.108 ± 0.016 1.856 ± 0.064 0.153 0.082
1.0 0.388 ± 0.016 1.526 ± 0.065 0.139 0.091 0.078 ± 0.017 1.672 ± 0.066 0.145 0.087 0.121 ± 0.018 1.890 ± 0.073 0.145 0.077
1.5 0.370 ± 0.019 1.360 ± 0.057 0.111 0.082 0.115 ± 0.020 1.514 ± 0.058 0.114 0.075 0.170 ± 0.030 1.967 ± 0.093 0.144 0.073
2.0 0.434 ± 0.033 1.509 ± 0.087 0.093 0.062 0.186 ± 0.029 1.555 ± 0.084 0.102 0.066 0.252 ± 0.061 2.084 ± 0.151 0.136 0.065

MNRAS 474, 4089–4111 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/474/3/4089/4631156
by Universita' degli Studi di Trieste, Gian Luigi Granato
on 07 June 2018



4100 N. Truong et al.

Figure 5. We show the slope value for M–Mg, M–Tmw, M–Tsl, M–YX, L–Tsl, and L–M shown from left to right, top to bottom, respectively, as a function of
redshift. In each panel, the NR, CSF, and AGN runs are represented by the black circles, open blue triangles, and red asterisks. The dashed black lines represent
the SS evolution of the slopes. The error bars represent 1σ of the β parameter. The grey shaded area shows its value at z = 0 for the AGN sample. In this run,
we notice that the slopes at redshifts z < 1 agree within 1σ with the z = 0 value, while at higher redshifts they can significantly deviate. Some variations from
the z = 0 value of the AGN sample are reported with red horizontal lines on the right part of the plots.

Looking at Fig. 5, we notice that no significant evolution is mea-
surable in the AGN runs from z = 0 to z ∼ 1 (in agreement with
previous analyses by Fabjan et al. 2011 and Battaglia et al. 2013).
At z = 1, indeed, β is just 2.5 per cent lower than at z = 0. How-
ever, the value of the AGN slope, βMg , decreases at z = 1.5 and even
more at z = 2 to a maximum difference of 11 per cent with respect to
z = 0. This discrepancy is statistically robust and significant at more
than 2σ . To explain the origin of this behaviour, we refer to Fig. 7
where we show the trend of the baryon fraction with the total mass
at different redshifts, and thus we enhance both the dependence in
time of the M–Mg relation as well as the impact of the SZ cluster
selection which varies with z (see Section 2.1). In the large panel,
we show all the clusters with mass above 2 × 1013h−1 M� at z = 0
in black and z = 2 in red. In the smallest panels, we plot the samples
considered in this work at four different redshifts: z = 0, 1, 1.5, and
2. As known from observations, the gas fraction is almost constant
for masses M500 > (2–3) × 1014 M� while it decreases with de-
creasing total mass, below that limit. This trend seems to be present
throughout the cosmic time and not much variation is detected,
except a slightly higher value of the gas fraction at the highest red-
shifts at fixed mass. As previously pointed out, the dependence of

the baryon fraction with the cluster total mass is a particular feature
generated by the AGN feedback. In its absence, the baryon fraction
has a constant value from groups to clusters (e.g. Stanek et al. 2010;
Planelles et al. 2013). For this reason, the SZ-like selection does
not impact the evolution of the slopes of either the NR or the CSF

runs. On the other hand, the z = 2 AGN sample is almost entirely on
the declining part of the relation, while the local-universe sample
contains a large number of clusters that are located in the plateau
region. In other words, the slopes of the M–Mg relations at z = 0
and z = 2 are influenced by the mass range covered by the sample
of clusters. This depends on the SZ-like selection and it might affect
also the current and future SZ analysis. Indeed, the vertical lines in
the smallest panels of Fig. 7 approximately show the mass limits of
the selection function of SPT and SPT-3G.
(2) The M − Tmw and M − Tsl relations. Non-radiative runs
show a M–Tmw slope consistent at 1σ with the SS-predicted value
of β = 3/2 for all redshifts below 1. In the radiative simu-
lations, instead, the efficiency of the process of radiative cool-
ing, which cools the dense gas to produce stars, depends on the
system mass, being stronger in the low-mass systems. The re-
moval of this low entropy gas from the hot phase leads to higher
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Figure 6. M–Mg relation for the AGN clusters at z = 0 (black asterisks)
and at z = 2 (red asterisks). Their best-fitting relations are plotted with solid
lines together with the best-fitting relations of the CSF sample at z = 0 (black
dashed line) and at z = 2 (red dashed line). While for the CSF clusters, there
is a net evolution in the normalization, the AGN relation is only experiencing
a change in the slope.

temperatures in groups, and thus to a steeper M–T slope in the CSF

and AGN runs.
As expected, we do not find a significant difference in the values

of the slope of the AGN M–T scaling relations obtained by including
the core in the computation of the temperatures. The slopes, indeed,
are consistent within 1σ with those reported in Table 2 and have a
maximum difference of 2.5 per cent at z = 0 and z = 0.25, otherwise
they change by less than ∼1.5 per cent. Most importantly, they
present the same trend shown in Fig. 5 and detailed in the following.

The slopes of both temperature relations, M–Tmw and M–Tsl,
drop at high redshifts. The values of βTsl at z = 2 are reduced with
respect to the z = 0 slope by 16, 18, and 16 per cent in the NR,
CSF, and AGN runs, respectively. The decrease in the M–Tsl slope is
present for all the prescriptions of the ICM physics. This indicates
that the origin of the variation is due to macroscopic events, linked to
the global evolution of the clusters. The same trend is found in the
clusters extracted from the cosmological box (of size 640 h−1 Mpc)
of the Magneticum simulations9 (Dolag, Komatsu & Sunyaev 2016;
Ragagnin et al. 2017) at redshifts z = 0 and z ≈ 1, 1.5, and2. As
a further confirmation that this finding does not depend on the
SZ-like selection, we explore the slope evolution for the M–Tsl

relations derived from all objects that at each redshift are above
M500 > 1013 M�. We find the same result as presented in Fig. 5.

To facilitate the explanation of this result, we plot in Fig. 8 the
M–Tmw relation for the NR clusters at z = 0 and z = 2. We chose
this comparison, despite its mild β variation (less than 10 per cent),
to better describe the variation of the thermal content (linked to
Tmw rather than Tsl) as consequence of gravitational interactions
more than of radiative physics. As expected, the kinetic energy of
the hot gas is not yet converted in thermal energy in high-redshift

9 http://c2papcosmosim.srv.lrz.de/map/find

clusters, and therefore they typically exhibit a lower value of tem-
perature at fixed total mass, i.e. for E(z)M < 2 × 1014h−1 M�, the
z = 2 temperatures (red points) are systematically on the left side
of the z = 0 ones (black points). The same result was enlightened
in fig. 5 of Le Brun et al. (2017), where they show how the ra-
tio of the kinetic energy over the thermal energy decreases with
time considering various mass bins of simulated clusters extracted
from a cosmological volume. We confirm the same trend of the
energy ratio in our simulations (not shown). The phenomenon is
present in the entire mass range but it is less pronounced for the
three most massive systems at z = 2 that, indeed, lie extremely
close to the black solid line representing the z = 0 scaling relation.
These three objects have recently experienced a major merger. As
a consequence, their mass has doubled (notice the mass separation
from the rest of the sample), and their gas has been strongly heated
by the induced shocks. To secure that our result was not influenced
by the limited number of objects, we verified which fraction, among
the highest mass systems in the z ∼ 2.3 MUSIC-2 sample10 (Sem-
bolini et al. 2013, 2014), has recently experienced a major merger.
We found that this condition is verified for 10 systems out of the 11
objects with mass E(z)M500 > 2.86 × 1014M�. We conclude that
if a system about that mass threshold is already present at z = 2 it
is extremely likely (90 per cent probability accordingly to the MU-
SIC sample) that it just went through a major merger phase that,
generating strong shocks, heats the gas with a temperature enhance-
ment which is greater than the variation of the total mass elevated
by the power βT–M (see also Rasia et al. 2011). To summarize, we
expect that while small clusters are still cold for their potential well,
the largest objects are already located in the z = 0 scaling relation
because of shock heating due to minor and major mergers. This
causes a shallower slope in the M–T relation. The presence of a
significant amount of cold gas in low-mass objects affects more the
spectroscopic-like estimate of the temperature that, indeed, shows
a stronger evolution.

The change in slope is less prominent in the AGN runs. In this
circumstance, the gas of the smallest systems at z = 2 is warmer
because of the recent and intense AGN feedback activity. The phe-
nomenon brings the smaller objects closer to the z = 0 relation
reducing the amplitude of the slope evolution in the M–Tsl case, and
even cancelling it for the M–Tmw relation.
(3) The M–YX relation. All runs at z < 1 have a M–YX slope close
to the predicted SS slope of 5/3 because of the opposite deviations
of βMg and βTsl from their SS relations as a response to the changes
of the ICM physics. In particular, the NR and AGN runs are consistent
within 1σ to the SS values while the βYX of the CSF runs is ≤3 per
cent below.

The slope of the M–YX relation is constant until z = 1 and then
shows a mild decrease (between 5 and 10 per cent) for the radiative
runs consistent with previous results by Sembolini et al. (2014) and
Pike et al. (2014). We notice, also, that the variation of the AGN slope
between z = 0 and z = 1 is less than 2 per cent and the two values
are consistent at 1σ . The origin of this variation can be understood
by decomposing the βYX slope into the two slopes of the M–Mg and
M–Tsl (Maughan 2014):

βYX = 1

1/βMg + 1/βTsl

. (13)

The complete derivation is presented in the Appendix. The mildness
of the βYX deviation is generated by the fact that none of the ICM

10 http://music.ft.uam.es
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Figure 7. In the large panel, we show the baryon fraction of the AGN runs at z = 0 (black) and z = 2 (red) normalized for its cosmic value. All clusters identified
in the 29 Lagrangian regions with mass M500 above 2 × 1013 M� are presented to display the rapid decrease in gas fraction in low-mass systems. In the smallest
panels at the right, we separately show the objects at z = 0, 1, 1.5, and 2, but only those above the mass limit chosen as threshold (M500 = 1014E(z)−1 M�).
We indicate the mass limits of the current SPT selection with the dashed line and that of the future SPT-3G with the dot–dashed line.

Figure 8. Redshift evolution of the M500–Tmw scaling relation. The result
is shown for the NR simulation at redshifts z = 0 (black) and z = 2 (red).
The solid lines are the best-fitting relations corresponding to each redshift.

physics runs present a coincident strong variation in both βMg and
βTsl . The NR and CSF runs have the largest changes in βTsl but they
have a constant βMg , vice versa, the change in βMg for the AGN

run is accompanied by the mildest drop of the βTsl value. From
equation (13), it is also clear why the value of the M–YX slope is
independent from the ICM prescriptions. Indeed, by comparing the
AGN and NR results of the slopes on the M–Mg and M–T relations,
we can notice that the AGN runs have lower βMg but higher βTsl ,
because in the AGN runs the smallest systems, at fixed total mass,
have smaller gas mass but higher temperature with respect to the
other ICM physics (see also discussion in Fabjan et al. 2011). This
feature makes the M–YX relation the most suitable for cosmological
studies that might include clusters presenting various astrophysical
properties (see also Biffi et al. 2014).
(4) and (5) L–Tsl and L–M relations. Both radiative runs exhibit
significantly steeper luminosity–temperature and luminosity–mass
slopes compared with the SS values of 2 and 4/3, respectively. The
deviation is caused by the removal of dense gas in small clusters
and groups due to efficient radiative cooling (see above).

By including the core, we notice overall steeper slopes. However,
the absolute difference in terms of slopes is less than 1 per cent for
all redshifts with the exception of z = 0, 0.25, and1.5 where it is
below 3 per cent. All the values obtained by including the core are
in any case consistent within 1σ with those in Table 3.

In the CSF runs, the slopes of the L–Tsl and L–M relations, respec-
tively, decreases by 23 and 6 per cent at z = 2 with respect to z = 0,
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while for the AGN sample the same grow by 12.5 and 22.5 per cent.
These changes can be again explained by the decomposition of the
luminosity-based relations’ slopes:

βLT = βTsl

(
2

βMg

− 1

)
+ 1

2
, (14)

βLM = 2

βMg

+ 1

2βTsl

− 1. (15)

In the first case, βMg and βTsl carry a similar weight leading to a
counterbalance between concurrent changes. In the second case,
βMg is the dominant factor, implying a variation whenever this
occurs in the M–Mg relation. Therefore, the steepening of the L–M
relation at z > 1 is also due to the gas depletion within the potential
well of small mass systems caused by the gas expulsion caused by
the AGN at even higher redshifts.

Another notable feature in the luminosity relations is the sep-
aration of the slope values among the three versions of baryonic
physics. The slope has a SS behaviour for the NR simulations while
βLT and βLM increase by ∼35 and ∼ 25 per cent, respectively, in the
radiative runs. The change is consistent with the previous argument
on the gas fractions: feedback processes reduce the amount of gas
in the simulated smallest systems, and thus their total luminosity,
similarly to what happens in real systems. The removal of dense
gas in the smallest systems, in the CSF sample is more evident at low
redshift when the powerful radiative cooling cannot be regulated
only by stellar feedback. On the other hand, in the AGN runs, the
phenomenon is more prominent at high redshifts because of the
stronger AGN feedback. The gap between the AGN normalization
is already well established at z = 2 implying that at that epoch the
stellar and AGN feedback in our simulated universe already had a
significant impact in establishing the energetics of clusters. Indeed,
the AGN need to eject the gas from the progenitors of groups and
clusters at z > 2 for getting their baryonic content and ICM prop-
erties right at lower redshift (see e.g. McCarthy et al. 2011; Biffi
et al. 2017, but see also Pike et al. 2014).

5.2 The intrinsic scatter

We compute the scatter, σ , defined as the mass variance in the dec-
imal logarithm at fixed signal (Mg, Tmw, Tsl, YX) for the mass-proxy
relations and as the luminosity variance in the decimal logarithm at
fixed Tsl and Mtot for the remaining relations. Using the same syntax
of equation (11), the scatter can be computed as

σ =
[∑N

i=1[log10(Yi) − log10(F (Xi))]2

N − 2

](1/2)

, (16)

where N is the number of clusters in the redshift bin and Yi represents
either the total mass or the bolometric luminosity of each object. The
resulting scatter is fully consistent with the scatter value returned
by the routine linmix_err.pro.

The two values are, indeed, only a few per cent different be-
tween each other, with an absolute maximum variation below 0.01,
meaning that this quantity is robustly defined for our samples.

In Fig. 9, we report its evolution for all our scaling relations. In
addition, we evaluate the scatter measured at fixed mass or fixed
luminosity. Both scatter values can be found in the last two columns
for each physics of Tables 2 and 3. As often stressed in the paper, we
remind that our analysis focusses on the relative trend of the scatter
rather than its absolute calibration. Indeed, the latter might depend
on the size of the sample considered. We do not have hundreds

of objects as we would expect from selecting all the clusters in
the entire cosmological box of 1 h−1 Gpc, and therefore we are
unavoidably limiting the presence of outliers. The expectation is
that the scatter from our sample is biased low. Nevertheless, our
goal is to quantify the general behaviour of the scatter, investigating
its evolution, and checking its dependence on the ICM physics.

All mass-proxy scaling relations, with the exception of M − Tsl

for the NR runs, present a negligible trend with redshift: the scatters
at z = 1.5 or z = 2 are consistent within 1σ or 1.5σ with the z = 0
scatter. The luminosity-based relations, instead, present a significant
variation of the scatter, which decreases with increasing redshift as
can be seen in the figure.

The M–Mg relation always presents the minimum amount
of scatter in line with the results from Stanek et al. (2010)
and Fabjan et al. (2010). The values are around 2–3 per cent
which are 1.5 times smaller than σM|YX and a factor of 2–4
smaller than the scatter of the two temperatures (σM|Tmw = 0.05
and σM|Tsl = 0.08 − 0.10, respectively). This is not surprising
since the value of σM|YX is consistent with the statistical ex-
pectations (Stanek et al. 2010): (σM|YX/βYX )2 = (σM|Mg/βMg )2 +
(σM|Tsl/βTsl )

2 + 2CσM|Mg/βMgσM|Tsl/βTsl , where the correlation fac-
tor C between Mg and Tsl is not negative.

The increase of 25–50 per cent with redshift of the NR scatter of the
M–Tsl scaling relation is most likely generated by the sequence of
minor mergers of smaller and colder substructures. Their diffuse gas
is efficiently stripped and mixed when the stellar and AGN feedback
are present, but it is more resilient to be incorporated to the main
cluster ICM in case of the NR simulations (Dolag et al. 2009). The
inclusion of the core in the AGN runs also increases the scatter of the
M–Tsl by 15–20 per cent, while negligible differences (below 3 per
cent) are detected for the M–Tmw relation.

The two luminosity-related scaling relations L–T and L–M have
the highest intrinsic scatter. They reach 0.2 at z = 0 and decrease
to 0.1–0.15 at z = 2. The largest variation affects the L–M relation.
The increase of the scatter in more recent times indicates that the
luminosity is sensitive to the entire merger history of the clusters and
that the most significant deviations from the global scaling relation
originate from recent (z < 1) massive mergers. A similar trend
in the luminosity scatter was recently found by the Weighing the
Giants team (Mantz et al. 2016). The variation of the L–M scatter
with redshift is an important factor that needs to be considered
for cosmological studies. Luckily, the change goes in the direction
of reducing, at higher redshift, the Eddington bias caused by the
different scattering of objects across the threshold of a flux-limited
sample (e.g. Stanek et al. 2006; Maughan et al. 2012). Finally,
radiative phenomena such as stellar or AGN feedback can also have
the effect of diversifying the systems’ luminosity at fixed mass.
Indeed, both the CSF and AGN runs show a 20–30 per cent higher
σ L|M scatter than the NR simulations. The scatter of the AGN runs
further increases by 20–40 per cent when the core is considered in
the computation of the temperature confirming the fragility of this
scaling relation since its characterization depends on many factors
as already seen in Section 4.

As a second step, we investigated the shape of the deviations
of each signal, δ, from the best-fitting relations at fixed mass and
their covariance matrix. In Fig. 10, we report the results for the
CSF and AGN simulations at redshift z = 0 and z = 2, while in
Table 4 we also list the coefficients for the NR simulations and for
z = 1. This analysis allows us to identify the couples of signals with
high correlation or anticorrelation. We quantify this measure via
Spearman’s rank coefficient, r. In Table 4, we highlight the signal
pairs with |r| > 0.5 at a high significance level, i.e. when the null
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Figure 9. The evolution of intrinsic scatter for M–Mg, M–Tmw, M–Tsl, M–YX, L–Tsl, and L–M is shown (from left to right, top to bottom) as function of
redshift and for the three simulated runs. The error bars represent the 1σ error, and the grey shaded area stands for the 68 per cent uncertainty of the AGN
intrinsic scatter at z = 0.

hypothesis probability is less than 10−4. These pairs of signals can
be jointly used to reduce the mass scatter with respect to the scatter
obtained in the individual scaling relations (Stanek et al. 2010; Ettori
et al. 2012; Evrard et al. 2014; Wu et al. 2015). The scatter at fixed
mass (shown in the diagonal panels) can be accurately described by
lognormal distributions (see also Le Brun et al. 2017) at all times.

Regarding the AGN physics, we find that all the couples of X-ray
quantities present positive correlations at all redshifts with the ex-
ception of no correlation found between δMg and δTsl at all redshifts
and between δL and δTsl at z = 2. In addition, we notice that the 0.5
correlation between δYX and δL at z = 2 has a 0.2 per cent probability
to be obtained by chance, and therefore it is somehow uncertain.
The former behaviour is consistent with the already-discussed argu-
ment about the different time-scales on the variation of Mg and Tsl in
reaction to mergers and accretion: since the two quantities increase
at subsequent times we do not expect particular correlation. This
is particularly true at z = 2 where no correlation between δTsl and
δL is also expected. Indeed, on the one hand, mergers produce an
increase of both luminosity and temperature generating a positive
correlation between the two deviations. On the other hand, strong
AGN bursts, common phenomena at these redshifts, are likely to
cause an increase of temperature along with a temporary decrease
of luminosity, due to the gas lost as ejected material. This produces
a negative correlation. As a confirmation, when the AGN are not

present the correlation at z = 2 becomes positive and quite strong,
i.e. ∼0.6 in the NR run and ∼0.7 in the CSF case. The correlation
values that we find between δL and δTsl (r = 0.52 and r = 0.54) at z
≤ 1 are in good agreement with the value r = 0.56 ± 0.10 found by
Mantz et al. (2016) in a sample containing both relaxed and unre-
laxed clusters. In this observational paper, the authors claim a clean
separation between the two classes of systems: CC regular systems
tend to have higher δL and δT than the highly disturbed NCC objects
in their sample. In our simulations, we find that the six CC systems
that are X-ray regular have, indeed, the largest positive deviation of
both quantities.

The YX parameter shows a strong positive correlation with Spear-
man’s coefficient r > 0.5 with all the parameters considered. Clus-
ters deviate from the M–YX mostly due to the changes in their
temperature (Rasia et al. 2011) and this is confirmed by the fact that
the highest correlation value is that between YX and Tsl. Indeed, r is
always greater than ∼0.85 with the exception of z = 2 where it still
shows a strong correlation with r = 0.67. This result is confirmed
even when changing the ICM physics.

We confirm that a combination of the luminosity and temperature
(M ∝ L × T) for local clusters as proposed in Ettori (2013) is a good
approach to reduce the scatter with respect to the scatters of the
individual relations M–L and M–T. In general, the luminosity is
well correlated with the other quantities with only few exceptions.
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Figure 10. In the diagonal panels, we report the scatter of the mass-proxy scaling relations at fixed total mass for the z = 0 samples of the AGN set (brown
line) and CSF run (blue line). In the panels below and above the diagonal, we represent the covariance matrix between the various signals for the AGN and CSF

samples, respectively. The circles denote z = 0 results while the triangles refer to the z = 2 values. The Pearson correlation coefficients for z = 0, 1, and 2 are
listed in Table 4.

A lower level of correlation is found between the luminosity and the
temperature in the NR runs and no correlation is detected between the
luminosity and the gas mass at higher redshifts. This is most likely
related to merging events that significantly boost the luminosity in
non-radiative simulations.

The CSF and AGN runs present similar values of the correlation
coefficients beside the mentioned difference at high redshift for the
pair δ(Tsl) and δ(Mg) and the associated couple of signals δ(Tsl)
and δ(LX).

5.3 The normalization

The evolution of the normalization is mostly expressed as a power
γ of the factor E(z) (see review on scaling-relation evolution by
Giodini et al. 2013, and references therein). In other words, the
evolution of the normalization is represented as a simple upward
or downward shift. In this section, we want to enlighten how this

procedure is inaccurate whenever the slope of the considered scaling
relation varies with time (Branchesi et al. 2007).

Observationally, we still do not have any indication of evolution
of β due to the paucity of observed z ∼ 1 clusters. The situation
will improve thanks to the collection of high-z data from SPT-3G
(Benson et al. 2014) or eROSITA (Giodini et al. 2013). To provide
a forecast on the precision that these surveys could reach, there
are already ongoing studies that extend local samples by including
higher redshift objects. In addition, Bayesian techniques have been
developed (see LIRA by Sereno & Ettori 2015b and Sereno 2016 and
also Andreon & Hurn 2013). These include a proper treatment for
the sample selection (e.g. Sereno & Ettori 2015b) and the associated
selection biases such as the Malmquist and Eddington biases (see
Allen et al. 2011, for a discussion). However, the analysis of the data
cannot yet be performed in redshift bins, but it, typically, follows
two main approaches. Either the slope is computed in a local sample
and then fixed to the entire set (e.g. Clerc et al. 2014) or the fit on
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Table 4. Spearman’s rank correlation coefficients, r, between two sets of
deviations from the best-fitting scaling relation at fixed mass and, in paren-
thesis, the associated null-hypothesis values. In bold, we indicate the values
above 0.5 with a sufficiently low (below 10−4) null-hypothesis value.

z = 0 z = 1 z = 2

NR

δ(Tsl); δ(Mg) 0.20 (1 × 10−1) 0.50 (3 × 10−6) 0.63 (2 × 10−5)
δ(YX); δ(Mg) 0.40 (2 × 10−3) 0.61 (1 × 10−9) 0.75 (3 × 10−8)
δ(LX); δ(Mg) 0.52 (2 × 10−5) 0.42 (8 × 10−5) 0.31 (5 × 10−2)
δ(YX); δ(Tsl) 0.96 (3 × 10−35) 0.98 (0) 0.96 (2 × 10−22)
δ(Tsl); δ(LX) 0.34 (8 × 10−3) 0.59 (6 × 10−9) 0.59 (7 × 10−5)
δ(YX); δ(LX) 0.42 (8 × 10−4) 0.61 (1 × 10−9) 0.57 (1 × 10−4)

CSF

z = 0 z = 1 z = 2
δ(Tsl); δ(Mg) 0.33 (9 × 10−3) 0.53 (3 × 10−7) 0.76 (2 × 10−8)
δ(YX); δ(Mg) 0.72 (4 × 10−11) 0.75 (4 × 10−16) 0.88 (8 × 10−14)
δ(LX); δ(Mg) 0.73 (4 × 10−11) 0.67 (3 × 10−12) 0.76 (2 × 10−8)
δ(YX); δ(Tsl) 0.87 (2 × 10−19) 0.94 (7 × 10−41) 0.96 (1 × 10−21)
δ(Tsl); δ(LX) 0.40 (2 × 10−3) 0.59 (5 × 10−9) 0.69 (1 × 10−6)
δ(YX); δ(LX) 0.65 (2 × 10−8) 0.66 (8 × 10−12) 0.72 (3 × 10−7)

AGN

z = 0 z = 1 z = 2
δ(Tsl); δ(Mg) 0.40 (2 × 10−3) 0.24 (4 × 10−2) 0.09 (6 × 10−1)
δ(YX); δ(Mg) 0.71 (5 × 10−10) 0.68 (2 × 10−11) 0.72 (6 × 10−7)
δ(LX); δ(Mg) 0.64 (5 × 10−8) 0.62 (3 × 10−9) 0.64 (3 × 10−5)
δ(YX); δ(Tsl) 0.90 (1 × 10−21) 0.84 (3 × 10−21) 0.67 (7 × 10−6)
δ(Tsl); δ(LX) 0.54 (1 × 10−5) 0.52 (2 × 10−6) 0.16 (3 × 10−1)
δ(YX); δ(LX) 0.66 (2 × 10−8) 0.72 (6 × 10−13) 0.50 (2 × 10−3)

the scaling relations is simultaneously applied to all objects (e.g.
Hilton et al. 2012; Giles et al. 2016).

In other words, either method assumes a constant slope. To
warn about their application, we focus on the AGN M–Mg and
L–M relations because they exhibit the largest slope variation, and
therefore they are the best suited to put in evidence a possible
misinterpretation of the data. We follow the second observational
approach that is the most used and we build a sample that includes
the AGN-simulated clusters at all redshifts, from z = 0 to z = 2. We
fit the combined sample of about 600 objects adopting the equation
(11) where the evolution factor γ , the slope β, and the normalization
C are all free to vary, while E(z) is represented by a vector whose
length is equal to the number of clusters and each element is com-
puted at the redshift of the corresponding object. The best-fitting
parameters and their 1σ errors are reported in Table 5.

In Fig. 11, we show the differences between this best-fitting rela-
tion (of the combined sample) and the relations that we previously
presented in Tables 2 and 3 and that were evaluated in single red-
shift bins. The brown line is for the comparison with the z = 2 bin
and it highlights how much the high-z clusters are misrepresented
by enforcing a single slope across all redshifts. The most severe
differences are present for the L–M relation where an offset affects
not only the highest redshift bins but also the local measures. The
M–Mg, whose β value is mostly constant up to redshift 1, presents
significant changes only at z = 1.5.

For the cases where the slope does not substantially vary with time
(in terms of sigma or absolute value) such as M–T, M–YX, and L–T,
the evolution in their normalization is a well-defined measurement
and the usage of a unique fitting function is well justified.11 In

11 All temperatures are measured after excluding the core region. With the
inclusion of the cores, the difference in the normalization, C, of the mass–

particular, we find that the predicted slope and evolution of both
relations are close to the SS expectations (see Table 1) with the
slight tendency of less negative evolution than SS in the M–T relation
(γ = −0.9 versus γ SS = −1) and more positive evolution than SS
in the L–T relation (γ = 1.2 versus γ SS = 1).

The results for the L–T relation from our AGN sample, E(z)1.28 ± 0.12

and β = 2.88, are in line with a positive evolution E(z)1.64 ± 0.77 as-
sociated with the slope β = 3.08 ± 0.15 reported by Giles et al.
(2016). This result is, however, in contrast with the measurements
of the bolometric luminosity, Lbol ∼ 5–10 × 1044 erg s−1 of ISCS
J1438+3414 at z = 1.4 and JKCS041 at z = 2.2 by Andreon,
Trinchieri & Pizzolato (2011), of XDCP J0044.0−2033 at z = 1.579
by Tozzi et al. (2015), and of IDCS J1426.5+3508 at z = 1.75 by
Brodwin et al. (2016). If local relations and SS evolution are as-
sumed, all these objects appeared underluminous for their measured
temperature (4.9+3.4

−1.6 keV, 7.3+6.7
−2.6 keV, 6.7+1.3

0.9 keV, and 7.6+8.7
−1.9 keV,

respectively) or vice versa hotter for their luminosity. It is difficult
to make a significant comparison due to the low number of objects,
the large error bars, and the impossibility to evaluate any selection
effect. It is, nevertheless, interesting to notice that all these cases are
exceptionally massive and almost twice as hot as our most massive
clusters at z ≥ 1.5.

6 C O M PA R I S O N W I T H T H E L I T E R AT U R E

In this section, we compare our results on the evolution of scal-
ing relations to some previous numerical works after noting that a
straightforward comparison is often difficult for the differences in
terms of cosmological model, implementation of the ICM physics,
and sample selection.

A number of studies have employed simulations to investigate
the redshift trend of scaling relations, such as Short et al. (2010),
Stanek et al. (2010), Fabjan et al. (2011), Battaglia et al. (2012),
Pike et al. (2014), Sembolini et al. (2014), Le Brun et al. (2017),
and Barnes et al. (2017).

Our results are consistent with Fabjan et al. (2011), who found no
significant redshift trend in the slopes of M–Mg, M–Tmw and M–YX

up to z = 1. The samples analysed in that paper were very similar to
ours even if we adopted here a more sophisticated implementation
of the AGN modelling and of the hydrodynamic code.

Planelles et al. (2017) showed that in our sample there is little
difference between YX and YSZ. Therefore, the results presented in
this paper are also in line with Battaglia et al. (2012), Pike et al.
(2014), and Sembolini et al. (2014), who found that the YSZ–M slope
remains almost constant up to z = 1.

As remarked in Gaspari et al. (2014), AGN feedback is a purely
inside-out process affecting primarily the small radii; for massive
systems, the binding energy is so large that only the inner core is
affected (<0.1R500), thus leaving the integrated properties within
R500 essentially unaltered. In the cluster regime, it is thus not sur-
prising that there is no substantial evolution in the global properties.
Comparing with Gaspari et al. (2014) models, our dominant AGN
feedback appears to be gentle, rather than strong and impulsive as
a quasar blast, further limiting major temporal fluctuations.

temperature relations is below 2 per cent for both relations (Tmw and Tsl) with
the exception of −8 per cent and +7 per cent variation on the normalization
of the M–Tsl relation at z = 1.5 and z = 2, respectively. The differences
in the normalization of the L–Tsl relation reach 7 and 10 per cent at z = 0
and 1.5, respectively; otherwise, they are smaller than 5 per cent. In all
circumstances, they are consistent within 1σ with the values of Table 3.

MNRAS 474, 4089–4111 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/474/3/4089/4631156
by Universita' degli Studi di Trieste, Gian Luigi Granato
on 07 June 2018



Evolution of X-ray scaling relations 4107

Table 5. Best-fitting parameters from the Bayesian fit of equation (11) to the AGN data in the redshift range [0–2]
with γ free to vary.

log10C β γ σ

M–Mg 13.932 ± 0.002 0.916 ± 0.002 −0.047 ± 0.011 0.025 ± 0.001
M–Tmw 14.0112 ± 0.003 1.623 ± 0.003 −0.902 ± 0.017 0.045 ± 0.001
M–Tsl 14.004 ± 0.005 1.661 ± 0.005 −0.847 ± 0.027 0.069 ± 0.002
M–YX 14.058 ± 0.002 0.597 ± 0.002 −0.314 ± 0.013 0.032 ± 0.001
L–Tsl 0.044 ± 0.012 2.877 ± 0.012 1.161 ± 0.063 0.162 ± 0.005
L–M 0.058 ± 0.015 1.673 ± 0.015 2.520 ± 0.077 0.176 ± 0.005

Figure 11. We report, for the AGN sample, the ratio for the M–Mg (left) and L–M (right) between the scaling relations of the combined sample derived via
equation (11) (best-fitting parameters in Table 5) and the scaling relations previously found in single redshift bins (best-fitting parameters in Tables 2 and 3).
The shaded area shows the 68.3 per cent uncertainties for two cases: z = 0 (cyan) and z = 2 (grey). The red, blue, green, magenta, and brown lines refer to the
specific comparison at the z bins equal to z = 0, 0.5, 1, 1.5, and 2, respectively.

Further comparing with Pike et al. (2014), we acknowledge an
opposite trend with respect to the slope evolution of the M–Tsl

relation: while it is decreasing in our case they find a steeper slope
at higher redshifts for all physics that they explored including the
non-radiative case. This implies that their small mass objects are
hotter than ours (at fixed mass); in the paper, the authors suggest that
their results might be affected by their sample that was composed by
only 30 objects randomly selected to equally populate five logarithm
mass bins in the range 1014 < (M200/h−1 M�) < 1015.

With respect to Le Brun et al. (2017), we already detailed some
comparisons regarding the NR case and stressed that we agree with
their results. The only exception is the evolution that they show
for the M–Tsl relation. In their cosmological box, they also obtain
colder groups at z = 1.5 with respect to z = 0 at fixed total mass
but they do detect only a small change in the M–T relation slope.
This could be due to the position of their most massive systems at
z = 2 that apparently are also colder than their local counterpart.
The difference between ours and their results could be ascribed
to the hydrodynamical code or even to the way of measuring the
spectroscopic-like temperature or a different selection (see below).

It is more interesting, here, to stress similarities and differences
between the AGN models especially on the M–Mg relation since all

the other relations can be related to this and the already discussed
M–T relation. The M–Mg best-fitting scaling relation proposed by Le
Brun et al. (2017) passes through the points of our AGN set; however,
their conclusions are apparently opposite than ours since they claim
an opposite trend for the slope (note that their figure is similar to ours
but they consider the Mg–M relation instead of the M–Mg one). This
seemingly paradox is due to a different choice of sample selection.
In that paper, the authors selected all objects with mass above a
certain threshold, M500 > 1013 M�, which is significantly smaller
than our lower limit at any redshift. By including the smallest groups
at z = 0, the authors are sampling the stable population of clusters
together with the population of small groups that exhibit a quickly
decline in gas fraction with total mass (see Fig. 7). At z = 0,
their overall M–Mg slope is, therefore, shallower than ours, as the
smallest-mass systems weight significantly more in number and
dominate in the fitting process. Indeed, both their AGN models
have βMg ∼ 0.65−0.7 while our value of β–Mg is 0.93. At z > 1,
the majority of their objects are characterized by a milder Mg–
M relation because the least massive objects retain more gas than
the z = 0 smallest groups and the most massive objects are not
yet formed at those times. On the other hand, in our AGN sample
we always consider the most massive objects at each redshift, this
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implies that the mass range selected changes with time. Our z = 2
sample is mostly on the shallower part of the M–Mg relation while
the opposite is true for the z = 0 sample.

Concerning the evolution of the normalization, we are consistent
with Le Brun et al. (2017) on the positive evolution of the M–Tmw

relation, which is caused by the incomplete thermalization of high-z
clusters. Our result on the positive evolution of the L–Tsl also agrees
with the work from Barnes et al. (2017). Finally, our study confirms
that there is no significant trend in the intrinsic scatter of the non-
luminosity scaling relations as found in most studies in literature
(but see Le Brun et al. 2017). For the L–T, Barnes et al. (2017)
also found that the scatter in the luminosity decreases towards high
redshifts. The similar trend for the L–M, in agreement with our
result, is also found in their study, yet less significant.

7 C O N C L U S I O N S

In this paper, we address the evolution of scaling relations in simu-
lated galaxy clusters. Our study is based on an extended set of cos-
mological hydrodynamic simulations of clusters. The simulations
are carried out with the GADGET-3 code with an upgraded implemen-
tation of SPH and including both stellar and AGN feedback. We
selected all clusters identified within 29 Lagrangian regions above
a mass limit whose redshift dependence mimics that of the SPT
selection function (Bleem et al. 2015).

Our sample of simulated clusters, by construction, is neither
volume- nor mass-limited. For this reason, we stress that our re-
sults are intended to be read as a discussion of general trends rather
than providing as a precise list of fitting parameters for scaling re-
lations and corresponding scatter. We first examine the reliability
of our newly performed AGN runs by comparing our predictions to
those derived from local- (z < 0.25) and intermediate-redshift (0.42
≤ z ≤ 0.6) observations. Subsequently, we investigate the evolution
of six scaling relations: M–Mg, M–Tmw, M–Tsl, M–YX, L–Tsl, and
L–M by comparing the AGN model with two other parallel runs per-
formed with non-radiative physics or with the inclusion of radiative
cooling, star formation, and stellar feedback, but not AGN feedback.
We characterize how the features of the scaling relations (namely
the slope, intrinsic scatter, and normalization) and the covariance
matrix between couples of signals change as a function of redshift.
We summarize in the following our main results.

(i) The scaling relations from simulations at low and intermediate
redshifts reproduce reasonably well the observed M–Mg, M–YX, and
L–M relations as well as the observed diversity between CC and
NCC clusters in the L–T relation. However, our AGN model produces
lower temperatures than observed resulting in a normalization shift
of ∼10 per cent for the M–T relation in comparison to observations.
A shift of 30 per cent is also present in the luminosity mostly due
to the sample selection.

(ii) From z = 0 and z = 1, we do not detect any appreciable
change of the slopes of the relations with the exclusion of a 4 per
cent of the βYX for the NR model and an ∼10–15 per cent change of
βTsl for the NR and CSF runs, βLT for the CSF and AGN simulations and
βLM for the AGN set).

(iii) At higher redshifts, however, all the relations exhibit some
degree of evolution with the only exception being the luminosity
relations and the M–Mg relation of the NR models which remains
unchanged. In the AGN runs, the gas slope, βMg , at z = 2 is reduced by
∼10 per cent with respect to the present-time value. This is caused
by the effect of intense high-z AGN activity that has more impact on
the lowest mass systems, more numerous in the high-redshift bins

for the applied SZ-like selection. At z = 2, a shallower slope is found
also for the M–T relation that declines by ∼15 per cent with respect
to z = 0. The evolution of the M–Tsl is not due to the selection, but
depends on the fact that the smallest groups have a systematically
lower temperature due to their incomplete thermalization at z = 2.
The decrease of YX (∼8 per cent) and increase of L–M (∼20 per
cent) slopes can be explained by analytically decomposing their
slopes in the two contributors: βMg and βTsl . Radiative processes
reduce the hot gas content by removing the coldest and densest gas
to produce stars. The impact is stronger for groups. This implies
that the M–Mg and M–T relations deviate in different direction from
the self-similarity scalings. When combined in the YX parameter,
the SS behaviour is recovered (Kravtsov et al. 2006).

(iv) We do not find any significant redshift trend of the scatter
in any of the mass-proxy relations. Consistent with previous theo-
retical studies, the M–Mg relation has the smallest scatter. Instead,
the scatter of the two luminosity relations, L–Tsl and L–M, is the
largest, over the redshift range [0–2]. The L–M scatter increases
with the decrease of redshift enlightening the significant impact on
the X-ray luminosity by recent major mergers (Torri et al. 2004).
When a merger occurs, the luminosity registers a permanent in-
crease (Rowley, Thomas & Kay 2004). The scatter of all relations
can be well described by a lognormal distribution whose widths are
mostly constant over the redshift up to z ∼ 1.5.

(v) The inclusion of the core, defined as the inner sphere within
0.15 R500, does not significantly influence the best-fitting values of
the slopes and normalizations which are consistent within 1σ to the
respective values obtained in the core-excised sample. The scatter,
however, grows by 15–20 per cent in the M–Tsl relation and by
20–40 per cent in the L–Tsl relation.

(vi) In the AGN run, no correlation is evident between the pair
of deviation in Mg and Tsl at fixed mass and at all redshift. No
correlation is registered also between L and Tsl at z = 2. In all
other cases, positive correlations are found with Pearson coefficients
always greater than 0.4.

(vii) Regarding the study of the evolution of the normalization,
we stress that in situations where the slopes vary with redshift,
such as the M–Mg and L–M in the AGN runs, the evolution on the
normalization cannot be uniquely established since the trend will
depend on the pivotal point used to measure it. Owing to the red-
shift dependence of slope and normalization of scaling relations,
we warn against the fitting with a single relation data for objects
distributed over a wide redshift range. On the other hand, we find
that the M–Tmw and L–Tsl relations, whose slopes have a milder or
no evolution, exhibit a negative and positive evolution of the nor-
malization (respectively, γ = −0.9 and γ = 1.2) for the redshift
range [0–2], with values for the evolution parameters in line with
recent observational studies and close to the SS predictions.

(viii) Overall, we confirm that the M–YX relation evaluated from
z = 0 to z = 1 is best suited for cosmological studies for the com-
bination of its properties: in that redshift range, the slope does not
vary, the evolution of the normalization can be robustly determined,
the scatter is small and constant over time and most importantly the
relation is solid, the closest to a SS behaviour, independent from the
source of feedback either from star, SN, or AGNs (but see Le Brun
et al. 2017, for a different result).

On the basis of our analysis of the intrinsic variations of simu-
lated clusters, we also conclude that pushing the study of the scaling
relations to higher redshifts does not seem to be an advantage be-
cause the intense AGN activity, peaking at z ∼ 2, could have a
significant impact and produce deviations from the SS behaviour
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at redshifts z > 1. This cosmic epoch is still almost an unexplored
territory where the predictions of higher resolution simulations can
help in designing observational strategies for future missions. From
an observational perspective, the scaling relations are expected to
be calibrated by measuring the mass from weak-lensing analyses
(Marrone et al. 2012; Hoekstra et al. 2015; Sereno & Ettori 2015b;
Mantz et al. 2016). However, even if this procedure is not expected
to introduce a significant averaged mass bias over a large sample
of objects (Meneghetti et al. 2010; Becker & Kravtsov 2011; Ra-
sia et al. 2012), it will likely enlarge the scatter of the relations
(Sereno & Ettori 2015a) since the lensing mass of single clusters
can be both underestimated and overestimated by a considerable
amount. Finally, attention will have to be devoted to clusters close
to the flux limit threshold (Nord et al. 2008). Certainly, more efforts
will need to be dedicated to reducing the uncertainties on the mass
calibration down to the few per cent level.
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2014, MNRAS, 439, 588

Biffi V. et al., 2016, ApJ, 827, 112
Biffi V. et al., 2017, MNRAS, 468, 531
Bleem L. E. et al., 2015, ApJS, 216, 27
Bonafede A., Dolag K., Stasyszyn F., Murante G., Borgani S., 2011,

MNRAS, 418, 2234
Borgani S., Guzzo L., 2001, Nature, 409, 39
Borgani S., Kravtsov A., 2011, Adv. Sci. Lett., 4, 204
Borm K., Reiprich T. H., Mohammed I., Lovisari L., 2014, A&A, 567,

A65
Branchesi M., Gioia I. M., Fanti C., Fanti R., 2007, A&A, 472, 739
Brodwin M., McDonald M., Gonzalez A. H., Stanford S. A., Eisenhardt P.

R., Stern D., Zeimann G. R., 2016, ApJ, 817, 122
Bryan G. L., Norman M. L., 1998, ApJ, 495, 80
Clerc N. et al., 2014, MNRAS, 444, 2723
Dai X., Bregman J. N., Kochanek C. S., Rasia E., 2010, ApJ, 719, 119
Dolag K., Borgani S., Murante G., Springel V., 2009, MNRAS, 399, 497
Dolag K., Komatsu E., Sunyaev R., 2016, MNRAS, 463, 1797
Eckert D. et al., 2016, A&A, 592, A12
Erben T., Hildebrandt H., Miller L., van Waerbeke L., Heymans C., Hoekstra

H., Kitching T. D., Mellier Y., 2013, MNRAS, 433, 2545
Ettori S., 2013, MNRAS, 435, 1265
Ettori S., 2015, MNRAS, 446, 2629
Ettori S., Rasia E., Fabjan D., Borgani S., Dolag K., 2012, MNRAS, 420,

2058
Evrard A. E., Arnault P., Huterer D., Farahi A., 2014, MNRAS, 441, 3562
Fabian A. C., Crawford C. S., Edge A. C., Mushotzky R. F., 1994, MNRAS,

267, 779
Fabjan D., Borgani S., Tornatore L., Saro A., Murante G., Dolag K., 2010,

MNRAS, 401, 1670
Fabjan D., Borgani S., Rasia E., Bonafede A., Dolag K., Murante G.,

Tornatore L., 2011, MNRAS, 416, 801
Gaspari M., Sa̧dowski A., 2017, ApJ, 837, 149
Gaspari M., Brighenti F., Temi P., Ettori S., 2014, ApJ, 783,

L10
Gaspari M., Temi P., Brighenti F., 2017, MNRAS, 466, 677
Giles P. A. et al., 2016, A&A, 592, A3
Giles P. A. et al., 2017, MNRAS, 465, 858
Giodini S., Lovisari L., Pointecouteau E., Ettori S., Reiprich T. H., Hoekstra

H., 2013, Space Sci. Rev., 177, 247
Haardt F., Madau P., 2001, in Neumann D. M., Tran J. T. V., eds, Clusters

of Galaxies and the High Redshift Universe Observed in X-rays, Re-
cent results of XMM-Newton and Chandra, XXXVIth Rencontres de
Moriond, XXIst Moriond Astrophysics Meeting, Savoie, France, p. 64

Hahn O., Martizzi D., Wu H. Y., Evrard A. E., Teyssier R., Wechsler R. H.,
2017, MNRAS, 470, 166

Heymans C., Van Waerbeke L., Miller L., Erben T., Hildebrandt H., Hoekstra
H., Kitching T. D., Mellier Y., 2012, MNRAS, 427, 146

Hilton M., Romer A. K., Kay S. T., Mehrtens N., Lloyd-Davies E. J., Thomas
P. A., Short C. J., Mayers J. A., 2012, MNRAS, 424, 2086

Hoekstra H., Herbonnet R., Muzzin A., Babul A., Mahdavi A., Viola M.,
Cacciato M., 2015, MNRAS, 449, 685

Hudson D. S., Mittal R., Reiprich T. H., Nulsen P. E. J., Andernach H.,
Sarazin C. L., 2010, A&A, 513, A37

Isobe T., Feigelson E. D., Akritas M. G., Babu G. J., 1990, ApJ, 364, 104
Ivezic Z., Tyson J. A. et al. LSST Collaboration, 2008, preprint

(arXiv:0805.2366)

MNRAS 474, 4089–4111 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/474/3/4089/4631156
by Universita' degli Studi di Trieste, Gian Luigi Granato
on 07 June 2018

http://arxiv.org/abs/0805.2366


4110 N. Truong et al.

Kaiser N., 1986, MNRAS, 222, 323
Kay S. T., Peel M. W., Short C. J., Thomas P. A., Young O. E., Battye R. A.,

Liddle A. R., Pearce F. R., 2012, MNRAS, 422, 1999
Kelly B. C., 2007, ApJ, 665, 1489
Khatri R., Gaspari M., 2016, MNRAS, 463, 655
Komatsu E., Smith K. M., Dunkley J., Bennett C. L., Gold B., Hinshaw G.,

Jarosik N., Larson D., 2011, ApJS, 192, 18
Kravtsov A. V., Vikhlinin A., Nagai D., 2006, ApJ, 650, 128
Laureijs R. et al., 2011, preprint (arXiv:1110.3193)
Le Brun A. M. C., McCarthy I. G., Schaye J., Ponman T. J., 2014, MNRAS,

441, 1270
Le Brun A. M. C., McCarthy I. G., Schaye J., Ponman T. J., 2017, MNRAS,

466, 4442
Lieu M. et al., 2016, A&A, 592, A4
McCarthy I. G., Schaye J., Bower R. G., Ponman T. J., Booth C. M., Dalla

Vecchia C., Springel V., 2011, MNRAS, 412, 1965
McDonald M. et al., 2013, ApJ, 774, 23
McNamara B. R., Nulsen P. E. J., 2012, New J. Phys., 14, 055023
Mahdavi A., Hoekstra H., Babul A., Bildfell C., Jeltema T., Henry J. P.,

2013, ApJ, 767, 116
Mahdavi A., Hoekstra H., Babul A., Bildfell C., Jeltema T., Henry J. P.,

2014, ApJ, 794, 175
Mantz A. B. et al., 2016, MNRAS, 463, 3582
Markevitch M., 1998, ApJ, 504, 27
Marrone D. P. et al., 2012, ApJ, 754, 119
Martizzi D., Mohammed I., Teyssier R., Moore B., 2014, MNRAS, 440,

2290
Maughan B. J., 2014, MNRAS, 437, 1171
Maughan B. J., Giles P. A., Randall S. W., Jones C., Forman W. R., 2012,

MNRAS, 421, 1583
Maughan B. J., Giles P. A., Rines K. J., Diaferio A., Geller M. J., Van Der

Pyl N., Bonamente M., 2016, MNRAS, 461, 4182
Mazzotta P., Rasia E., Moscardini L., Tormen G., 2004, MNRAS, 354, 10
Menanteau F. et al., 2013, ApJ, 765, 67
Meneghetti M., Rasia E., Merten J., Bellagamba F., Ettori S., Mazzotta P.,

Dolag K., Marri S., 2010, A&A, 514, A93
Merloni A. et al., 2012, preprint (arXiv:1209.3114)
Muldrew S. I., Hatch N. A., Cooke E. A., 2015, MNRAS, 452, 2528
Murray S. G., Power C., Robotham A. S. G., 2013, Astron. Comput., 3, 23
Nagai D., Vikhlinin A., Kravtsov A. V., 2007a, ApJ, 655, 98
Nagai D., Kravtsov A. V., Vikhlinin A., 2007b, ApJ, 668, 1
Nord B., Stanek R., Rasia E., Evrard A. E., 2008, MNRAS, 383, L10
Pierre M., Pacaud F., Adami C., Alis S., Altieri B., Baran N., Benoist C.,

Birkinshaw M., 2016, A&A, 592, A1
Pike S. R., Kay S. T., Newton R. D. A., Thomas P. A., Jenkins A., 2014,

MNRAS, 445, 1774
Planelles S., Borgani S., Dolag K., Ettori S., Fabjan D., Murante G.,

Tornatore L., 2013, MNRAS, 431, 1487
Planelles S., Borgani S., Fabjan D., Killedar M., Murante G., Granato G. L.,

Ragone-Figueroa C., Dolag K., 2014, MNRAS, 438, 195
Planelles S., Schleicher D. R. G., Bykov A. M., 2015, Space Sci. Rev., 188,

93
Planelles S. et al., 2017, MNRAS, 467, 3827
Poole G. B., Babul A., McCarthy I. G., Fardal M. A., Bildfell C. J., Quinn

T., Mahdavi A., 2007, MNRAS, 380, 437
Puchwein E., Sijacki D., Springel V., 2008, ApJ, 687, L53
Ragagnin A., Dolag K., Biffi V., Cadolle Bel M., Hammer N. J., Krukau A.,

Petkova M., Steinborn D., 2017, Astron. Comput., 20, 52
Rasia E., Tormen G., Moscardini L., 2004, MNRAS, 351, 237
Rasia E., Mazzotta P., Evrard A., Markevitch M., Dolag K., Meneghetti M.,

2011, ApJ, 729, 45
Rasia E. et al., 2012, New J. Phys., 14, 5018
Rasia E. et al., 2015, ApJ, 813L, 17
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A P P E N D I X : D E C O M P O S I T I O N
O F T H E SL O P E S O F C O M P O S I T E S I G NA L S

In this section, we derive the features of M − YX, L − Tsl, and L − M
based on the two fundamental relations: M − Mg and M − Tsl:

M ∝ E(z)γMg × M
βMg
g → Mg ∝ E(z)

− γMg
βMg × M

1
βMg (A1)

M ∝ E(z)γTsl × Tsl
βTsl → Tsl ∝ E(z)

− γTsl
βTsl × M

1
βTsl . (A2)

The M − YX relation. By definition the YX is the product of gas mass
and temperature, and thus

YX = Mg × Tsl. (A3)

From equations (A1)–(A3), one deduces

YX ∝ M
1

βMg × E(z)
− γMg

βMg × M
1

βTsl × E(z)
− γTsl

βTsl . (A4)
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Writing M − YX in general form

M = CYX × E(z)γYX ×
(

YX

YX0

)βYX

, (A5)

the slope and power of evolution of the M − Y are given by

βYX = 1

1/βMg + 1/βTsl

, (A6)

γYX = γMg/βMg + γTsl/βTsl

1/βMg + 1/βTsl

. (A7)

The L − Tsl relation. The general form of L − Tsl is given by

L = CLT × E(z)γLT ×
(

Tsl

T0

)βLT

. (A8)

Recalling that L is related to the total mass and temperature via
equation (8)

L ∝ E(z)2f 2
g × M × T

1/2
sl

∝ E(z)2 × M2
g

M
× T

1/2
sl

∝ E(z)2 × E(z)
− 2γMg

βMg × M
2

βMg
−1 × T

1/2
sl . (A9)

In the last derivation, we use equation (A1) to rewrite Mg in terms
of M. In turn, by substituting M in terms of Tsl via equation (A2)
one obtains

L ∝ E(z)
2

(
1− γMg

βMg

)
× E(z)

γTsl ×
(

2
βMg

−1

)
× T

βTsl

(
2

βMg
−1

)
+ 1

2

sl

∝ E(z)
2

(
1− γMg

βMg

)
+γTsl

(
2

βMg
−1

)
× T

βTsl

(
2

βMg
−1

)
+ 1

2

sl . (A10)

By comparing equation (A10) to equation (A8), one deduces

βLT = βTsl

(
2

βMg

− 1

)
+ 1

2
, (A11)

γLT = 2

(
1 − γMg

βMg

)
+ γTsl

(
2

βMg

− 1

)
. (A12)

The L − M relation. We define the general form of L − M as

L = CLM × E(z)γLM ×
(

M

M0

)βLM

. (A13)

In equation (A9), we rewrite Tsl in term of M via equation (A2) and
obtain

L ∝ E(z)2 × E(z)
−2γMg
βMg × M

2
βMg

−1 × E(z)
− γTsl

2βTsl × M
1

2βTsl

L ∝ E(z)
2

(
1− γMg

βMg

)
− γTsl

2βTsl × M
2

βMg
+ 1

2βTsl
−1

. (A14)

From the last equation, we can derive the slope and evolution of the
LM relation given as

βLM = 2

βMg

+ 1

2βTsl

− 1, (A15)

γLM = 2

(
1 − γMg

βMg

)
− 1

2

γTsl

βTsl

. (A16)
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