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A B S T R A C T

Multivariate calibration coupled to RP-HPLC with diode array detection (HPLC-DAD) was applied to the iden-
tification and the quantitative evaluation of the short chain organic acids (malic, oxalic, formic, lactic, acetic,
citric, pyruvic, succinic, tartaric, propionic and α-cetoglutaric) in fermented food. The goal of the present study
was to get the successful resolution of a system in the combined occurrence of strongly coeluting peaks, of
distortions in the time sensors among chromatograms, and of the presence of unexpected compounds not in-
cluded in the calibration step. Second-order HPLC-DAD data matrices were obtained in a short time (10 min) on
a C18 column with a chromatographic system operating in isocratic mode (mobile phase was 20 mmol L−1

phosphate buffer at pH 2.20) and a flow-rate of 1.0 mL min−1 at room temperature. Parallel factor analysis
(PARAFAC) and unfolded partial least-squares combined with residual bilinearization (U-PLS/RBL) were the
second-order calibration algorithms select for data processing. The performance of the analytical parameters was
good with an outstanding limit of detection (LODs) for acids ranging from 0.15 to 10.0 mmol L−1 in the vali-
dation samples. The improved method was applied to the analysis of many dairy products (yoghurt, cultured
milk and cheese) and wine. The method was shown as an effective means for determining and following acid
contents in fermented food and was characterized by reducibility with simple, high resolution and rapid pro-
cedure without derivatization of analytes.

1. Introduction

The search for better chromatographic conditions in isocratic mode,
particularly as regards the analysis especially the ones that involve
analysis time and mobile phase composition, establishes a well-defined
limit on the analytical resolution. In general, shorter analysis times for
relatively complex mixtures causes little resolution, leading to analy-
tical methods which produces poor selectivity. Moreover, the great
number of compounds to be separated as well as the similarities among
them also contribute to this poor performance. This in turn is amplified
by the complexity of the matrices under study, mainly wines for their
polyphenols that are usually important interfering. An alternative to
generate good resolutions in short analysis times is the collection of
multi-dimensional chromatographic information and the data proces-
sing by advanced chemometric algorithms. A quick overview in the
latest scientific productions shows that there is abundant evidence on
the successful combination of chemometric models with several

chromatographic techniques, either for quantitative or qualitative
purposes [1–9]. In all cases, giving a chemometric approach to the
developed chromatographic methodology makes it possible to resolve
analytes whose bands or peaks have similar or even identical retention
times [10,11]. This is possible because the chromatographic signal
becomes selective, at least from a mathematical point of view, for each
of the analytes involved, due to a suitable multivariate analysis [10,11].
Moreover, it is conceivable to quantify the analytes of interest even in
the presence of other components not included in the calibration step,
provided that the instrumental data has a matrix structure [12]. This
property is known as “the second-order advantage”, and its unmistak-
able impact on the different areas of analytical chemistry accounts for
the growing efforts for the development of multi-way analytical data
[12]. Examples from recent literature on quantitations aided by the
second-order advantage include the determination of sex hormones in
environmental waters and sediments [13], agrochemical-residue in
vegetables [14], urea herbicides in water and soil samples [15],
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endocrine disruptors in beverages [16] and polycyclic aromatic hy-
drocarbons in water [17].

As the different chemometric algorithms reach the second order
advantage in several ways, it becomes necessary to take into account
certain considerations to select the most convenient chemometric
strategy [18]. A brief but illustrative classification of the most wide-
spread second-order models can be established in the following list: (1)
alternating least-squares (ALS) models, such as multivariate curve re-
solution–alternating least-squares (MCR–ALS) [19] and parallel factor
analysis (PARAFAC) [20] or PARAFAC2 [21], (2) latent structured
models, such as unfolded partial least-squares (U-PLS) [22], the term
‘unfolded’ implies vectorizing the data matrices before mathematical
decomposition, and multi-way PLS (N-PLS) [23], both combined with
residual bilinearization (RBL) [24,25], and (3) eigenvector–eigenvalue
models [26]. The first point to note is that, although all the listed
methods can exploit the second-order advantage, only some of them
tolerate the presence of chromatographic artifacts. In second order li-
quid chromatography, the data are considered trilinear when each of
the chemical compounds that constitute it presents a unique profile in
all samples, in both spectral and temporal dimensions. Nonetheless,
successive chromatographic runs can be affected by several experi-
mental conditions, which cause a distortion effect on the data, known as
“loss of trilinearity” [18]. MCR-ALS and PARAFAC2 models can, in
principle, process non-rilinear data with relative success. However, a
recent work shows that for systems with many analytes and inter-
ferents, results may not be as satisfactory [27]. On the other hand, it is
possible to align the analyte peaks and restore the lost trilinearity in
order to obtain a better analytical performance. Numerous methods are
available to perform such alignment, which are distinguished in terms
of their ability to perform the alignment process in the presence or
absence of interferents. The first group include the rank alignment [28],
and a suitably initialized and constrained PARAFAC alignment [29],
among others. In the second group, on the other hand, the multi-wa-
velength correlation optimized warping (COW) stands out [30,31]. For
all the above reasons, and on the basis that the samples to be analyzed
are likely to contain interferents not considered in the calibration step,
it was decided to pre-process the data with PARAFAC alignment to
restore the trilinearity in order to obtain more satisfactory results in the
subsequent chemometric treatment.

In this work, collected data from high performance liquid chroma-
tography with diode array detection (HPLC-DAD) were processed by
the PARAFAC and U-PLS/RBL algorithms. The behavior towards the
quantitation of the following organic acids in dairy products: oxalic
(OXA), citric (CIT), formic (FOR), succinic (SUC), pyruvic (PYR), acetic
(ACE), tartaric (TAR), propionic (PRO), lactic (LAC), α-ketoglutaric
(CET) and malic (MAL) was thoroughly discussed. Dairy products
contain particular organic acids, those naturally present in raw milk
(CIT, orotic and uric) and those originated from hydrolysis of fat acid
(ACE, butyric), additional acidification (CIT and LAC) or bacterial fer-
mentation metabolisms (LAC, ACE, PYR, PRO and FOR). Table 1 sum-
marizes the main organic acids and the concentration range found in
some fermented foods (dairy products and wines) [32–36]. Also, they
are the major products of carbohydrate catabolism of lactic acid bac-
teria (LAB). Their ability to produce acids with resulting pH reduction is
the major factor in milk fermentation [37]. Thus, in both dairy products
and fermented food in general, acidic conditions avoid the growth and
viability of spoilage and pathogenic microorganisms, which constitute
one of the main functional advantage, preserving the food safety and
quality. However, it should be noted that the decrease in pH and the
type of organic acids generated by LAB produce the effective inhibition
of undesirable microorganisms [38]. The quantitative determination of
organic acids is important to monitor bacterial growth and activity and
for nutritional reasons. Organic acids are also important as they con-
tribute to the flavour and aroma of dairy products [39]. In this research
work, representative compounds conforming the core organic acids
normally present in the fermented foods mentioned above were studied.

Most methods developed to analyse organic acids in dairy products
are HPLC methods that employ ion-exchange columns [40–42]. In
general, these methods have some disadvantages: they use high oper-
ating temperatures at about 60 °C and expensive ion-exchange columns
[40]. Also, co-elution of some of the organic acids and overlapping
peaks have been frequently reported [41]. In a preceding work, the
currently studied organic acids were chromatographically resolved with
full resolution using ternary solvent gradient elution and reverse-phase
columns, requiring approximately 18 min, although such methods
present serious difficulties when quantifying the analytes of interest in
the presence of interferents [43]. On the other hand, under the cur-
rently discussed isocratic conditions, the same compounds in the same
type of mixtures eluted in less than 15 min using only phosphoric acid
as mobile phase and the second-order advantage. Thus, a reduction in
the elution time and consequently in the solvent consumption was
achieved when the isocratic mode was used. On the other hand, the
overlapping of the analyte retention times was solved with chemo-
metric techniques complementing bidimensional chromatographic-
spectral data. A comprehensive summary of the determination of or-
ganic acids in dairy products through reverse-phase HPLC (RP-HPLC)
methods is presented in Supporting Information (Table 1).

In summary, the aim of this work was to develop a RP-HPLC tech-
nique alternative to the ion-exchange and reverse-phase methods for
the simultaneous determination of 11 organic acids for being metabo-
lically important components in fermented food and commonly cited in
literature. Its application to the analysis of the quality of wine and dairy
products has also investigated.

2. Theory

As the PARAFAC and U-PLS theories have been well established and

Table 1
Organic acids found in fermented foods, their concentrations and main sources.

Organic acid Concentration in fermented food

Wine (mmol L-1) Dairy product (mmol Kg-
1)

Tartaric Grape 10–33 ndc

Malic 1.5–30 ndc

Citric 0–2.6 0.05–100 Milk/
yogurtOrotic ndc 0.001–0.008

Uric ndc 0.001–0.006
Hipuric ndc –d

Lactic 1.1–11e Bacterial growth
and fermentationa

9.0–233f

Acetic 3.3–22g 8.3–580 FHb

Propionic –d 6.7–54
Succinic 0–17g 0.0–26g

Pyruvic –d 0.23–6
Oxalic –d 0.02–8
Formic –d 0–35h

Oxaloacetate –d –d

Fumaric –d –d

Galacturonic –d –d

Glucuronic –d –d

Butiric ndc 0.0–25 FHb

a The ranges of organic acid produced by fermentative process.
b FH: Milk Fat hydrolysis.
c nd: no detectable.
d traces.
e Žulj et al. reported a LAC concentration of 113 mmol L-1 for a Croatian predicate wine

[32]. Also, Buglass and Lee informed a LAC concentration until 52 mmol L-1 in English
red wines [33]. Likewise, Sirén et al. informed a LAC concentration of 60 mmol L-1 in
commercial wine [34].

f Tormo and Izco reported 1.6 103 mmol Kg-1 (dry matter) of LAC concentration in
yogurt lactic[43].

g The succinic acid concentration in Pinot Noir grapes range 0.85–68 mmol L-1 [34].
h In provolone and blue cheeses the FOR concentrations reported were 13 and

22 mmol Kg-1 (dry matter), respectively [35]. In Brick cheese the FOR concentration re-
ported was 35 mmol Kg-1 (dry matter) [36].
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documented are not described in the present work [20,44]. However, it
is necessary to point out that U-PLS reaches the second-order advantage
only when coupled to the auxiliary RBL algorithm [24]. RBL is a post-
calibration algorithm, which is established from principal component
analysis (PCA) to identify the presence of “unexpected” components in
a test sample [45]. Therefore, the test matrix data X, which can hy-
pothetically have information about both interferents and the analytes
of interest, were first vectorized [vec(X)] and then expressed as follows:

= + +Lt U S V evec(X) [ ( ) ]int int int
T

RBL (1)

where L is the matrix of U-PLS calibration loadings, t is the vector of
test sample scores, eRBL is the residual error RBL term, and Uint, Sint and
Vint are provided by PCA of a residual matrix obtained after reshaping
the residual vector eRBL computed, assuming that interferences are
absent, by applying the Eq. (2):

=U S V Lt( ) PCA{reshape[vec(X)– ]}int int int
T (2)

where ‘reshape’ indicates the reverse operation of the vectorization, i.e.,
conversion of a IJ×1 vector into a I × J matrix (I being the number of
time sensors and J the number of wavelengths), and the PCA process is
performed using the first Nint principal components, where Nint in-
dicates the number of interferent test sample components.

The RBL algorithm maintains the matrix of loadings L in Eq. (1)
constant at the calibration values, and varies t in Eq. (2) so that the
norm of eRBL (||eRBL||) is minimized. The minimization process is im-
plemented by using the Gauss-Newton method assisted by particle
swarm optimization, so as to find good starting values for minimization
[46].

The standard deviation (s) of the residuals in Eq. (1) can be con-
sidered as a measure of the goodness of fit for the RBL procedure, which
is given by:

=s e /(DOF)RBL
1/2 (3)

where DOF is a suitable number of degrees of freedom. The DOF as-
sociated with the matrix reconstruction of Eq. (2) via PCA should be
calculated as [(I–Nint)(J–Nint)–T], where T is an additional loss of de-
grees of freedom calculated from the number of elements of t (equal to
the number of calibration latent variables) [47].

The number of interferent components is estimated by examination
of the comportment of s as the value of Nint increases. It is accepted that
s stabilizes at a value which is compatible with the instrumental noise
when the correct value of Nint is reached [45]. It is true that for more
complex cases, that is, where the number of interferents is very large,
different criteria should be used [48,49]. However, in this report it was
not necessary to use a criterion other than the one commented on.

3. Experimental section

3.1. Reagents and solutions

OXA, CIT, FOR, SUC, PYR, ACE, PRO, LAC, CET, MAL, TAR and
phosphoric acids, and sodium phosphate were purchased from Sigma
(St. Louis, MO, USA). Milli-Q water (Bedford, MA, USA) was used to
prepare buffers, stock solutions of each standard compound and the
samples.

All solutions were prepared in standard volumetric flasks. Stock
standard solutions of OXA (9.003 mg mL−1), CIT (19.212 mg mL−1),
FOR (4.603 mg mL−1), SUC (11,809 mg mL−1), TAR
(15.009 mg mL−1), PYR (8.806 mg mL−1), ACE (6.005 mg mL−1), PRO
(7.408 mg mL−1), LAC (9.008 mg mL−1), CET (14.611 mg mL−1) and
MAL (13.409 mg mL−1) were prepared in analytical grade water (ob-
tained from a MilliQ® water purification system) and stored at 4 °C.

3.2. Equipment and operating conditions

3.2.1. Reversed-phase HPLC method
RP-HPLC was carried out on a liquid chromatograph equipped with

a Waters (Milford, MA, USA) 515 HPLC pump and a TCC-240A diode
array UV–visible spectrometer (Shimadzu Corporation, Kyoto, Japan)
as detector. A 50 µL loop was employed to introduce each sample onto a
Zorbax SB C18 column (5 µm average particle size, 150 mm × 4.6 mm
i.d.). The data matrices were collected using wavelength range from
206 to 288 nm each 2 nm, and times from 0 to 16 min every 1 s. The
absorbance-time matrices were of size 42 × 996 and were saved in
ASCII format, and transferred to a PC based on AMD Athlon ×2 Dual-
Core QL-60 (1.90 GHz) microprocessor for subsequent manipulation.

The mobile phase used for all chromatographic runs was a
20 mmol L−1 phosphate buffer adjusted at pH 2.20 with phosphoric
acid, delivered at a flow rate of 1.0 mL min−1 at room temperature with
a chromatographic system operating under isocratic mode. Each chro-
matogram was accomplished in ca. 16 min.

3.2.2. Ion-exchange HPLC (IE-HPLC) method
Organic acid concentrations were determined in the samples by

traditional HPLC method using an Aminex HPX-87H anion-exchange
column (Bio-Rad Laboratories, Inc., Richmond, CA). Organic acids were
determined by loading an aliquot of 200 µL of standard solution or
sample operating at 30 °C in isocratic mode using 0.008 M H2SO4 as the
mobile phase and a flow rate of 0.6 mL min−1. Quantification of or-
ganic acid was carried out using external standard calibration curves.
The calibration curves for each organic acid were obtained by triplicate
injections of five aqueous solutions of different concentrations. The
linearity was evaluated by linear regression analysis, which was cal-
culated by the least square regression method. Analytical parameters of
the calibration curve for each acid (shown in Table 2 in Supporting
Information) were used to calculate the acid concentration in real
samples.

3.3. Calibration, validation, and test samples

The experimental procedure corresponding to the chemometric
analysis was developed preparing a calibration set of 18 samples.
Sixteen of these samples corresponded to the concentrations provided
by a semi-factorial design at two levels. The remaining two samples
corresponded to a blank solution and to a solution containing all the
studied organic acids at an average concentration. The concentrations
assayed were in the ranges 0–8 mmol L−1 for ACE, LAC and MAL,
0–1.5 mmol L−1 for PYR and CET, 0–4 mmol L−1 for CIT,
0–0.5 mmol L−1 for OXA, 0–3 mmol L−1 for TAR, 0–12 mmol L−1 for
FOR and PRO, 0–10 mmol L−1 for SUC. These ranges were established
based on the analysis of the linear absorbance-concentration range for
each analyte. A set of 30 validation samples was prepared employing
concentrations different from those used for calibration and following a
random design.

Calibration and validation samples were prepared by measuring
appropriate aliquots of standard solutions, placing them in 10.00 mL
volumetric flasks in order to obtain the desired concentrations, and
completing to the mark with mobile phase.

3.4. Sample preparation

Commercial samples of wine, yoghurt, fermented milk and cheese
were purchased at local stores. For dairy products, one gram of sample
was diluted to 10 mL with water and the preparation was vigorously
shaken and blended with a vortex. For wine, one mL of sample was
taken. Next, the samples were centrifuged at 3000×g for 15 min and
1 mL of the supernatant was filtered through 0.45 µm poly(vinylidene
difluoride) (PVDF) membranes (Waters) before injecting.
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3.5. Software

The routines employed for PARAFAC (available on the Internet)
[50] and U-PLS/RBL are written in MATLAB 7.0 [51]. These algorithms
were implemented using the graphical interface of the MVC2 toolbox,
which is available on the Internet [52].

4. Results and discussion

4.1. General considerations

Fig. 1A shows a chromatogram of a mixture containing the studied
organic acids at 210 nm. On the other hand, Figs. 1B and C show a
three-dimensional and a contour plot, respectively, of the complete
landscape of absorbance intensity as a function of wavelengths and
retention time for a mixture of the eleven studied organic acids. As can
be seen in Fig. 1, it is clear that the overlapping of different degrees
occurs among the bands and, as discussed below. The situation becomes
more serious if additional compounds (such as interferences) which
may overlap with any of the peaks, are also present (see Fig. 4). When
this occurs, only second-order calibration can be applied for the
quantitation of the analytes, since it is essential to exploit the second-
order advantage to achieve the desired goal. Therefore, in order to
achieve a satisfactory chemometric resolution, the data were split in
two different sub sets, according to the time axis: 2.0–4.5 min, and
4.6–11 min. In the first region, the bands of OXA, TAR, FOR, PYR, MAL,
LAC, CET and ACE (region I) are detected. The second one includes CIT,
SUC and PRO (region II) bands.

Before building the chromatographic time retention–absorbance
matrices to be computer processed, some experimental variations must

be considered, fundamentally the lack of repeatability in the retention
times between successive runs. If the shifts are not corrected, the pro-
gram will consider these changes take modifications in chemical com-
position and incorrect results will be obtained because the data not
preserve the trilinearity condition (see Fig. 1 in Supporting
Information). Due to this fact, preprocessing method was applied to
align the chromatographic bands and restore the trilinearity to the
system. This alignment process is relatively simple when few bands are
involved and both the magnitude and the sense of the shift for all
analytes should be the same with respect to a chromatographic run
taken as a reference. Bortolato et al. developed an algorithm to solve the
problem of aligning bidimensional chromatographic matrices in the
time dimension. This algorithm is based on the joint processing of the
reference and test data matrices with a suitably initialized and re-
stricted PARAFAC model [29]. This procedure enables the alignment of
matrices with different number of components in the test samples, due
to of the appearance of additional constituents in the calibration ma-
trices. Taking into account all the above mentioned points a suitably
initialized and restricted PARAFAC model was selected to pre-process
the data.

4.2. Validation samples

After matrix alignment with restricted PARAFAC, second-order
multivariate calibration was performed to predict the analyte con-
centrations in all test mixtures (see Section 3.3). The first second-order
multivariate calibration algorithm applied to this analytical problem
was PARAFAC with multiple calibration samples (all aligned against
one of the calibration data matrices). This algorithm should in principle
lead to acceptable results once all data matrices are properly aligned in

Fig. 1. A) Chromatogram of a sample at 210 nm containing the organic acids studied. B) Three-dimensional plot of a typical chromatogram of a sample containing such organic acids, and
C) the corresponding two-dimensional contour plot. Concentrations are as follows (all in mmol L−1): ACE, 5; LAC, 5; PYR, 0.75; CIT, 3; MAL, 5; CET, 0.75; SUC, 0.75.
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the time dimension. The U-PLS/RBL method was then applied to these
data. In order to model the calibration data, the system tested required
eight U-PLS latent variables, which were found by leave-one-out cross-
validation [48].

Table 2 shows the number of U-PLS latent variables needed to
model each analyte in the validation samples, obtained via leave-one-
sample-out cross-validation [22], as well as the number of total com-
ponents per sample required to obtain a satisfactory decomposition
according to the PARAFAC model. The number of components when
PARAFAC was applied was selected by the so-called core consistency
analysis [20], which consists in studying the structural model based on
the data and the estimated parameters of gradually augmented models.
A PARAFAC model is appropriate if the fit does not improve con-
siderably by the addition of other combination of components [20]. In
all cases, PARAFAC was initialized with the best fitting loadings after a
small number of trial runs, selected from the comparison of the results
provided by generalized rank annihilation and several orthogonal
random loadings.

Fig. 2A shows the prediction results corresponding to the applica-
tion of U-PLS to a set of 30 validation samples different from those used
for the calibration step, while Fig. 2B presents the prediction results
corresponding to the application of PARAFAC to the same set. As can be
observed, the predictions for the eleven organic acids are in good
agreement with the corresponding nominal values. If the elliptical joint
confidence region (EJCR) is analyzed for the slope and intercept of the
above plot (Fig. 2C), it is possible to conclude that ellipse includes the
theoretically expected values of (1, 0) in both cases, indicating the
accuracy of the used methodology [53]. However, the EJCR for U-PLS is
significantly smaller than that corresponding to PARAFAC, suggesting
higher precision.

The statistical analysis of the results shown in Table 3, with, root-

mean-square error of prediction (RMSEP) and relative error of predic-
tion (REP), which were the worse for PARAFAC, do support this con-
clusion as well. The LODs obtained by U-PLS, calculated according to
the equations proposed by Olivieri [54], they are more than satisfactory
considering the complexity of the analyzed samples. The better pre-
dictive ability of U-PLS/RBL compared to PARAFAC can be explained
by understanding the way that the former algorithm decomposes the
data, since it is a more flexible model which tolerates small deviations
from trilinearity which may remain in the data set even after the
alignment treatment, as already reported [29]. In this sense, it would be
reasonable to use the U-PLS/RBL algorithm directly onto the unaligned
raw data. However, the experimental limitations of this approach have
already been discussed and this strategy was shown to render sa-
tisfactory results only in certain ideal occasions (i.e., a large number of
calibration samples and a few components) [29].

Fig. 3 shows superimposed standards spectra (Fig. 3A) and chro-
matograms corresponding to the organic acids analyzed (Fig. 3C), and
the experimental profiles retrieved by PARAFAC in the spectral
(Fig. 3B) and temporal (Fig. 3D) dimensions for a typical validation
sample. As it can be seen, although the system is very convoluted, the
spectra are distinguishable, and the chromatographic bands are re-
cognizable and assignable to the analytes of interest.

Table 4 shows the figures of merit of the methods applied to the
validation samples, which were calculated according to the work of
Olivieri [54]. In general, the analytical performances for both selected
algorithms are similar but with a slight advantage for U-PLS. Moreover,
an additional figure of merit is defines in PARAFAC, SEL, which has an
important diagnostic value. This parameter varies between 0 and 1:
zero corresponds to a system totally non-selective for the analyte in
question, while the 1 correspond to a completely specific case (pseudo
univariated) [20]. It is successfully verified that highly overlapping

Table 2
Component numbers used in PARAFAC and U-PLS/RBL method in Validation and Real samples.

Validation samples REGION Ia REGION IIa

OXA TAR FOR PYR MAL LAC CET ACE CIT SUC PRO

U-PLS 5 8 3 5 3 5 7 9 4 4 4
PARAFACb 8 3
Real samples RBL PARAFAC RBL PARAFAC

Componentsc Uncalibrated componentsd Componentsc Uncalibrated componentsd

Yogurth 3 3 2 2
Cheese 4 4 2 2
White wine 4 4 4 4
Red wine 5 4 5 4

a See the text.
b PARAFAC precise a single component number for the complete region data. That number was selected by the so-called core consistency analysis. For further details, see the text.
c Unexpected constituents for U-PLS/RBL algorithm, estimated through the so-called generalized cross-validation criterion [45].
d Unexpected constituents for PARAFAC algorithm, estimated through the core consistency analysis subtracting previously the calibrated components.

Fig. 2. Plots for predicted concentrations as a function of the nominal values of the eleven studied organic acids in validation samples: A) U-PLS and B) PARAFAC (the solid lines are the
perfect fits). C) Elliptical joint regions (at 95% confidence level) for slope and intercept of the regression for validation samples using U-PLS (solid line) and PARAFAC (dashed line). Gray
cross marks the theoretical (intercept = 0, slope = 1) point.
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analytes (PYR, MAL, LAC, and CET) present low SEL while OXA, FOR,
TAR, ACE, CIT, SUC and PRO show SEL close to one.

4.3. Real samples

According to the results obtained with artificial samples, both U-
PLS/RBL and PARAFC were selected for the analysis of real samples.

Four different types of samples (yoghurt, cheese, red and white

wine) were selected as examples of real matrices for assaying the pro-
posed methodologies. The concentrations of the eleven studied organic
acids in each sample were first determined by a reference method (IE-
HPLC). According to the sample sources is possible to distinguish sev-
eral matrix characteristics (base lines, interferes, spectral and time
profiles) and some organic acids as described in Table 1. In dairy
samples, where it is expected the absence of MAL and TAR acids and the
presence of orotic and uric acids as interferes due they were not

Table 3
Statistical results for the studied organic acids in validation samples using PARAFAC and U-PLS/RBL.a

REGION I REGION II

OXA TAR FOR PIR MAL LAC CET ACE CIT SUC PRO

PARAFAC
RMSEPb 0.02 0.09 0.09 0.05 0.16 0.17 0.05 0.07 0.05 0.11 0.07
REPc 9.33 5.81 2.01 10.98 3.59 3.94 10.60 1.72 2.01 2.56 1.56
PARAFAC raw data
RMSEPb 0.07 0.26 0.31 0.16 0.35 0.33 0.16 0.32 0.12 0.24 0.25
REPc 29.2 16.3 6.89 35.7 7.56 7.47 30.8 7.63 4.81 5.53 5.29
U-PLS
RMSEPb 0.01 0.16 0.12 0.50 0.02 0.26 0.02 0.10 0.15 0.11 0.12
REPc 5.33 9.77 2.57 9.86 2.41 4.8 3.26 1.99 5.85 2.56 2.60
U-PLS raw data
RMSEPb 0.05 0.25 0.28 0.08 0.02 0.37 0.02 0.08 0.23 0.25 0.35
REPc 20.6 15.5 6.18 16.9 2.58 7.5 3.39 1.70 9.05 5.86 7.40

a Number of samples = 30.
b RMSEP, root-mean-square error of prediction in mmol L−1.
c REP, relative error of prediction in %.

Fig. 3. Profiles retrieved by PARAFAC when processing a typical validation sample. (B) Spectral profiles. (D) Time profiles. In both cases, the profiles are normalized at unity by the
algorithm. In contrast, overlapped of standards spectra (A) and chromatograms (C) corresponding to the organic acids analyzed are shown. Concentrations are as follows (all in
mmol L−1): OXA, 0.5; TAR, 1.5; FOR, 8; PYR, 0.5; MAL, 2.0; LAC, 5; CET, 0. 5; ACE, 8; CIT, 3.0; SUC, 0.75, PRO, 6.
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considering in the calibration set. While in the organic acids composi-
tion for wine samples include traces concentration for PRO, PYR, OXA
and FOR acids and the absences of the orotic, uric and hipuric acids.

Fig. 4 shows two-dimensional plots of the data matrices

corresponding to the study samples. In all samples, besides the analytes
of interest, there are species that have not been considered in the ca-
libration step. In the matrices obtained from dairy samples the inter-
ferers co-eluted mainly between OXA/FOR - PYR and LAC/ACE - CIT

Table 4
Figures of merit for the studied organic acids in Validation Samples using PARAFAC and U-PLS/RBL.a

REGION I REGION II

Validation samplesb OXA TAR FOR PYR MAL LAC CET ACE CIT SUC PRO

PARAFAC
SEN (mmol−1 L)c 210 230 230 53 47 68 65 150 140 130 140
γ (mmol−1 L)d 1600 1800 1700 410 360 520 500 1100 860 800 890
DL (mmol L−1)e 0.001 0.001 0.001 0.002 0.003 0.002 0.002 0.001 0.001 0.001 0.001
SELf 0.99 0.98 0.99 0.26 0.26 0.38 0.36 0.83 1.00 1.00 1.00
LODg 0.03 0.14 0.23 0.16 0.18 0.15 0.16 0.03 0.13 0.21 0.20
LOQi 0.09 0.42 0.70 0.48 0.55 0.45 0.48 0.10 0.39 0.64 0.61

U-PLS
SEN (mmol−1 L)c 960 136 230 562 64 40 295 20 57 28 23
γ (mmol−1 L)d 310 115 70 149 10 14 152 16 40 31 10
DL (mmol L−1)e 0.003 0.01 0.01 0.006 0.1 0.07 0.007 0.06 0.025 0.032 0.1
SELf h h h h h h h h h h h

LODg 0.03 0.12 0.35 0.07 0.4 0.4 0.08 0.4 0.14 1.5 0.6
LOQi 0.09 0.36 1.06 0.21 1.21 1.21 0.24 1.21 0.42 4.55 1.82

a See the text.
b Number of samples = 30.
c Sensitivity, is the net signal of the analyte at unit concentration [54].
d Analytical sensitivity (calculated as sensitivity/residual).
e Minimum increase in analyte concentration which ensures that the analytical signal is significantly different from that corresponding to the original analyte amount, is equal to

inverse of analytical sensitivity [54].
f Selectivity, is the ratio between SEN and the hypothetical SEN value of the analyte was present in pure form.
g LOD, limit of detection calculated according to ref. [54] for PARAFAC, and for U-PLS and U-PLS/RBL it is estimated from samples with very low or zero analyte concentration [54].
h Undefined.
i LOQ, limit of quantitation defined as (10/3.3) ×LOD.

Fig. 4. Two-dimensional plots of the data matrices corresponding to the samples under study: (A) yogurth, (B) cheese, (C) white wine, (D) red wine. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article).

P. Mortera et al. Talanta 178 (2018) 15–23

21



bands, their base lines appearing cleaner in the time profiles, which
favors good analytical resolutions (Fig. 4A and B). Instead, in the wine
sample matrices a significative background was detected, making it
impossible to quantify the acids by single-order analysis (Fig. 4C and
D). Even in the presence of these interferences, it is only possible to
exploit the second-order advantage.

In Table 2 the additional components required by each model to
produce a satisfactory resolution are presented. The selection of addi-
tional PARAFAC factors was carried out through the following two
tests: (1) analysis of PARAFAC residuals [20], and (2) consideration of
the spectral profiles produced by the addition of subsequent compo-
nents. If the addition of a new component generated repeated profiles,
the new component was discarded and the previous number of com-
ponents was selected. The results obtained by both procedures were
consistent and established that the number of total components re-
quired by PARAFAC in real samples varied between two and four. In the
case of RBL analysis, see Theory section for further details.

Table 5 shows that the results supplied by the presently proposed
strategies using U-PLS/RBL and PARAFAC for the samples are in
agreement with IE-HPLC. The organic acids levels in these samples
correspond with those found in the literature (see Table 1).

The statistical comparison between the results obtained though the
two chemometric methods and those provided by the reference method
was carried out by the EJCR test for the slope and intercept of the found
vs. reference concentration plot. According to Martínez et al. [55], the
elliptical region was calculated considering the experimental data
corresponding to all analytes, to better estimate the prediction variance.
This avoids the oversizing of the joint confidence region due to large
experimental random errors and thus the probability of not detecting
the presence of bias. The obtained ellipse (Fig. 5) includes the theore-
tically expected (1, 0) point in both chemometric approaches, sup-
porting that the results obtained with the method here proposed are
statistically comparable with those provided by the reference one. In
addition, the PARAFAC algorithm yields less accurate results, which is
in line with what was discussed in previous sections.

Finally, the advantages of the proposed methodologies in compar-
ison with IE-HPLC were evident in the treatment of real samples: (1)
lower required experimental time (4.5 min to resolve 8 organic acids),
(2) higher sensitivity, (3) better figures of merits in most cases and (4)
RP-columns: wider use, less expensive and robust.

5. Conclusions

Both U-PLS/RBL and PARAFAC combined with reverse phase high-
performance liquid chromatography–DAD spectroscopy have demon-
strated to be powerful tools to resolve, in a very short time, a complex
mixture of analytes of similar absorption spectrum. The determinations
are carried out in the presence of unexpected compounds, without the
necessity of a complete chromatographic separation. The performance
of some analytical parameters of the proposed methodologies on real
samples was compared with the routine method (IE-HPLC), yielding a
successful result supported by statistical analysis.
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Table 5
Determination of organic acid content in fermented samples by the proposed methods and the validation method.

Samples REGION I REGION II

OXA TAR FOR PIR MAL LAC CET ACE CIT SUC PRO

Yogurtha

RPLC-PARAFACc 5.20± 0.10 ND ND 2.53± 0.71 ND 65.1± 5.1 ND 4.00± 0.61 115±7 25.5± 2.10 ND
RPLC-UPLS/RBLd 5.50± 0.33 ND ND 2.52± 0.62 ND 67.6± 6.2 ND 4.02± 0.17 116±6 25.1± 2.00 ND
Ion Exch. HPLCe 5.03± 0.52 ND ND 2.74± 0.83 ND 63.2± 4.6 ND 3.96± 0.42 109±6 24.7± 1.80 ND
Cheesea

RPLC-PARAFACc 3.20± 0.44 ND 1.25± 0.24 3.23± 0.91 ND 100±8 ND 5.50± 0.44 14.9± 2.40 43.5± 6.2 ND
RPLC-UPLS/RBLd 3.53± 0.42 ND 1.25± 0.11 3.64± 0.42 ND 102±7 ND 5.70± 0.26 14.0± 1.40 49.6± 2.3 ND
Ion Exch. HPLCe 3.64± 0.62 ND 1.28± 0.31 2.92± 0.31 ND 107±9 ND 6.11± 0.32 14.4± 2.60 41.6± 5.6 ND
White Wineb

RPLC-PARAFACc ND 0.84± 0.11 ND ND 0.95± 0.10 7.21± 1.40 ND 4.20± 0.33 ND 16.5± 2.1 ND
RPLC-UPLS/RBLd ND 0.86± 0.06 ND ND 0.95± 0.14 7.52± 0.91 ND 4.51± 0. 2 ND 17.1± 0.7 ND
Ion Exch. HPLCe ND 0.79± 0.12 ND ND 0.92± 0.12 7.94± 1.20 ND 4.16± 0. 4 ND 16.1± 1.6 ND
Red Wineb

RPLC-PARAFACc ND 0.87± 0.12 ND ND 0.92± 0.24 9.43± 1.70 ND 6.20± 0. 3 ND 14.8± 1.7 ND
RPLC-UPLS/RBLd ND 0.91± 0.05 ND ND 0.94± 0.07 9.90± 1.00 ND 6.41± 0. 2 ND 15.7± 0.8 ND
Ion Exch. HPLCe ND 0.80± 0.13 ND ND 0.86± 0.19 10.1± 1.60 ND 6.16± 0. 4 ND 15.2± 2.2 ND

ND: not detected.
a Number of samples = 4. Concentration in mmol Kg−1 of real sample.
b Number of samples = 5. Concentration in mmol L−1 of real sample.
c Mean of replicates, standard deviation between parentheses (the number of total components for each sample are shown in Table 2).
d Mean of replicates, standard deviation between parentheses (the number of calibrated components and RBL components for each sample are shown in Table 2).
e Mean of replicates, standard deviation between parentheses.

Fig. 5. Elliptical joint region (at 95% confidence level) for the slope and intercept of the
regression for U-PLS/RBL and PARAFAC predictions for all analytes studied in the real
samples. Gray cross marks the theoretical (slope = 1, intercept = 0) point.
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