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de Química de Rosario (IQUIR-CONICET), Suipacha 531, Rosario S2002LRK, Argentina

ABSTRACT: A novel procedure is described for processing the second-
order data matrices with multivariate curve resolution-alternating least-
squares; while the data set is nontrilinear and severe profile overlapping
occurs in the instrumental data modes. The area of feasible solutions can
be reduced to a unique solution by including/considering the area
correlation constraint, besides the traditional constraints (i.e., non-
negativity, unimodality, species correspondence, etc.). The latter is
implemented not only for the unknown samples but also for all calibration
samples, regardless of their interferent content. The area of correlation
constraint was specially designed to remove rotational ambiguity in the
chemical data sets when information about calibration samples is at hand.
In this contribution a comprehensive strategy is developed to uniquely
unravel nontrilinear data sets or data sets with severely overlapped profiles
in the instrumental data modes. The approach is illustrated with simulated and experimental data sets. Borgen plots are
employed to adequately visualize the extent of rotational ambiguity under non-negativity constraint.

Multivariate curve resolution is a promising tool which
has the ability of solving the mixture analysis problem,

providing chemically meaningful pure component contribu-
tions from experimental data sets. Multivariate curve
resolution−alternating least-squares (MCR-ALS) is an iterative
algorithm that solves the bilinear model based on Bouguer−
Beer−Lambert’s law. The output consists of pure concen-
tration and spectral profiles resulting from suitable alternating
least-squares optimization subjected to different constraints.
The latter is imposed based on the chemical knowledge of the
studied systems.1−4

When data sets are analyzed by MCR-ALS, the result might
be challenging due to lack of unique solutions, which is an
intrinsic characteristic of bilinear matrix decompositions if
incomplete information is available about the system.5

Rotational ambiguities are an important source of uncertainty
in MCR results and probably the most difficult problem to
solve. Nonunique MCR solutions derived from rotational
ambiguity are less reliable and difficult to evaluate. The effect
of rotational ambiguity on the accuracy of quantitative results
obtained from soft-modeling methods has been investigated in
detail, even in the presence of constraints. The resulting
uncertainty may be dramatically large in certain cases, e.g.,
when extensive or complete profile overlapping occurs in one
of the data modes.6

Although nonuniqueness is omnipresent in MCR methods,
it can be alleviated and in some cases completely avoided by
means of a judicious use of the data structure and well-suited
constraints. For example, imposing different constraints such as
non-negativity, unimodality, selectivity,, and hard modeling

may dramatically decrease the extent of rotational ambiguity by
adding more information to the MCR analysis of the system
under study.7−12 Area correlation is a recently developed
additional constraint which includes pseudounivariate local
regressions using the area of resolved profiles against reference
concentration values during the ALS optimization.13

In the usual extended MCR-ALS analysis of multiple data
sets with an appropriate design of the simultaneously analyzed
experiments, including the use of proper information as
constraints, the solutions can be significantly improved
through/by reducing or even eliminating rotational ambiguities
and achieving uniqueness.
It is important to notice that a careful design of the

augmented data set, should include, if possible, samples
containing single pure analytes or pure interferents. This might
allow the decomposition to reach unique solutions using the
species correspondence constraint, also called the sample
selectivity constraint, which forces resolved concentration
profiles to have zero area for the known absent species in
certain samples as a consequence of the well-known Manne
theorems.14−16

Finally, the trilinearity constraint can guarantee accurate
unique profiles for constituents with trilinear structure.17−21

To fulfill the trilinearity condition, the augmented data matrix
should contain some similar factors in its submatrices, which
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should not be affected by experimental conditions; so that they
share a common shape. Only their areas (and vertical heights)
should proportionately change according to the constituent
concentration. It is a very strong constraint that enforces the
decompositions to give unique solutions under mild
conditions. However, trilinearity is seldom achieved in
chromatographic experiments due to run-to-run differences
in peak shapes and positions of pure concentration profiles,
which can commonly be found in practice. As a consequence,
nontrilinear data sets might always be subjected to rotational
ambiguity to some extent generating uncertainty in analyte
prediction. The problem is especially severe in cases in which
selectivity is compromised in the direction of the augmented
data, due to extensive or total profile overlapping among
analyte and interferents.
In the present report, the possibility of achieving uniqueness

in nontrilinear data sets has been studied by applying an area
correlation constraint and including proper calibration samples
in the augmented data matrix, even in cases with total profile
overlapping in the augmented direction. The proper calibration
samples should contain analyte(s) at known nominal
concentrations and all interferents that might be expected in
the following unknown samples. It has already been shown that
in the absence of these samples, MCR is unable to generate
uniqueness, especially under severe or total profile overlapping
in the concentration profiles. To indicate how an area
correlation constraint can lead to uniqueness of MCR results
in the presence of proper calibration samples, the extent of
rotational ambiguity was evaluated by analysis of different
simulated and experimental data sets. The latter involves the
quantification of ciprofloxacin in a second-order luminescence
excitation-time decay data of human serum.

■ THEORETICAL BACKGROUND
Multivariate Curve Resolution-Alternating Least-

Squares (MCR-ALS). In the extended version of MCR-ALS,
data matrices can be augmented row-wise, column-wise, or
row- and column-wise to form a multiset structure by
appending individual matrices in a proper direction and
respectively having/keeping the same number of rows,
columns, or both. Individual data matrices should share
information with the remaining ones. A column-wise
augmented matrix Daug can be written as [D1; D2; D3; ...;
DK], where the semicolon ‘;’ MATLAB notation is used to
indicate that the different data matrices are appended column-
wise and k indicates the total number of samples.
From the mathematical point of view, Daug can be described

by a bilinear MCR model, a factor decomposition which can be
written as

= + = [ ]

= [ ] + [ ]

D C S E D D D D

C C C C S E E E E

; ; ; ...;

; ; ; ...; ; ; ; ...;

K

K K

aug aug aug
T

aug 1 2 3

1 2 3 aug
T

1 2 3

(1)

where Caug (augmented concentration profiles) and Saug
(spectra) are the factor matrices obtained by the bilinear
decomposition of the experimental data matrix Daug and Eaug
collects the model errors. This decomposition is performed for
a number of components which are contributing to the
observed data variance in Daug. Alternating least-squares (ALS)
optimization is a possible way to solve eq 1. The main
advantage of this algorithm is the amount of information that
can be included in the optimization process and the ability for

working with either single data matrices or multiset data
structures. Drawbacks include permutation, intensity, and
rotational ambiguities. While the first two can be easily
resolved, rotational ambiguity is the most dangerous one,
because it may eventually lead to inaccurate analytical results.
Including chemical information in the decomposition process,
via the above-mentioned constraints, can significantly reduce
or even eliminate the extent of rotational ambiguity.
Usually MCR-ALS optimization starts with the initial

estimates of either concentration or spectral profiles.
Consequently, different methods can be used to find suitable
initial estimates to start the MCR-ALS. The so-called purest
variables method was used to calculate the initial spectral
estimates.

Borgen Plots. Borgen plots22,23 can be considered as a
microscope to observe the details of abstract space geometry in
a three-component system. The subspace of the pure
components in a three-component system is three-dimen-
sional. However, the geometry of the bilinear model in this
system can be shown in a 2D plane using proper normal-
ization. In a three-component system, the shape of the area of
feasible solutions which fulfill the non-negativity constraint and
construct the whole data matrix is a triangle enclosing the inner
polygon. Every vertex of triangles belongs to one pure
component and locates somewhere between the inner and
outer polygons or on the edges of the outer polygon. In the
reduced abstract space, the projected rows or columns of the
data span the special parts of space around the origin. This
section is enclosed by a convex polygon named inner. In
addition, the outer polygon is the boundary between positive
and negative parts of the abstract space.
Figure 1 shows an arbitrary Borgen plot of typical data in U-

space for better understanding. After proper normalization of

the columns of the three-component data matrix, the original
three-dimensional problem is reduced and visualized in a two-
dimensional abstract space; this is the reason why only two
principal components are required for plotting. Singular value
decomposition (SVD) can be employed to define the basis row
(V) and column vectors (U) of a data matrix:

= + ′ = + ′ = + ′D USV E XV E UY ET T T (2)

where X and Y are coordinates of the rows and columns of D
in its row and column space, and E’ is the matrix of residuals or

Figure 1. Visualization of the geometry of abstract space with feasible
regions.
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nonmodeled parts of D. A common procedure for normal-
ization in a Borgen plot of U-space is to force the elements of
the first eigenvector to be one.
The whole abstract space is the area of feasible solutions

(AFS) for all components in the absence of constraints.
However, considering the non-negative property of a data set,
the abstract space is delimited by the outer polygon indicated
in magenta in Figure 1. The coordinates of the abstract
representation of the data columns are presented as black
circles. Three sections shown in blue, green, and red are the
three feasible regions which belong to the three components.
In addition, the inner polygon is shown in yellow in Figure 1.

■ USING/APPLYING/IMPOSING AREA
CORRELATION CONSTRAINT IN THE PRESENCE
OF PROPER CALIBRATION SAMPLES

In the extended MCR-ALS analysis of second-order data,
relative quantitative estimations of a constituent in the
different simultaneously analyzed samples (different data
matrices) can be easily derived from the relative areas of the
concentration profiles of this resolved component. A

calibration model can be built in this case if the concentration
of this constituent (analyte) is known in some samples. It can
usually be done for the pure calibration samples, but here we
have proposed to extend the concept to proper calibration
samples by expecting interferents in future/following samples.
To apply the area correlation constraint, the integrated

concentration subprofiles for the analyte are regressed to
known analyte concentrations at each iteration step of the ALS
process, by means of the following linear model:

= +a b b ck kknown, 0 1 (3)

where aknown,k represents the area of the analyte concentration
profile in the kth calibration sample, ck is the corresponding
nominal analyte concentration and b0 and b1 are the intercept
and slope of the regression line, respectively. The linear model
parameters b0 and b1 are estimated for k known calibration
samples and employed to rescale the elements of the analyte
profiles in all the calibration samples; that is, the vectors cknown,k
are given by

Figure 2. Summary of three different simulated cases. Each row represents a designed case (the first, second, and third row correspond to three
simulated cases, simultaneously). Each panel represents real profiles. From left to right: pure concentration profiles, pure spectral profiles, and initial
concentration of three components. The analyte is specified by blue and the interferents by green and red.
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=
+b b c

a
c ck k

k

k
known, ,new known,

0 1

known, (4)

The vector cknown,k,new is the rescaled analyte concentration
profile in the kth calibration sample. For the unknown sample,
an expression analogous to eq 4 applies: the analyte
concentration profile in the unknown sample is also scaled:

=
+b b c
a

c cunknown,new unknown
0 1 unk

unk (5)

where aunk is the area of the resolved analyte concentration
profile in the unknown sample and the analyte concentration
in the unknown mixture cunk is estimated as

= −c a b b( )/unk unk 0 1 (6)

The above procedure is implemented in every ALS step;
therefore, at convergence to the optimal fit, the estimation of
the concentration and spectral profiles will also be optimal as
well as the analyte concentration estimates. Proper calibration
samples, which have similar compositions as unknown
mixtures, lead to unique solutions in trilinear and nontrilinear
data sets. The number of these samples is an important factor
in application of this constraint; it should be one unit less than
the chemical rank of the unknown sample. As an example, for a
three-component unknown mixture, two proper calibration
samples with similar qualitative compositions to the unknown
mixture are necessary. It is clear from the literature that
analyzing full rank second-order chemical data sets with
trilinear structure by second-order calibration methods can
generate uniqueness. In these cases, it is not necessary to
employ the proposed procedure. On the other hand, if the data
are definitely nontrilinear or its trilinearity is unsure, the
present approach would be beneficial for generating a unique
solution.

■ DATA SIMULATIONS
In this section, three different examples are described to
demonstrate the power of extended MCR to resolve diverse
chemical problems through applying the area correlation
constraint. The examples involve the simultaneous analysis of
(1) several kinetic-spectroscopic data sets involving three
parallel first-order kinetic processes with equal rate constant for
all reactions, (2) different nontrilinear chromatographic runs of
a complex mixture, and (3) several kinetic-spectroscopic data
sets without calibration samples containing interferents.
In the first two cases, four data matrices were simulated. The

first data matrix consists of only pure analyte data, whereas the
remaining three ones contain the analyte and all interferents.

The analyte concentration was known not only in the first data
matrix but also in the second and third, which were used as
proper calibration samples. The composition of the last sample
is qualitatively similar to the proper calibration samples;
however the analyte concentration is regarded as unknown.
The last simulation consists of only pure analyte as standard
data sets and a mixture of three components as unknown
sample.

Data Set 1: Kinetic-Spectrophotometric Data with
Identical Concentration Profiles. The first example is
generated from artificially constructed UV−vis spectra and
kinetic profiles. The simulated kinetic models are three simple
parallel first-order processes with equal rate constants
monitored by spectrophotometric measurements (the products
are supposed to be spectrally inactive). The first row of Figure
2 shows pure concentration profiles, pure spectral profiles, and
initial concentration of three components from left to right,
respectively. Analyte is specified by blue and interferents by
green and red. In addition, the Borgen plot in the U-space of
this case is shown in Figure 3a. The coordinates of the abstract
representation of the data columns are presented as black
circles. Three sections shown in blue, green, and red are the
three feasible regions which belong to the three components
(blue is used for the analyte). In addition, the inner and outer
polygons are shown in yellow and magenta, respectively.

Data Set 2: Three-Component Mixture in a Chroma-
tographic System. As a second example, four chromato-
graphic-spectrophotometric data sets were simulated. In this
case, the analyte elution profile has similar widths with
different retention times in the various chromatographic runs,
causing the system to be nontrilinear. The second row of
Figure 2 shows pure concentration profiles, pure spectral
profiles, and initial concentration of three components from
left to right, respectively. Analyte is specified by blue and
interferents by green and red. In addition, the Borgen plot in
the U-space of this case is shown in Figure 3b. The coordinates
of the abstract representation of the data columns are
presented as black circles. Three sections shown in blue,
green, and red are the three feasible regions which belong to
the three components (blue has been used for the analyte). In
addition, the inner and outer polygons are shown in yellow and
magenta, respectively.

Data Set 3: Three-Component Mixture and Kinetic-
Spectrophotometric Data (No proper calibration
samples). The third example is generated from artificially
constructed UV−vis spectra and kinetic profiles. The simulated
kinetic models are three simple parallel first-order processes
monitored by spectrophotometric measurements (the products

Figure 3. a, b, and c are the Borgen plots in U-space of three different simulated cases, respectively. The AFS of the analyte is specified in blue and
the interferents in green and red.
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are supposed to be spectrally inactive). The third row of Figure
2 shows the pure concentration profiles, the pure spectral
profiles, and the initial concentration of the three components
from left to right, respectively. The analyte is specified by blue
and the interferents by green and red. In addition, the Borgen
plot in the U-space for this case is shown in Figure 3c. The
coordinates of the abstract representation of the data columns
are presented by black circles. Three sections shown in blue,
green, and red are the three feasible regions which belong to
the three components (blue is used for the analyte). In
addition, the inner and outer polygons are shown in yellow and
magenta, respectively.

■ EXPERIMENTAL DATA
This data set consists of terbium(III)-sensitized luminescence
excitation−time decay matrices, measured for human serum
samples spiked with the fluoroquinolone antibiotic ciproflox-
acin, in the presence of the potential interferent salicylate. The
analyte concentration ranges were all within the therapeutic
range, i.e., 0−6 mg L−1 in serum, with final concentrations in
the measuring cell in the order of 0.2 mg L−1. For additional
experimental details, see ref 24.
Software. Data analysis was run under MATLAB 8.3, and

to construct the Borgen plots, the generalized Borgen plots
module of the FACPACK software was used.25

■ VISUALIZATION
Analysis and visualization of multivariate data sets are
important aspects of chemometrics. Thus, in this section we
discuss the visualization process in the simulated data sets, to
reach a better understanding of the effect of the area
correlation constraint in the presence and absence of proper

calibration samples. In order to visualize this concept, it is
necessary to prove that in the presence of proper calibration
samples, a single point exists in the U-space of the data which
fulfills the area correlation constraint. Consequently, in the
absence of the latter it is not possible to reach uniqueness.
Each point in the U-space of the three simulated cases in the

Borgen plots has two coordinates, α and β. Based on the
coordinates of points and column eigenvectors, it is possible to
generate the profile corresponding to the point. The values of
first coordinates are ones because of normalization.

αβ= [ ] ′p U1 (7)

p is the translated profile belonging to each α and β. Applying
the area correlation constraint on p generates p̃. Based on the
explained procedure in part 3 the area correlation constraint
must be applied not only on pure and mixture calibration
samples but also the unknown samples will be scaled. Pure
analyte standards and mixture standards can enter into the
internal calibration model as long as no sample matrix effect
exists. Otherwise, only mixture standards act to define the
calibration model.
Consequently, it is possible to calculate the residual between

p and p̃. If the residual shows a clear minimum, p fulfills the
area correlation constraint.

∑= − ̃ =p p rr ; ssq i
2

(8)

Figure 4 displays the value of log(ssq) vs α and β in the
column space of the three simulated cases from left to right.
The two left panels of Figure 4 demonstrate that applying

the area correlation constraint in the presence of two proper
calibration samples in a three-component system will generate
a unique solution, as is clear in cases 1 and 2. In addition, in

Figure 4. Values of log(ssq) vs α and β in the column space of simulated cases 1, 2, and 3, respectively.

Figure 5. a, b, and c are the concentration profiles of the analyte in data set 1, under non-negativity constraint, under non-negativity and normalized
to the maximum value of the standard part, and under non-negativity and area correlation constraint, respectively.
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case 3, which does not contain proper calibration samples, it is
not possible to get a unique solution, because all profiles in the
space fulfill the constraint as well.

■ RESULTS AND DISCUSSION

In order to investigate the effect of area correlation constraint
on the accuracy of MCR-ALS analyte quantification results in
the presence and absence of proper calibration samples, the
simulated and experimental examples have been studied and
the results are discussed below.
Data Set 1: Kinetic-Spectrophotometry. In this case,

the four simulated data matrices were augmented column-wise,
i.e. in the time direction. As explained above, the first matrix
corresponds to a standard analyte solution with known
concentration and the two next ones are corresponding to
proper calibration samples, also with known analyte concen-
trations, but in the presence of interferents. The last sample
contains interferents and analyte at an unknown concentration
with the aim of its quantification in this mixture.
First, the area of feasible solutions for the analyte was

computed in the concentration space of the augmented
multivariate data matrix, by only applying the non-negativity
constraint. Since every point in this AFS can be transformed to
a concentration profile, the feasible band for the analyte profile
is shown in Figure 5a. In the next step all of the analyte’s
concentration profiles which were calculated under non-
negativity constraint were normalized to the maximum value
of the standard part as illustrated in Figure 5b. It is clear that
the result is nonunique, except for the pure analyte sample (the
first one). To reach uniqueness, additional information should
be provided during the ALS procedure. Thus, in the next step,
the area correlation constraint was applied to all concentration
profiles from the area of feasible solutions of the analyte under
non-negativity. In all the profiles a single one occurs which

fulfills the area correlation constraint, as seen in the
visualization section. The corresponding concentration profile
is shown in Figure 5c, illustrating the unique resolution of the
analyte profile in this case. The extent of rotational ambiguity
on the accuracy of quantitative results obtained from soft-
modeling methods has been investigated in detail in the
presence of non-negativity and species correspondence. The
resulting uncertainty was dramatically large in the case with
complete profile overlapping in one of the data modes.26

However, the proposed procedure can guarantee the accuracy
of results for this case in the presence of proper calibration
samples and area correlation constraint as shown in simulation.

Data Set 2: Nontrilinear Chromatography with
Spectral Detection. Nontrilinearity is an intrinsic property
of chromatographic-spectral data sets because total reprodu-
cibility in the concentration profile of compounds in different
experimental runs can seldom be achieved. A data structure of
this type was employed to show the ability of area correlation
constraint in dealing with nontrilinear data sets. The above-
described four simulated data matrices were augmented
column-wise, i.e. in the direction of the elution time. The
first sample is taken as a standard analyte solution with known
concentration, and the next two are proper calibration samples
with similar qualitative composition as unknown mixtures and
with known analyte concentration. The last sample is a truly
unknown mixture with the aim of analyte quantitation.
Similar to the previous case, the area of feasible solutions for

the analyte was computed in the concentration space of the
augmented multivariate data matrix, by only applying the non-
negativity constraint. Since every point in this AFS can be
transformed to a concentration profile, the feasible band for
the analyte profile is shown in Figure 6a. In the next step, all of
the concentration profiles of analyte which were calculated
under non-negativity constraint were normalized to the
maximum value of the standard part as illustrated in Figure

Figure 6. a, b, and c are the concentration profiles of the analyte in data set 2, under non-negativity constraint, under non-negativity and normalized
to the maximum value of the standard part, and under non-negativity and area correlation constraint, respectively.

Figure 7. a, b, and c are the concentration profiles of the analyte in data set 3, under non-negativity constraint, under non-negativity and normalized
to the maximum value of the first standard part, and under non-negativity and area correlation constraint, respectively.
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6b. It is clear that the result is nonunique except for the pure
analyte sample (the first one). In the next step, the area
correlation constraint was applied to all concentration profiles
from the area of feasible solutions of the analyte under non-
negativity. In all profiles a single one occurs which fulfills the
area correlation constraint. The corresponding concentration
profile is shown in Figure 6c, illustrating the unique resolution
of the analyte profile in this case. Again, the range of feasible
solution of analyte in concentration mode is reduced to a
single point, owing to useful information added to the analysis.
Data Set 3: Three-Component Mixture and Kinetic-

Spectrophotometric Data (No proper calibration). In
this case, the four simulated kinetic-spectrophotometric data
matrices were augmented column-wise, i.e. in the time
direction. As explained above, the first three matrices
correspond to a standard analyte solution with known
concentration and in the absence of interferents. The last
sample contains interferents, and the analyte at an unknown
concentration, with the aim of its quantification in this mixture.
Similar to other cases, in the first step the analyte area of
feasible solutions was computed in the concentration space of
the augmented multivariate data matrix, by only applying the
non-negativity constraint. Since every point in this AFS of
analyte is transformed to a concentration profile, the feasible
band for the analyte profile is shown in Figure 7a. In the next
step, all of the analyte’s concentration profiles which were
calculated under non-negativity constraint were normalized to
the maximum value of the first standard part as indicated in
Figure 7b. It is clear that the result is nonunique, except for the
pure analyte samples (the first one).
In the next step, the area of correlation constraint was

applied to all the solutions in the AFS of analyte under non-
negativity. All profiles in the AFS fulfill the constraint as well,
so the extent of rotational ambiguity did not change (Figure
7c).
Effect of Noise in the Performance of the Proposed

Procedure. Analysis of a simulated noisy data set helps to
provide an insight about the problem in real experimental
systems. Data set 1 is used to show the efficiency of the
proposed method in nonideal situations. Hence a homosce-
dastic noise equivalent to 0.7% of the maximum values of the
signals was added to data set 1. Figure 8 displays of the values
of log(ssq) vs α and β in the column space of data set 1 in the

presence of noise. It is clear that a single point exists in the U-
space of the data which fulfills the area correlation constraint in
the presence of proper calibration samples.

Experimental Data Set. In order to discuss the ability of
area correlation constraint in the presence of noise, a real
example is discussed. In this case, 12 kinetic-fluorescence data
matrices were augmented column-wise in the direction of
decay time. Two pure standards are available, three proper
calibration samples which contain interferent and the
remaining seven ones were considered as unknown mixtures.
Similar to the simulated cases, the analyte area of feasible
solutions was first computed in the score space of the
augmented data matrix, only under non-negativity. All points
in the AFS were transformed to analyte concentration profiles
as shown in Figure 9a. More information is available about the
studied system, i.e. known concentration of analyte in the first
five samples. Thus, in the next step, besides non-negativity, the
area correlation constraint was applied as additional
information to obtain uniqueness. Only one profile fulfill the
area correlation constraint as well which is shown in Figure 9b,
that illustrates the achieved uniqueness.
The specific quantitation results are displayed in Table 1 in

both conditions for application of constraint. In the presence
of only non-negativity, a range of analyte concentrations can be
predicted. Table 1 provides the upper and lower analyte
predictions in this particular case. The smaller concentration
value corresponds to the lower analyte profile of its AFS, while
the larger corresponds to the upper AFS profile. Large relative
uncertainties are derived from these lower and upper analyte
predictions, and from Table 1 its range can be estimated to be
from −40% to +80%. However, in the case with both non-
negativity and area correlation constraints, the predicted values
are unique (Table 1). Moreover, Figure 10 shows the
satisfactory regression plot of predicted ciprofloxacin concen-
tration versus nominal values in the unknown samples under
both constraints, leading to a reasonable average error of 0.03
mg L−1 (ca. 10% of relative error with respect to the mean
calibration concentration).

■ CONCLUSIONS AND OUTLOOK
Noise free simulated data sets were analyzed by MCR-ALS
optimization under proper constraints during the least-squares
optimization to retrieve the final profiles, namely non-
negativity in all profiles in both data modes and area
correlation constraint for the analyte concentration profile. In
the two first simulated data sets, the resolved analyte profiles
were virtually the same as the simulated ones in the simulated
data sets. Area correlation constraint and non-negativity for
both concentration and spectral profiles were imposed as
suitable constraints which lead to the acceptable analytical
results.
The uniqueness property, which ensures the accuracy of

qualitative and quantitative application of soft modeling
results, has immense consequences in second-order analytical
calibration. Uniqueness provides the possibility of quantitating
analytes in a sample containing unexpected constituents. The
main conclusion of the present study is that the area
correlation constraint in the presence of proper calibration
samples which have qualitatively similar composition as
unknown data sets can guarantee accurate solutions in
multivariate curve resolution methods even in data sets with
nontrilinear structure. The composition of proper calibration
samples is a key factor in using this constraint. The proper

Figure 8. Values of log(ssq) vs α and β in the column space of the
nonideal data set 1.
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calibration data sets should contain all interferents which are
expected in future/later unknown samples. The number of
calibration samples which should contain all interferents must
be one unit less than the chemical rank of the unknown
sample. The presently described procedure is a new possibility
for general cases of second-order multivariate calibration data
in the presence of unknown interferents or in more difficult
cases.
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Project No. PICT-2016-1122) for financial support.

■ REFERENCES
(1) Tauler, R.; Kowalski, B.; Fleming, S. Anal. Chem. 1993, 65,
2040−2047.
(2) Tauler, R.; Barcelo,́ D. TrAC, Trends Anal. Chem. 1993, 12, 319.
(3) Tauler, R. Chemom. Intell. Lab. Syst. 1995, 30, 133−146.
(4) Tauler, R.; Smilde, A.; Kowalski, B. J. Chemom. 1995, 9, 31−58.
(5) Golshan, A.; Abdollahi, H.; Beyramysoltan, S.; Maeder, M.;
Neymeyr, K.; Rajko,́ R.; Sawall, M.; Tauler, R. Anal. Chim. Acta 2016,
911, 1−13.
(6) Ahmadi, G.; Abdollahi, H. Chemom. Intell. Lab. Syst. 2013, 120,
59−70.
(7) Ahmadi, G.; Tauler, R.; Abdollahi, H. Chemom. Intell. Lab. Syst.
2015, 142, 143−150.
(8) Rajko,́ R.; Abdollahi, H.; Beyramysoltan, S.; Omidikia, N. Anal.
Chim. Acta 2015, 855, 21−33.
(9) Beyramysoltan, S.; Abdollahi, H.; Rajko,́ R. Anal. Chim. Acta
2014, 827, 1−14.
(10) Beyramysoltan, S.; Rajko,́ R.; Abdollahi, H. Anal. Chim. Acta
2013, 791, 25−35.
(11) Olivieri, A. C.; Tauler, R. J. Chemom. 2017, 31, e2875.
(12) Omidikia, N.; Abdollahi, H.; Kompany-Zareh, M.; Rajko,́ R.
Anal. Chim. Acta 2016, 939, 42−53.
(13) de Oliveira Neves, A. C.; Tauler, R.; de Lima, K. M. G. Anal.
Chim. Acta 2016, 937, 21−28.
(14) Manne, R. Chemom. Intell. Lab. Syst. 1995, 27, 89−94.
(15) Alinaghi, M.; Rajko,́ R.; Abdollahi, H. Chemom. Intell. Lab. Syst.
2016, 153, 22−32.
(16) Tavakkoli, E.; Rajko,́ R.; Abdollahi, H. Talanta 2018, 184,
557−564.

Figure 9. Concentration profiles of the analyte in the experimental data, under non-negativity constraint (a) and under non-negativity and area
correlation constraint (b).

Table 1. Quantification Result of Experimental Data Set in
Two Different Conditions

Predictions under constraint(s)

Only non-
negativity

Sample Nominal Upper Lower Non-negativity and area correlation

1 0.22 0.27 0.12 0.24
2 0.24 0.35 0.11 0.3
3 0.19 0.26 0.4 0.22
4 0.14 0.21 0.03 0.16
5 0.13 0.19 0.08 0.16
6 0.17 0.25 0.10 0.22
7 0.18 0.21 0.02 0.21
8 0.08 0.13 0.05 0.10
9 0.08 0.14 0.04 0.09
10 0.08 0.14 0.03 0.09

Figure 10. Regression plot of predicted ciprofloxacin concentration vs
nominal values in the unknown samples under non-negativity and
area correlation constraint.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.8b00336
Anal. Chem. 2018, 90, 9725−9733

9732

mailto:abd@iasbs.ac.ir
http://orcid.org/0000-0003-4276-0369
http://orcid.org/0000-0002-5994-6365
http://dx.doi.org/10.1021/acs.analchem.8b00336


(17) Olivieri, A. C.; Arancibia, J. A.; Muñoz de la Peña, A.; Duran-
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