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A B S T R A C T

Functional data analysis (FDA) arises as a promissory auxiliary methodology designed to help the analytical
chemists, especially chemometricians. However, although the innovative ideas of this approach have barely
spread into the chemical research field. In this work, a novel approach for aligning three-way chromatographic-
spectral data based on FDA methodology is proposed. Unlike most of the available algorithms, this novel method
allows performing data alignment when the test data matrix contains unexpected chemical interferences.
Simulated and experimental analytical systems composed of calibrated analytes and potential interferents in the
test samples are studied. The experimental system corresponds to the determination of the four polycyclic
aromatic hydrocarbons (benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[b]fluoranthene and benzo [k]fluor-
anthene) in the presence of benzo[j]fluoranthene and benzo[e]pyrene as potential interferences. These com-
pounds are priority pollutants; hence, its reliable quantification in environmental samples is an analytical
challenge. The method consists in decomposing the three-way data in each sensor mode and in making a
functional alignment of the pure vectors obtained from the individual chromatograms of each analyte and in-
terferent. The functional preprocessing step enables the analysis of the data set with second-order multivariate
calibration algorithms, such as PARAFAC. The results illustrate that the proposed method restores the trilinearity
of the three-way data, thus being able to successfully quantify the analytes in the presence of the interferences,
that is, exploiting the second-order advantage. MCR-ALS is also applied to both simulated and experimental data
to evaluate the performance of the PARAFAC second-order calibration model proposed. The performance of the
PARAFAC and MCR-ALS models are compared and discussed.

1. Introduction

Three-way chromatographic data are increasingly used in analytical
chemistry research since, by appropriate processing with chemometric
algorithms, they yield quantitative information of the analytes in the
presence of potential interferents by using simple chromatographic
procedures that meet most of the Green Analytical Chemistry principles
[1–5]. Among a large repertoire of options, high-performance liquid
chromatography (HPLC), combined with spectroscopic techniques,
such as UV–visible diode-array detection (DAD) or fast-scanning
fluorescence detection (FSFD), is suitable to obtain three-way data,
which are usually called spectral-elution time matrices. These metho-
dological alternatives were profusely discussed in recent reviews
showing their latest applications in the biomedical, environmental and
food analysis fields [6–8]. Nevertheless, most of the examples use
UV–visible DAD detection and, surprisingly, very few reported works

concerning the processing of three-way HPLC -FSFD. Previous works
used a videofluorimeter as a detector [9]. However FSFD is usually
preferable, for instance for determining of polycyclic aromatic hydro-
carbons (PAHs) [10–12], naphthalenesulphonate derivatives [13],
fluoroquinolones [14] and metabolic disorder marker pteridines [15,
16].

The experimental response is structured as a data matrix, where
each column corresponds to a wavelength and each row corresponds to
a different elution time. The three-way arrays are processed by second-
order multivariate calibration methodologies, allowing a successful si-
multaneous quantification of the analytes of interest, even when full
selectivity in the chromatographic separation is not achieved. These
approaches give access to reliable analytical information even in the
presence of unexpected compounds (i.e., exploiting the second-order
advantage). In the last few years, several works discussing the benefits
and drawbacks of the combination of multivariate calibration and
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spectroscopic-chromatographic techniques have been published. In
each case, a large number of successful applications of the analyzed
strategies are shown [17–23].

From the above mentioned works, it is clear that liquid chromato-
graphy presents certain experimental facts that define the chemometric
model chosen. One of these facts, temporal misalignment in the data,
which means that a given constituent peak in different chromato-
graphic runs appears at different positions and/or with different shapes
along the elution time axis, is one of the most difficult problems to
model [20]. The retention time shifts critically compromise the che-
mometric resolutions when complete chromatographic data are used.
Specifically, this situation is commonly known as “trilinearity-
breaking” [24] and is described as leading to a loss of the property of
trilinearity in the data, which basically requires that each chemical
component should present a unique profile (both in the spectral and
elution time mode) in all samples [24].

It is worth mentioning that the problems mentioned in the discus-
sion are not only typical for liquid chromatography. In fact, the afore-
mentioned phenomena can also affect gas chromatography [25,26].
Although in this report the discussion is circumscribed to liquid chro-
matography, it would be interesting in the future to analyze gas chro-
matography experimental data with the method presented in this work.

In general, in the chromatographic data, retention time shifts are
closely linked to the elution-time mode, and then it is said that the
latter is the mode which is suspected of breaking the trilinearity. These
types of cases coincide with the one presented in this work, since elu-
tion-time is the only non-reproducible mode. This condition, which is
usually referred to “alignment problem”, is ubiquitous in the liquid
chromatographic topic.

Although there exists a wide variety of chemometric methods that
can achieve the second-order advantage, only some can deal with data
including shifts and/or deformations in the chromatographic bands of
the different sample components [20]. In theory, Multivariate Curve
Resolution-Alternating Least Squares (MCR-ALS) and Parallel Factor
Analysis 2 (PARAFAC2) models process non-trilinear data properly.
Nevertheless, in a recent paper, it is shown that for systems with re-
markable chromatographic artifacts, the results for PARAFAC2 may not
be entirely appropriate [27]. However, it should be noted that PAR-
AFAC2 is also a proper option to solve LC data with alignment problems
in many experimental systems of varying complexity [28]. On the other
hand, in a recent work it has been shown that, for extremely complex
analytical systems, the accepted expressions for analytical figures of
merit do not fully represent the predictive capability of the MCR-ALS
model since they are often overestimated [29]. Therefore, whenever
possible, it is preferable to restore the trilinearity of the data, given that
linear models tend to be more robust or, at least, to have more reliable
performance parameters [29–31].

Restoring trilinearity often involves aligning the chromatographic
profiles of the analytes in the different samples before the construction
of the second order calibration model. Several methods have been de-
veloped to restore trilinearity, which can be classified into two large
groups: (1) methods that seek the maximum correlation between
chromatograms for analyte peak alignment, and (2) methods that try to
take full advantage of the matrix data structure. In the former group,
the multi-wavelength correlation optimized warping (COW) [32,33]
and their variants [34] stand out. In the second group the rank align-
ment [35], and the iterative target transformation factor analysis
(ITTFA) [36], are found among others. It is also worth mentioning that
the methods in the first group have some implementation problems:
they generally need to optimize a series of input parameters, also
change the shape of the peak (especially in COW [37]) and do not fully
use the spectral information from the datasets with multi-way detectors
[38]. Recently, a third variant has been published, where a new com-
bination of MCR-ALS and COW with PARAFAC is developed to exploit
the second-order advantage in complex chromatographic measure-
ments [39]. In MCR-COW, the complexity of the chromatographic data

is reduced by arranging the data in a column-wise augmented matrix,
using MCR bilinear model and aligning the resolved elution profiles by
means of COW. Then, the aligned chromatographic data is then de-
composed using a PARAFAC trilinear model of in order to obtain the
information required.

A few years ago, Ramsay and Silverman [40,41] proposed a whole
new approach to deal with problems of a similar nature, which was
called functional data analysis (FDA). The methodology is based on
thinking the experimental data as the manifestation of an underlying
functional dependency between the observed variables. Generally
speaking, in spectroscopic or chromatographic data, the variable of
interest is often measured as a function of wavelength, frequency, time,
or some other continuum. Despite this fact, the predominant view in-
volves processing the data with chemometric algorithms that treat them
as if they were discrete sets. The principal component analysis, partial
least squares and related techniques, even Parallel Factor Analysis
(PARAFAC), were not specifically proposed for the analysis of spectral
or chromatographic data: they consider the multidimensional data
block as a set of n different variables that can be ordered in any way to
give equivalent results [42]. On the contrary, the framework proposed
by Ramsay and Silverman advocate the use of mathematical tools that
take advantage of the singular characteristics of chemistry data. Re-
cently, a review reports giving an overview on applications of FDA to
chemistry data have been published [43,44]. These reports highlight
that FDA is not yet widely used to analyze chemistry data, and both
papers contain very few examples of chemometric applications of FDA.
However, as regards the functional analysis of chromatographic data,
there is a growing interest in FDA-based methods as they can provide
better solutions than usual approaches, especially in relation to the
alignment problem [38,45,46]. Nevertheless, these methods align only
first-order chromatographic data, while, to the best of our knowledge,
FDA treatment of the three-way chromatographic-fluorescence data
with second-order advantage has not been reported yet.

In order to exploit the second-order advantage, an alignment algo-
rithm based on FDA with trilinear decomposition methodologies is
proposed. Briefly, the new algorithm decomposes the three-way data in
their two modes (spectral and elution-time vectors). It uses an adequate
basis function to process the nonlinear mode, aligns the functionalized
pure vectors and reshapes the transformed vectors in matrices, thus
restoring the trilinearity of the data. The algorithm is referred to as
FAPV (Functional Alignment of Pure Vectors).

In summary, in this work, both simulated and experimental three-
way HPLC-FSFD systems with trilinearity breaking elution-time mode
are processed through a new alignment algorithm based on functional
data analysis (FAPV) and analyzed using a PARAFAC model.
Additionally, an exhaustive comparison of this model with the MCR-
ALS methods is performed.

The simulations provide a series of chromatographic scenarios with
a huge variety of artifacts (changes in peak position and band shapes) in
order to examine the capacity of the new algorithm to restore the tri-
linearity of the data.

The experimental data system corresponds to the analysis of four
polycyclic aromatic hydrocarbons (PAHs), benzo[b]fluoranthene (BbF),
benzo[k]fluoranthene (BkF), dibenzo[a,h]anthracene (DbA) and benzo
[a]pyrene (BaP), in water samples that also contain two potential in-
terferents, benzo[j]fluoranthene (BjF) and benzo[e]pyrene (BeP). The
PAHs are ubiquitous and toxic compounds formed by two or more
aromatics rings originated from the incomplete combustion of organic
matter [47]. For the target analytes, genotoxic and mutagenic activities
have also been proved [48]. The regulations on the identification and/
or determination of PAHs in environmental samples are continually
revised, demanding ever lower maximum allowed values [49–51]. It is
crucial to promote improved analytical techniques for determining of
these compounds in different environmental matrices. The present re-
port indicates that our method is an adequate analytical alternative for
simultaneous quantification of BaP, DbA, BkF, and BbF, in the presence

J.M. Lombardi, S.A. Bortolato Microchemical Journal 142 (2018) 219–228

220



of two potential interferents in real samples, using high-performance
liquid chromatography coupled to fast scanning fluorescence spectro-
metry under isocratic conditions, which notably reduces the analysis
time.

2. Theory

2.1. FDA background and basic concepts

Functional data analysis proposes a new action field in chemo-
metrics. The statistical and mathematical methods make this new ap-
proach have a unique ability to deal with functional data. FDA methods
can unravel complex data structures which may be characterized as
continuous functions, such as, data arising from chromatographic or
spectroscopic analyses, where they are represented as a function of time
or wavelength, respectively.

The fundamental assumption of FDA is that there are functions
which explain the behavior of the recorded data, and proposes the re-
placement of the raw data by these functions, or approximations
thereof, in order to perform the respective analysis. While it is true that
FDA has been used successfully in a wide variety of research areas
(medicine [52], economics [53], etc.), it is still an incipient metho-
dology in chemistry. In chemometrics, for instance, the reported works
are yet very scarce, despite the fact that the idea of representing spectra
with functions was already introduced in 1993 [54].

This section briefly sets forth the basic concepts used to expand a
discrete and finite set of data on a complete basis of functions. When
working with ‘soft’ data sampled in very short time intervals, it is lo-
gical and almost intuitive to think that the information obtained is the
product of the discrete manifestation of an underlying function. Once
the functional structure of the information has been identified, it is
convenient to analyze the data in a functional space that is able to
describe its behavior more completely.

FDA begins by acquiring a sequence of observations y= (y1, y2,
…,yn), measured in (t1, t2, …,tn) times. The functional data are typically
observed as a discrete number of n-tuples (tj, yj) where yj is the function
value at time tj (it should be noted that tj is not always referred as time).
There are several continua over which data can be measured, including
wavelength, frequency, chemical shift, among others. In this paper, tj is
the chromatographic elution time. FDA approach supposes that there
exists some function x(t) that underlies the recorded data, and it as-
sumes that this function satisfies the requirements of continuity and
derivability, at least in the first derivative (i.e., two adjacent data
points, yj and yj+1 should have similar values). Nevertheless, this fact
may not be so clear in raw data due to observational error and noise.
Consequently, the following general model for each yj observation
could be proposed:

= +y x ε ε N σ; ~ (0, )j t j j( )
2

j (1)

where term εj represents the error of the fit. εj values must be in-
dependent with mean zero and a finite variance (εj~(0,σ2).

The precision with which the behavior of the data is estimated at a
point tj, depends on certain factors that must be considered especially
when interpolating, among them are the density of the values of tj with
respect to the curvature of the function ∂

∂

x

t
t2 ( )

2 estimated at that point, and
the intensity and type of error in the measurements.

If the observations are arranged in a vector y=(y1, y2, …, yn), Eq.
(1) is transformed into

= +xy t e( ) (2)

where y, x(t), and e are column vectors of length n. In general, the
function x(t) cannot be represented analytically, but it admits an ap-
proximation through an expansion in the basis functions Ψk={ψk(t)}:

∑=
=

x c ψt( )
k

K

k k t
1

( )
(3)

A basis function system consists of a set of independent functions ψk,
k=1, 2, …, K, so that a linear combination of these approximates the
function x(t) for an appropriate K, being K=number of basis functions.
The ratio between the number of basis functions and the number of
observation defines the detail degree with which you want to describe
the discrete phenomenon. It is advisable to find a balance between
useful information and overfitting.

There are many types of basis function, and an adequate choice
should help to highlight those aspects of the data that are useful for the
analysis. In the case of chemometric applications, Fourier and spline
basis function can be mentioned [43,55], while in the case of applica-
tions in other scientific areas, it has been shown that function systems
including wavelets, exponential or power bases are very useful as well
[40]. Fourier basis function are especially suitable for data with some
periodicity. For strictly non-periodic data, other basis function may be
considered in order to obtain a better representation of the underlying
functional form of the signal [56–59]. In our case, splines and Gaussian
basis have been used to represent the chromatographic data. Since the
implementation of the basis function follows a common structure, only
the elementary details of generic basis functions will be discussed in
this section. For more details, see Ref. [44].

Regardless of the chosen basis function, solving the functionaliza-
tion problem implies estimating the coefficients ck of Eq. (3). The
coefficients ck can be calculated using least squares criterion, in which
the mean square error (MSE) is meant to be minimized:

∑ ∑= ⎡

⎣
⎢ − ⎤

⎦
⎥

= =

MSE
n

y c ψ1

j

n

j
k

K

k k t
1 1

( )

2

j
(4)

Eqs. (3–4) can be written in matrix terms to implement the least
squares criterion, according to:

= ′x t c ψ( ) (5)

= − ′ − = −MSE y Ψc y Ψc y Ψc( ) ( ) ‖ ‖2 (6)

where c is a vector containing the coefficients for the basis functions, ψ
is a vector containing the values of the basis functions at time tj, and Ψ
is a n×K matrix that contains the values of ψk(tj), k=1, …, K; j=1,
…, n.

Solving Eq. (6) according to the minimization criterion, we obtain
the estimates for the coefficients c of the function:

= ′ ′−c Ψ Ψ Ψ y( ) ( )1 (7)

Finally, Eq. (5) is calculated with the estimated coefficients in order
to obtain an effective functional representation x(tj) of our original data
vector y.

2.2. Functional Alignment of Pure Vectors (FAPV)

FAPV algorithm allows restoring trilinearity in three-way data.
Although it is not discussed here, it is easily extendable to multi-way
data. The only condition for its application is that data hold one mode
with reasonable selectivity both for each analyte and interferent, i.e.,
the pure analyte signal must be different enough so that the processing
algorithm chosen retrieves them adequately [60]. In our case, the re-
quired condition is met because the analytes have reasonably different
fluorescence emission spectra (see Ref. [12]).

In a first phase, the hyper matrix Dcal is built from the calibration
samples experimental data and can be expressed as

= ∈ ×D D D{ } ;cal i N i
L T

alc

while a hyper matrix data Dtest is also defined for the test samples as

= ∈ ×D D D{ } ;test i N i
L T

test
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where Di indicates the ith HPLC-FSFD matrix of each data set, L re-
presents the number of sensors of the selective mode (spectral), T is the
number of sensors of the non-aligned mode (elution-time), Ncal is the
number of the total samples of the calibrated data set, and Ntest is the
number of total samples of test data set.

Once the work variables have been defines, the algorithm runs
through the following sequence:

(1) Estimating the spectra of selective mode using the SIMPLISMA [61]
auxiliary routine. Once the initial estimates have been resolved, a
new matrix E with the pure analytes and interferents spectra ob-
tained from Dcal and Dtest is built.

The algorithm uses SIMPLISMA to estimate the initial spectra.
Although it has been reported that SIMPLISMA could promote the al-
gorithm to end at local minimums, in our case, provided adequate in-
itial estimates for the spectra in the analyzed systems [62]. When
SIMPLISMA is not useful, it is convenient to use another initial esti-
mator of the spectra, such as an initialization based on random ortho-
gonalized values, or known experimental profiles, or singular value
decomposition vectors or direct trilinear decomposition [63].

(2) Estimating the misaligned elution-time profiles of non-selective mode
from E, Dcal, and Dtest.

(3) Aligning the pure vectors of elution-time mode based on FDA approach.

In this step, two FDA-based alternatives can be selected:

a. The preservation of the shape of the chromatographic band of each
analyte. The functionalization provides results visually more similar
to the experimental data but the multilinearity is not restored
completely, thus the results of a PARAFAC analysis are not ade-
quate.

b. The preservation of the area of the chromatographic band of each
analyte. In this way, the multilinearity of the data is completely
restored.

In our case, we selected the second option. The conservation of the
area can be evaluated under a “classic” paradigm by using a type 1
norm. However, a better estimation of the area may be achieved by
using an FDA approach.

(4) Reshaping each sample data by matrix product between the pure
vectors (spectra and elution-time profiles).

(5) Second-order calibration.

Now we will explain the algorithm in terms of the proposed trans-
formations and the basis functions used. Let Dcal and Dtest be second-
order tensors which contain all the sample calibration data and test
data, respectively,

= × ×D d( )cal t λ i
cal

T L N, , cal1 (1)

= × ×D d( )test t λ i
test

T L N, , test2 (2)

where T indicates the number of sensors of the non-aligned mode (i.e.,
the chromatographic way), t=1, …,T, L is the number of sensors of the
selective mode (spectral way) where λ=1, …,T, i1 is the i1-th cali-
brated sample with i1=1, …, Ncal, and i2 is the i2-th test sample, with
i2=1, …, Ntest.

(1) Estimating the spectra of selective mode using the SIMPLISMA algo-
rithm.

→ = ×D N ε eE: ( , , ) ( )cal a λ j
cal

L N1 cal , a1
F (3)

+ → = × +D N N ε eE: ( , , ) ( )test a i λ j
test

L N N2 test , a i2
F (4)

where j1 is the j1-th analyte with j1=1,…, Na, Na is the total number of
analytes, j2 is the j2-th compound with j2=1, …, Na+Ni, Ni is the total
number of interferents, and ε indicates the noise signal. The columns of
Ecal are vectors that represent the pure spectra estimation of all ana-
lytes, while the columns of Etest contain the pure spectra estimation of
all analytes together whit the interferents.

Once the initial estimates have been resolved, the following trans-
formation is proposed

→ = × +eE E E: ( , ) ( )λ j
test

L N N3 cal test , a i2
F (5)

where E is a new matrix built with the analytes spectra obtained from
Ecal, and the interferents spectra obtained from Etest.

(2) Estimating the misaligned elution-time profiles of non-selective mode.

Two new tensors with analytical sense are defined:

= × ×C c( )cal t i j
cal

T N N, , cal a1 1 (6)

= × × +C c( )test t i j
test

T N N N, , test a i1 2 (7)

where Ccal contains the elution-time profile of each analyte in each
calibration sample while Ctest contains the elution-time profile of each
analyte and interferent of each sample of the test set. Since the chro-
matographic profile of each component may not be aligned, different
chromatographic profiles for each component from every sample can be
obtained.

From Eqs. (6–7), each element of the tensors on Eqs. (1–2) can be
estimated according to:

∑= +d e c ελ t i
cal

i

N

λ j
cal

t i j
cal

λ t i
cal

, , , , , , ,

cal

1
1

1 1 1 1


(8)

∑= +d e c ελ t i
test

i

N

λ j
test

t i j
test

λ t i
test

, , , , , , ,

test

2
2

2 2 2 2


(9)

To solve Eqs. (8–9), first Ccal and Ctest must be estimated. In order to
do this, the generalized inverse of the vector space E is calculated for
each data set (Vcal for calibration set, and Vtest for test set),

= = ×vV E ( )i λ
cal

N L
−1

cal cal , a1 (10)

= = + ×vV E ( )i λ
test

N N L
−1

test test , a i2 (11)

Finally, individual elution-time vectors are estimated as an ortho-
gonal projection of Vcal and Vtest on each matrix of each data set:

̂ ∑=c d vt i j
cal

λ

L

λ t i
cal

j λ
cal

, , , , ,1 1 1 1


(12)

̂ ∑=c d vt i j
test

λ

L

λ t i
test

j λ
test

, , , , ,1 2 2 2


(13)

which are sorted in the estimated tensors,

̂= × ×C c( )cal t i j
cal

T N N, , cal a1 1
 (14)

̂= × × +C c( )test t i j
test

T N N N, , test a i1 2
 (15)

(3) Aligning the pure vectors of elution-time mode based on FDA approach.

Gaussian basis functions which will be used in the reshaping of the
aligned data, are defined,

= = − −( )φ φ
πσ

e{ } 1
(2 )x

μ σ
x μ

σ( )
,

2 0.5
2

2

(16)

≔x x( )t t T

⊂x xt
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To evaluate the projection coefficients

̂∑=C φ φ c|cal μ σ x
t

T

x
μ σ

t i j
cal

, ( ) ( )
,

, ,i j k t(:, 1, 1) 1 1


(17)

it is required to define a discrete and finite partition in xt≔ (xt)T so that
its dimension is equal to T. A uniform and equidistant partition is
convenient.

= = − −( )φ φ
πσ

e{ } 1
(2 )x

μ σ
x μ

σ( )
,

2 0.5
2

t

t 2

(18)

̂∑= ⎛

⎝
⎜

⎞

⎠
⎟

− −( )μ σ arg max φ c,i j
cal max

i j
cal max

μ σ
t

T

x
μ σ

t i j
cal

, , , ( )
,

, ,t1 1 1 1 1 1
(19)

̂∑= ⎛

⎝
⎜

⎞

⎠
⎟

− −( )μ σ arg max φ c,i j
test max

i j
test max

μ σ
t

T

t
μ σ

t i j
test

, , , ( )
,

, ,2 2 2 2 2 2
(20)

The components of the vector (μi∗, j∗
cal or test−max,σi∗, j∗

cal or test−max)
contain the values of μ and σ for which the projection coefficient
( ̂∑ ∗ ∗

φ ct
T

x
μ σ

t i j
cal or test

( )
,

, ,t
) is maximized for the same i1, j1 parameter set (for

calibration samples) or i2, j2 parameter set (for samples test).
Now we build the matrices Acal and Atest so that they contain the

estimation of the area of each j1 analyte from i1 sample of the calibrated
set, and for each j2 analyte or interferent from i2 sample of the test set,
respectively:

̂∑= =a cA ( )i j N N
t

T

t i j
cal

cal , , , ,cal a1 1 1 1 (21)

̂∑= =+a cA ( )i j N N N
t

T

t i j
cal

test , , , ,test a i2 2 2 2 (22)

From Eqs. (19–22) the following matrices are proposed as the re-
placement of non-trilinear experimental ones, both for the calibration
and test data sets (dt, λ, i2

caland dt, λ, i2
test in Eqs. (1–2), respectively)

∑=
− −

d e φ aλ t i
acal

j

N

λ j
cal

x
μ σ

i j, , , ( )
,

,

a

t
i j
cal max

i j
cal max

1
1

1
1, 1 1, 1

1 1


(23)

∑=
+ − −

d e φ aλ t i
atest

j

N N

λ j
atest

x
μ σ

i j, , , ( )
,

,

a i

t
i j
test max

i j
test max

2
2

2
1, 2 1, 2

2 2
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(4) Reshaping each sample data

Finally, from the individual matrices of Eqs. (23–24), the following
estimated sensors are built for the second order calibration

= × ×D d( )acal λ t i
acal

L T N, , cal1
 (25)

= × ×D d( )atest λ t i
atest

L T N, , test2
 (26)

where Dacal and Datest are tensors whose trilinear structure has been
completely restored, and which contain all the information of the raw
data tensors (see Eqs. (1) and (2)), but aligned on each elution-time
sensor.

(5) Second-order calibration.

In the second order calibration step, both in PARAFAC and MCR-
ALS, the data used are the tensors Dacal and Datest which are rearranged
or reshaped according to the algorithm requirements.

Fig. 1 shows a schematic representation of the FAPV algorithm used
to analyze three-way data corresponding to a typical calibration sam-
ples set (three calibrated analytes).

2.3. Simulations

The data were simulated to represent numerous scenarios mi-
micking elution time-fluorescence emission data, similar to those ex-
perimentally recorded when running chromatographic measurements
with spectrofluorimetric detection. In all cases, the systems generated
had three calibrated analytes and two potential interferents in the test
samples along with the analytes. A detailed description of the simulated
data is shown in Supporting Information.

2.4. Second-order calibration

To evaluate the performance of the FAPV algorithm, PARAFAC [63]
and MCR-ALS [64] second-order calibration models were used, which
were implemented following the general guidelines discussed in the
aforementioned references. In both cases, the second-order calibrations
were performed by imposing non-negativity constraint on both di-
mensions of the data, and unimodality on the temporal dimension. On
the other hand, in the MCR-ALS model an augmented data matrix was
created from each test data matrix and the calibration data matrices. If
all the matrices are of size T× L, where T is the number of data points
in the dimension of the retention times and L the number of fluores-
cence wavelengths, the direction of rows is considered the time direc-
tion, and the direction of columns the spectral direction. Augmentation
can be performed in either direction, depending on the mode that
breaks the trilinearity. In our case, augmentation was implemented in
the time direction (i.e. column-wise augmentation) because of the
presence of warping effects and retention time shifts between different
chromatographic runs. For further information, see Ref. [20].

2.5. Calculations

FAPV algorithm and simulations were made using in-house Python
3.0 [65] routines, which are available from the authors on request. The
PARAFAC and MCR-ALS algorithms were written for Python 3.0 ac-
cording to the MATLAB codes from [66,67], respectively. All programs
were run on an IBM-compatible microcomputer with an Intel Core i5,
2.90 GHz microprocessor and 16.00 GB of RAM.

3. Experimental

The BbF, BaP, DbA, and BkF analytes were determined in water
samples in the presence of the potential interferents BjF and BeP, using
the chromatographic method developed in Ref. [12], i.e., HPLC with
fluorescence spectral detection. The experimental procedure and
sample composition were the same as those described in Ref. [12];
therefore they are not repeated here. However, a new data treatment
was carried out: from the raw data matrices (collected with the ex-
citation wavelength fixed at 300 nm, using emission wavelengths from
340 to 580 nm each 2 nm, and times from 0 to 7.20min each 2.7 s), the
temporal mode was restricted to 2.43–4.50min (matrices were of size
46× 121), where there occurs coelution of the four analytes together
with the two interferents mentioned above.

The calibration set included 18 samples: 16 corresponded to the
concentrations provided by a fractional factorial design at two levels,
and the remaining two correspond to a blank and to a solution con-
taining all the studied PAHs at an average concentration. The tested
concentrations were in the ranges 0.0–100 ngmL−1 for BbF,
0.0–50.0 ngmL−1 for BaP and DbA, and 0.0–20.0 ngmL−1 for BkF. The
test set contained twenty samples of the studied analytes at random
concentrations, with BjF and BeP as interferences (the concentrations of
the latter were in the range 0–600 ngmL−1 and 0–1000 ngmL−1, re-
spectively). HPLC-fluorescence data were collected using a liquid
chromatograph equipped with a Waters 515 pump connected to a
Varian Cary-Eclipse luminescence spectrometer as a detector. For ad-
ditional instrumental details see [12].
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4. Results and discussion

4.1. Simulated data

In Section 2.3 we describe the generation of the simulated data sets.
Before the second-order multivariate calibration steps, the most re-
levant details of the huge variety of simulated chromatographic sce-
narios analyzed are discussed.

In order to evaluate the effectiveness of the algorithm used to re-
store trilinearity in the data set, a total of 105 possibility sets were
generated, considering different noise intensities, number of sensors,
number of interferents, and misalignment degrees (artifact parameters),
among others (for further details, see Supporting Information). Fig. 2b
SI illustrates eight chromatographic possibilities given by the mod-
ification of the artifact parameters for a single analyte in two-run su-
perposed, from a fully aligned data set (Fig. 2b SI-I) to a totally mis-
aligned one (Fig. 2b SI-VIII). Once FAPV algorithm processed the data
as described in Section 2.2, the second-order calibrations were per-
formed with PARAFAC and MCR-ALS. The same calibrations had been
previously made with raw data for comparative purposes.

As regards the study of the performance of FAPV algorithm, a global
mean square error of predictions (MSEP) was defined for the three
calibrated analytes, according to:

∑ ∑= −

=

= =
MSEP

n
y y m1

3
( ) ;

{PARAFAC without FPVA, MCR with FPVA, PARAFAC with FPVA, MCR with FPVA}

m
i

n

j
ji ji jm

1 1

3

,
2

where m indicates the evaluated model, n is the total number of test
samples, y is the nominal concentration of the j analyte, and y is the
predicted concentration of the j analyte. In this way, each set of ana-
lytical possibilities was transformed into an answer vector.

Fig. 2a shows the MSEP results of PARAFAC and MCR-ALS models
applied to the raw data as a boxplot. The two models were applied
following the general guidelines of references [63, 64], i.e., imposing

the non-negativity constraints for the spectral and elution-time mode,
both for PARAFAC and MCR-ALS. For the latter, the data matrix for
each test sample was augmented with the calibration data matrices in
the elution-time mode by joining the elution time-spectral data matrices
alongside each other (i.e., by column-wise augmentation), creating the
so-called augmented data matrix. Evidently, the performance of PAR-
AFAC is always worse than that of MCR-ALS, except in the case when
the original data are perfectly trilinear. In contrast, when the mis-
alignment of the data is remarkable, PARAFAC is overshadowed by
MCR-ALS. This is mainly due to the fact that PARAFAC decomposes the
data into pure vectors assuming a linear model in each of the analysis
modes; this assumption brings advantages when the data are trilinear,
but produces large errors when they are not. On the contrary, MCR only
requires that data be linear in only one of their modes. These facts place
the analyst in a compromise situation in which he must opt for an
adequate algorithm. Luckily, the decision is usually clear if he knows
the nature of the data he works with.

Finally, the results obtained when performing the second-order
calibrations with the aligned data were compared (Fig. 2b). It is ob-
served that the performance of FAPV/PARAFAC is marginally better
than FAPV/MCR-ALS, since the data under analysis turned perfectly
trilinear in all situations and PARAFAC was able to take advantage of
this property to make better predictions. In the series analyzed, a si-
milar tendency is observed in the errors of the FAPV/PARAFAC and
FAPV/MCR-ALS models, but always the boxes that correspond to the
first ones are slightly smaller, as well as the whiskers and the medians
(Fig. 2b).

In Supporting Information, a comparison among PARAFAC and
MCR-ALS results for raw data and aligned data with FAPV is performed
(Fig. 2 SI). Also, the simulated data were processed with PARAFAC2
and MCR/COW-PARAFAC models (Fig. 4 SI). The obtained results show
that these models have a lower performance than FAPV/PARAFAC. For
further details, see Supporting Information.

Fig. 1. Flowchart of the FAPV algorithm for the treatment of three-way chromatographic-spectral calibration data (three calibrated analytes, indicated in blue, red
and green solid lines). The symbols used are explained in the text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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4.2. Experimental data

The experimental data correspond to the analytical determination of
BbF, BkF, BaP and DbA in a set of samples that contain BjF and BeP as
potential interferents together with the analytes. In the course of the
chromatographic analysis of these samples using fast scanning fluor-
escence emission detection, remarkable overlapping in both data modes
takes place, as described in Ref. [12]. Likewise, the presence of inter-
ferents in the test samples intensifies the above mentioned drawbacks,
making the proposed experimental system a relevant analytical chal-
lenge for the developed algorithm, in line with the examples discussed
in the previous section.

Fig. 3 shows the chromatograms of DbA at the calibration and test
samples retrieved by PARAFAC from the raw data (Fig. 3a) and esti-
mated by the FAPV algorithm (Fig. 3b). As regards the raw data, a
deformation and/or duplication of the chromatographic bands of DbA
were observed. On the contrary, the data processed with the FAPV al-
gorithm are perfectly trilinear, thus, PARAFAC becomes a good method
to make the second-order calibration.

The general procedure applied to this experimental system was
analogous to that discussed above in connection with the simulated
data systems. The data are first aligned and then processed with MCR-
ALS and PARAFAC. As it is was discussed above, in MCR-ALS analysis,
the matrix data for each test sample was augmented by column-wise
augmentation. The decomposition was performed according to a

bilinear model proposed in Ref. [64], by imposing the constraint of non-
negativity in both dimensions and unimodality in the temporal di-
mension. The MCR-ALS algorithm requires the exact number of com-
ponents responsible for the analytical signal to be known, and is pre-
ferable to initialize the algorithm with the profiles of the components as
close as possible to the final result. The number of components can be
estimated using principal component analysis on the basis of singular
value decomposition of the augmented matrix and the pure spectra was
provided by SIMPLISMA algorithm. On the other hand, the PARAFAC
implementation was followed from Ref. [63], also imposing the con-
straint of non-negativity in both dimensions and unimodality in the
temporal dimension for the six components modeled. Finally, for
comparative purposes, the raw data were also processed by the two
algorithms.

Fig. 4a shows the prediction results corresponding to the application
of MCR-ALS to raw data from the twenty test samples. The predicted
values for the PAHs fit reasonably well with their respective nominal
values. This was expected since MCR-ALS can get reliable information
from non-trilinear data. Fig. 4b shows the poor performance of PAR-
AFAC when it processes the raw data, which is explained by the fact
that the model cannot deal with non-trilinear data, as observed in the
simulated data set and as has been reported in the literature [20]. Al-
though it is true that for this type of case, the alternative proposed by R.
Bro and his collaborators is PARAFAC2 [68,69], it has already been
demonstrated that the problems of the experimental system analyzed in

PARAFAC vs MCR-ALS

Perfectly aligned
data

Poor aligned
data

Non-aligned
data

Complexity Degree

Perfectly aligned
data

Poor aligned
data

Non-aligned
data

Complexity Degree

FAPV/MCR-ALS vs FAPV/MCR-ALS(a) (b)

Fig. 2. Boxplot corresponding to the MSEP results for a) PARAFAC and MCR-ALS without FAPV pre-processing, and b) PARAFAC and MCR-ALS with FAPV pre-
processing. Abscissa axis indicates the complexity degree of the system, from zero complexity to a highly complex scenario. Note that the ordinates axis does not have
the same scale. For further details, see Theory section and Fig. 1 in Supporting Information.
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Fig. 3. Elution-time profiles retrieved by PARAFAC for DbA in test and calibration samples: (a) raw data, (b) data pre-processed with FAPV.

J.M. Lombardi, S.A. Bortolato Microchemical Journal 142 (2018) 219–228

225



this work cannot completely solve by the PARAFAC2 model [27]. In
addition, the experimental data were processed with PARAFAC2 (Fig. 5
SI, Table 1 SI). As suspected, the obtained results show that this model
has a lower performance than FAPV/PARAFAC (for further details, see
Supporting Information).

In a second step, the data were aligned with the proposed algorithm
and the transformed data were re-processed with the models. Fig. 4d
shows the prediction results obtained with PARAFAC for the data
aligned with the FAPV algorithm. In this case, the predictions for the
four PAHs are in good agreement with the corresponding nominal va-
lues, consistently with the results that MCR-ALS finds when it processes
the raw data (Fig. 4a), but with a marginal improvement. Interestingly,
the MCR-ALS results obtained from data aligned with FAPV algorithm
show an enhancement over the results of the same model on raw data
(Fig. 4d). While it is true that the presence of interferents should not
prevent the accurate quantification of analytes by means of MCR-ALS
algorithm (i.e., the exploitation of the second-order advantage)
[16,70,71], it has been shown that the presence of several chromato-
graphic artifacts apart from to spectral collinearity (due to the own
analytes or interferents) makes the results worse [29,72]. Consequently,
the observed improvement is reasonable.

Additionally, the experimental data were also processed with the
alternative MCR/COW-PARAFAC model (Fig. 5 SI, Table 1 SI), that had
been mentioned in the Introduction section. The results obtained are
less satisfactory than those obtained with our algorithm (for further
details, see Supporting Information).

For a detailed comparison, the relative error prediction (REP) was
calculated for each analyte. Table 1 shows the REP results for the
analytes from the test set obtained with the models used.

The following fact emerges from Table 1: the best REPs were
achieved with the PARAFAC model with the aligned data, indicating
that trilinearity was restored by the FAPV algorithm. Moreover, the
REPs of FAPV/PARAFAC are even a slightly better than the results
proposed by MCR-ALS for the data with the same pre-processing. Fi-
nally, the comparison could turn even more towards PARAFAC if the
analytical figures of merit (AFOMs) were analyzed since it has been
shown that for MCR-ALS, better REPs do not correlate with better

AFOMs, while REPs and AFOMs improve in accordance for PARAFAC
[29,60]. Nevertheless, AFOMs in the models built from functional data
are not defined, hence changes to the current formulas should be done
in order to make a fair comparison with the established models.

5. Conclusions

A new algorithm (FAPV) based on functional data analysis was
developed to align three-way chromatographic-fluorescence data.
Unlike most of the available algorithms, the method allows performing
matrix alignment when the test data matrix contains unexpected che-
mical interferences.

Simulated and experimental three-way chromatographic systems
were analyzed to show the capability of the FAPV algorithm to restore
the trilinearity in several analytical conditions. MCR-ALS and PARAFAC
second-order calibration models were applied to the simulated and
experimental data, both for raw data and for data aligned with the
FAPV algorithm. In all cases, the PARAFAC model applied to the
aligned data provided the better predictions for the analytes in samples
with potential interferents. Furthermore, the low relative prediction
errors obtained in the determinations of benzo [k]fluoranthene, benzo
[a]pyrene, dibenzo[a,h]anthracene and benzo[b]fluoranthene (1.6 to
7.7%) demonstrate that the method is accurate, and that it can be a
reliable alternative to solve problems of similar nature. It is important
to remark that while PARAFAC rendered good results only when the
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Fig. 4. Plots for predicted concentrations of the four studied PAHs as a function of the nominal values in test samples with interferents for a) raw data/MCR-ALS, b)
raw data/PARAFAC, c) FAPV/MCR-ALS, and d) FAPV/PARAFAC.

Table 1
PARAFAC and MCR-ALS prediction results (REPs).

PARAFACa FAPV/PARAFACa MCR-ALSa FAPV/MCR-ALSa

BbF 45.5 7.69 10.5 9.23
BkF 32.5 1.60 4.80 4.70
BaP 14.6 3.52 9.84 8.52
DbA 15.5 3.51 9.63 8.48

a Six components modeled both for PARAFAC and MCR-ALS, corresponding
to the four analytes (BbF, BkF, BaP, and DbA) and the two interferents (BeP and
BjF). The REPs values are indicated in %.
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data were previously aligned, MCR-ALS was able to provide successful
predictions of the concentration of the four studied PAHs in all real
samples without a pre-process the data.
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