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A B S T R A C T

Precision livestock farming is a multidisciplinary science that aims to manage individual animals by continuous
real-time monitoring their health and welfare. Estimation of forage intake and monitoring the feeding behavior
are key activities to evaluate the health and welfare state of animals. Acoustic monitoring is a practical way of
performing these tasks, however it is a difficult task because masticatory events (bite, chew and chew-bite) must
be detected and classified in real-time from signals acquired in noisy environments. Acoustic-based algorithms
have shown promising results, however they were limited by the effects of noises, the simplicity of classification
rules, or the computational cost. In this work, a new algorithm called Chew-Bite Intelligent Algorithm (CBIA) is
proposed using concepts and tools derived from pattern recognition and machine learning areas. It includes (i) a
signal conditioning stage to attenuate the effects of noises and trends, (ii) a pre-processing stage to reduce the
overall computational cost, (iii) an improved set of features to characterize jaw-movements, and (iv) a machine
learning model to improve the discrimination capabilities of the algorithm. Three signal conditioning techniques
and six machine learning models are evaluated. The overall performance is assessed on two independent data
sets, using metrics like recognition rate, recall, precision and computational cost. The results demonstrate that
CBIA achieves a 90% recognition rate with a marginal increment of computational cost. Compared with state-of-
the-art algorithms, CBIA improves the recognition rate by 10%, even in difficult scenarios.

1. Introduction

Nowadays, the management of livestock grazing systems requires
accurate measurement of animal feeding behavior to monitor their
health and welfare, as well as to improve the efficiency of resource
management. In this regard, much effort has been put into finding
suitable techniques for monitoring the feeding behavior of ruminants. A
long-term analysis of such behavior distinguishes two major activities:
rumination and grazing, which last from few minutes to hours. On a
short-time scale, these activities are composed by a sequence of three
jaw movements: bites, chews and chew-bites (Ungar et al., 2006;
Milone et al., 2012). A grazing bite includes the apprehension and se-
verance of forage, while a grazing or rumination chew includes the
crushing, grinding and processing of ingested pasture. The chew-bite is
another grazing event that results from the overlapping of chew and
bite events in the same jaw movement. While the number and char-
acteristics of jaw movements change according to animal and

environmental factors, monitoring them can provide useful indicators
of animal health, welfare, nutritional status, and feeding activities
(grazing and rumination) (De Boever et al., 1990).

Early strategies for monitoring feeding behavior were based on di-
rect observation and in recent times by visualization of video record-
ings. However, both methodologies are costly and impractical for
monitoring large herds (Milone et al., 2009). In last decades, other
methods based on pressure sensors, accelerometers and microphones
have been studied (Andriamandroso et al., 2016). Most of them focus
on recognizing long-term activities (rumination and grazing) rather
than individual jaw movements. Detection of jaw movements can be
performed with nose-band pressure sensors (Nadin et al., 2012; Zehner
et al., 2017) and accelerometers (Tani et al., 2013; Oudshoorn et al.,
2013; Andriamandroso et al., 2016) but the available results indicate
that classification requires further development to be reliable and au-
tomatic. In addition, a separate classification of chews, bites, and chew-
bites cannot be done because the compound chew-bite cannot be
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identified by these methods. By contrast, several studies have shown
that acoustic monitoring can overcome these limitations.

An accurate tracking of animal diet can be accomplished by ana-
lyzing the sounds related to jaw movements (Alkon and Cohen, 1986;
Alkon et al., 1989; Laca et al., 1992; Ungar et al., 2006). Biting and
chewing sounds are produced while plant structures are comminuted by
jaw movements. The sound is transmitted, filtered and modified by the
bones, cavities and soft tissues of the animal’s head. It can be recorded
and collected in a non-invasive way without affecting the natural be-
havior of animals (Laca et al., 1992; Klein et al., 1994; Nelson et al.,
2005). However, acoustic analysis is a complex task, particularly in
noisy environments like cattle barns, and known applications usually
show high computational-cost.

Among automatic recognition systems based on sound analysis, just
few of them deal with detection and classification of jaw movements
problem. Milone et al. (2012) developed an algorithm based on hidden
Markov models, that hereafter will be referred as CBHMM (Chew-Bite
Hidden Markov Model), for detecting and classifying jaw movements.
Using probabilistic models and spectral-domain features it achieves up
to 85% recognition rate, but it shows a high computational cost. Navon
et al. (2013) implemented an algorithm for event detection that used a
machine-learning technique to analyze time-domain features of in-
gestive sounds. The algorithm achieved up to 94% detection rate.
However, the event classification (bite, chew and chew-bite) was not
performed in this work.

The development of a recognition system based on analysis of
acoustic signals should consider the following situations:

1. Input sound signals are affected by environmental noises, which can
degrade the signal-to-noise ratio (SNR) and diminish the overall
system performance. For instance, trends (low-frequency time-
varying noises) are more intense when cattle stay in barns, where
there are more noise sources (e.g. machinery and other animals)
that are also intensified by the room reverberation.

2. Recognition of ingestive events is a combination of detection and
classification. Former methods showed that detection can be suc-
cessfully performed with high accuracy whereas classification typi-
cally requires more powerful methods to achieve high recognition
rates.

3. Precision livestock farming area aims at low-cost algorithms in order
to embed and execute them in real-time within low-performance
wearable devices. In this way, the monitoring system could be
scaled for its application on large herds.

Recently, Chelotti et al. (2016) proposed an algorithm called Chew-
Bite Real-Time Algorithm (CBRTA) for detection and classification of
ingestive events. The algorithm used heuristic rules derived from expert
knowledge, reaching recognition rates up to 97.4% for detection and
84.0% for classification of events at a low computational cost. However,
trends in the input signals negatively affect the event detection because
it is based on time-varying thresholds. On the other hand, the simple set
of rules proposed may not exploit the whole potential of the features
employed. For instance, the shape and duration of a detected event are
the only features used to differentiate compound events (chew-bites)
from simple events (chews or bites), which is an oversimplified re-
presentation of the events, leading to poor recognition rate. Thus, it is
desirable to consider machine learning techniques that are able to
generate optimal decision regions, improving the classification perfor-
mance at the expense of reasonable increments of computational cost
(up to 50% of CBRTA cost), which will imply neglectable effects on the
algorithm’s computational requirements due to the extremely low
computational cost of the CBRTA.

In this paper, a new algorithm called Chew-Bite Intelligent
Algorithm (CBIA) is proposed, which seeks to improve the recognition
of jaw movements using acoustic signals, even in noisy environments
(e.g. inside a barn). This method is based on concepts and techniques

derived from signal processing and machine learning areas to analyze
the sound signal derived from ruminant feeding behavior. Two data-
bases obtained in different experimental conditions are used to test the
algorithm. The computational cost and a cost-benefit analysis of its
implementation are also evaluated for its future real-time execution in a
low-cost embedded system.

2. Material and methods

Two independent sound databases of ruminant feeding behaviors
were used to evaluate the performance of the proposed system. One of
the databases was obtained under controlled experimental conditions,
showing a high SNR. This database was previously used to evaluate
other algorithms, which allows a fair comparison with the algorithm
introduced in this work. The second database was obtained in a barn
environment, showing a poor SNR due to the presence of noises and
reverberations. This database was used to evaluate the influence of the
proposed methods under adverse acoustic environmental conditions.
During the experiments several signal processing and machine learning
techniques were evaluated.

2.1. Databases

The first database (referred as DB1) is the same used by Milone et al.
(2012) and Chelotti et al. (2016) for testing CBHMM and CBRTA al-
gorithms, respectively. DB1 was obtained at Campo Experimental J.
Villarino, Facultad de Ciencias Agrarias, Universidad Nacional de Ro-
sario (Argentina) during February 2004. The protocols were previously
evaluated and approved by the Committee on Ethical Use of Animals for
Research of the Universidad Nacional de Rosario. Sound signals from
dairy cows grazing either pure alfalfa (Medicago sativa) or pure fescue
(Festuca arundinacea) micro-swards at two height levels (tall,

±24.5 3.8 cm, or short, ±11.6 1.9 cm) were recorded individually in
grazing sessions conducted over a 5-day period. Forage species were
selected because they differ in sward structure, water content and
neutral detergent fiber content (alfalfa, ±360 11 g/kg and fescue,

±631 6 g/kg), which are factors that have a direct influence on chewing
sounds (Duizer, 2001). Two 4–6 year-old lactating Holstein cows
weighing ±608 24.9 kg, previously tamed and trained, were used. Three
wireless microphones (Nady 151 VR, Nady Systems, Oakland, CA, USA)
were randomly assigned to animals each day. The microphone was
placed facing inwards on the forehead and was protected by a rubber
foam (Milone et al., 2009). The distance between the wireless micro-
phone and the receiver was 2–3m. Micro-swards were established using
alfalfa or fescue sown in 4-liter plastic pots, which were attached to a
base-board placed inside a barn. Plants were in a vegetative state, and
were intentionally manipulated to generate micro-swards that cows
could eat with negligible displacement. The sounds were recorded at
44.1 kHz sampling frequency, 16-bit resolution and WAV format. A
total of 50 grazing sessions were recorded: 15 from tall alfalfa, 11 from
short alfalfa, 12 from tall fescue and 12 from short fescue. Around
50min of acoustic signals were considered, which approximately cor-
responds to 3000 jaw movements (13% bites, 64% chews, and 23%
chew-bites).

The signals belonging to the second database (referred as DB2) were
obtained by another field experiment conducted at Campo
Experimental J. Villarino, Facultad de Ciencias Agrarias, Universidad
Nacional de Rosario (Argentina) during October of 2014. Project pro-
tocols were previously evaluated and approved by the Committee on
Ethical Use of Animals for Research of the Universidad Nacional de
Rosario. The foraging behavior of five 3–5 year-old Holstein lactating
cows, weighing ±570 40 kg, grazing alfalfa and fescue mixed pastures,
were continuously monitored using a commercial recorder (Sony
ICDPX312) to obtain 24 h sound recordings during six days. Sounds of
biting and chewing were recorded using a directional microphone
mounted over the forehead and covered by an elastic band fastened to a
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halter, where a recorder was attached. The signals were recorded at
44.1 kHz sampling frequency, 16-bit resolution and WAV format. Five
microphone/recorder devices were randomly assigned to the cows and
rotated over the six days. The signals were recorded under different
environmental conditions, some of which were adverse. Noise sources
included machines, noise from other animals and vehicles, among
others. In addition, when the cows were inside the milking barn, sounds
were affected by acoustic room reverberation.

All signals used in this study were aurally segmented and labeled by
two experts in animal behavior, in order to identify and classify in-
dividual events (bite —B—, chew —C— and chew-bite —CB—) during
grazing. The labeling process was done by one expert, and the result
was checked by the other expert1. When there was disagreement, both
experts worked together to provide a final decision. Because DB2 is a
very large database, only those segments recorded inside the barn were
selected. Twelve 5-min segments were randomly selected to test the
algorithm under these adverse conditions, as hand labeling of a data-
base of this size is unfeasible for a human expert. A typical 5-min
segment contains about 300 jaw movements, which results in more
than 3000 events available in 1-h of recording. Thus, the number of
required events to train and test the proposed algorithm is acceptable
for the objective of testing the robustness of the algorithm on jaw
movement recognition.

2.2. Chew-bite intelligent algorithm

A pattern recognition system is an automatic system that aims at
classifying input data into a set of specific classes using its properties
and features (Duda et al., 2012). This system can be described by a
series of generic stages that allow (i) the description of the input signal,
which facilitate the extraction of distinctive features, and (ii) its clas-
sification, which enables identification of patterns. A block diagram of
the proposed algorithm CBIA is shown in Fig. 1. It shows the relation-
ship between a typical pattern recognition system and the different

stages of the algorithm: signal conditioning, preprocessing, event de-
tection, feature extraction, and event classification.

The input of the system is the digitized sound (Fig. 1) which can
come from a file or an analog-to-digital converter, depending on the
implementation. Within the signal conditioning stage, the numerical
representation of the digitized audio is normalized and its range is
matched with the range of the computer where the system is running.
Sound signals sometimes show slow time-varying noises added to the
target signal, especially in barn environments. Therefore, for CBIA we
proposed and evaluated some detrending techniques to remove the non-
stationary noises at the signal conditioning stage.

Within the pre-processing stage, the sound signal follows two paths
(Fig. 1):

• A maximum detector computes the maximum amplitude of the
sound signal over a sliding window whose length is half of the
duration of a typical chew-bite event.

• An envelope detector that computes the sound envelope using a
synchronous demodulation and a linear time-invariant (LTI) low-
pass filter.

Since the sound envelope is low frequency, the signals computed by
both detectors are downsampled to reduce the amount of data pro-
cessed by the remaining stages. The events (potential jaw movements)
are detected by comparing the sound envelope with a time-varying
threshold (Chelotti et al., 2016). Then, the sound envelope is segmented
and it is used to compute the features. Event features are extracted over
a 1-s time-window centered where the event was located. Finally, these
features are the inputs of the classifier that recognizes the event, which
is the output of the system.

2.2.1. Signal conditioning
Recorded sound signals can show slow varying patterns that are

added to the target signal, specially in barn environments. These trends
must be removed because they can hamper the detection and classifi-
cation of the events. In CBRTA no signal processing was performed over
the sound signal to remove noises and trends (Chelotti et al., 2016).

Fig. 1. Complete block diagram of the proposed CBIA system.

1 Two experts decoded records of signals. Detections agreed in 100% for bites, 98.2%
for chews, and 99.1% for chew-bites.
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Hence, CBRTA left low frequency and time-varying noises unaffected
when the envelope was computed. These time-varying noises modify
the base level of the sound envelope, which is used to complete: (i) the
event detection and (ii) the event classification. During the event de-
tection, adaptive thresholds are used to detect the occurrence of a
possible jaw movement by identifying peaks in the sound envelope.
Regarding classification, the maximum sound amplitude could be
modified by a trend. Thus, the presence of trends can modify the base
level of the sound envelope, causing detection and classification pro-
blems.

In this study, three techniques were considered for the signal con-
ditioning stage: high pass filter, least mean square filter, and empirical
mode decomposition. The main objective of this stage is to attenuate
the effects of trends and any other noise that can deteriorate the per-
formance of the algorithm. The simplest signal conditioning technique
is a LTI high-pass filter (HPF). A second-order Butterworth filter was
selected for the HPF and its cut-off frequency was fixed at 0.05 Hz. On
the other hand, an adaptive filter has spectral characteristics controlled
by time-varying parameters and a means to adjust those parameters
according to an optimization algorithm. The Least Mean Squares (LMS)
filter (Widrow et al., 1975) is the most popular for noise cancellation
and detrending. The coefficients W k( ) of the filter are updated as

+ = + ∊W k W k μ k X k( 1) ( ) 2 ( ) ( ), (1)

where X k( ) is the input vector at time k μ, is a factor that controls the
updating rate of W k( ), and ∊ k( ) is the error defined as the difference
between the desired response d k( ) and the actual response y k( ), com-
puted as follows

∊ = − = −k d k y k d k W X k( ) ( ) ( ) ( ) ( ).T (2)

The parameter μ of the LMS filter was fixed at 0.01 such that a quick
and stable response of the filter is obtained for all operational condi-
tions.

Empirical Mode Decomposition (EMD) was introduced by Huang
et al. (1998) for non-stationary and nonlinear signal processing, which
can be used as a detrending filter. It represents signals as sums of zero-
mean AM-FM components called Intrinsic Mode Functions (IMFs). An
iterative algorithm called sifting process extracts locally the highest

frequency oscillations out of original signal x k( ) for each mode (see
Flandrin et al. (2004) for a detailed description). A fine to coarse re-
construction discarding the last modes of the decomposition (lowest
frequency modes) can be performed to implement adaptive detrending
filtering. Thus, the filtered signal ̂x k( ) can be expressed as follows
(Moghtaderi et al., 2013)

̂ ∑=
=

x k y k( ) ( ),
j

N

j
1

m

(3)

where Nm is the number of IMFs y k( )j considered in reconstruction. It
was observed that only the first seven modes contributed significantly
to recognize the targeted events.

2.2.2. Feature extraction
Once the candidate events are detected, their features are extracted

over a time window centered at the sample where the event was de-
tected. Several features could be extracted (e.g. spectral, temporal or
statistically derived ones), however in CBIA we propose to use a set of
four temporal features that are low-cost and with discriminative power
for this problem:

• Shape index: is computed as the number of zero-crossings in the
sign of the derivative signal obtained from the envelope signal (third
row in Fig. 2). This calculation is performed only if envelope am-
plitude exceeds a noise threshold. This feature provides useful in-
formation to differentiate simple events (chew and bite) from
combined events (chew-bite).

• Maximum intensity: provides information to differentiate low-
amplitude events (chews) from high-amplitude ones (bites and
chew-bites). This feature is computed directly from the sound signal
over a sliding window with length equal to the period of a chew-bite
event (fourth row in Fig. 2).

• Duration: is computed as the time period in which amplitude of the
envelope is greater than a given threshold. In general, the duration
of compound events (chew-bite) is larger than simple events (chew
or bite), which are similar (fifth row in Fig. 2).

• Symmetry: is computed as the ratio between the left area and the
total area of the event. Left and right event areas are divided at the

Fig. 2. Typical acoustic events produced by jaw movements and derived signals from where the features are extracted. From top to bottom: (i) acoustic signal, (ii) sound envelope, (iii)
shape index, (iv) maximum intensity, (v) duration and (vi) symmetry.
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first peak of the event (last row in Fig. 2). It can provide dis-
criminative information because events have different symmetries.

2.2.3. Classification
Classification of ingestive events using sounds is a well-defined

problem. For this stage, six classifiers were considered: (i) decision tree,
(ii) random forest, (iii) multilayer perceptron, (iv) radial basis function
network, (v) support vector machine, and (vi) extreme learning ma-
chine. The most relevant parameters of classifiers were optimized using
the grid search method.

Decision Trees (DTs) have the ability of learning simple decision
rules and systematizing them in order to arrive at complex decisions.
They were built using the C4.5 algorithm and pruning confidence was
optimized (Breiman et al., 1984; Ross Quinlan, 2014).

Multilayer Perceptron (MLP) is a conventional feed-forward artifi-
cial neural network design that can deal with non-linearly separable
data (Bishop, 2006). They were configured with four inputs neurons
(number of input features) and three outputs neurons (number of
output labels). Features were normalized and output labels binarized to
match MLP output. MLPs with one and two hidden layers were tested.
The number of neurons in each hidden layer and the learning rate were
optimized. Typically, four hidden neurons were chosen.

Radial Basis Function (RBF) network is another type of artificial
neural network (Bishop, 2006). The number of RBF hidden-layer units
was optimized. Random Forest (RF) is an ensemble of decision trees
which generally results in an overall better model. The number of trees
was optimized during training.

For the support vector machine (SVM), a radial basis function was
chosen as a kernel and a soft margin penalty for misclassifications was
considered (Steinwart and Christmann, 2008; Hastie et al., 2009).
Penalty coefficient C and parameter γ of SVMs were optimized. The
one-against-one approach was followed for the multiclass classification
task with SVMs (Hall et al., 2009; Chang and Lin, 2011).

Extreme learning machine (ELM) is a new type of neural network
(Huang et al., 2006), which has shown good generalization perfor-
mance and short training times. The number of hidden neurons and
regularization parameter γ of ELM were optimized (Deng et al., 2009).
Finally, the optimization was performed using the training set of each
fold in order to preserve cross-validation (Hall et al., 2009).

2.3. Experimental setup

In this study, leave-one-signal-out cross-validation was used to
conduct the experiments. In the first fold of this scheme, one signal was
taken for testing, while the remaining signals were used for selecting
the best parameters of the classifier and for training the models. The
following folds switch the test signal to another one until all signals are

considered in the test. Reported performance metrics were obtained
averaging across folds. They are recognition rate (RR), recall (R), and
precision (P),
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where tpi are true positives, tni true negatives, fpi false positives, and fni
false negatives counts for class i, respectively (Sokolova and Lapalme,
2009). Models were pasture-specific, thus classification was performed
with the corresponding specific model and reported accordingly, like
CBHMM (Milone et al., 2012). Required computational load was also
compared.

3. Results

The following subsections present a detailed analysis of results ob-
tained. First, a graphical analysis of proposed features is presented.
Second, variants of the proposed algorithm are analyzed based on their
discriminative power. Finally, the proposed algorithm is compared with
state-of-the-art techniques based on their performance metrics and
computational costs.

3.1. Analysis of proposed features

Fig. 3 shows the data and the decision regions generated by the rules
employed in the CBRTA (Chelotti et al., 2016). The data of chews and
chew-bites is organized in dense clusters (highlighted by ellipses), while
the data of bites is scattered in the plane (Fig. 3a). The majority of
chews reach a shape index of one or two, while bites and chew-bites can
have indices greater than one (Fig. 3b). A simple analysis shows that
chews can be clearly classified, while the classification of bites and
chew-bites is more difficult due to the lack of discriminative informa-
tion (Fig. 3a). This analysis is consistent with the results from Chelotti
et al. (2016), where chews are classified with an accuracy over 90%
while chew-bites and bites are classified with an accuracy of 67% and
84%, respectively. The need for the introduction of an additional fea-
ture that allows to clearly separate bites from chew-bites is evident.

Fig. 4 shows the data distribution of amplitude and duration against
symmetry (a new feature not previously used in CBRTA). In this case,
the data exhibits a highly clustered organization with minimal over-
lapping between classes. A symmetry around 0.5 will indicate a sym-
metric event in terms of this feature. In the case of chew-bites this re-
lation is lower than 0.5 since the area is divided at the first peak (last

Fig. 3. Data distribution for tall alfalfa (DB1) and decision regions of CBRTA: (a) amplitude vs duration and (b) shape index.
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row in Fig. 2), while for bites this feature takes values greater than 0.5
(Fig. 4). This new discriminative information, combined with shape
index and duration, should allow to differentiate between bites and
chew-bites.

3.2. CBIA recognition results

The proposed system can combine different detrending and classi-
fication techniques. A summary of average recognition rates for all
combinations is presented in Fig. 5. The rates were obtained averaging
across all signals in DB1. In addition to the evaluated detrending
techniques (HPF, LMS, and EMD), features were extracted from raw
signals (RS), i.e. signals to which no detrending method was applied.
Most combinations exceeded 80% recognition rate. ELM combinations
achieved the poorest results compared to other classifiers. Application
of a detrending stage resulted in clear improvements over the raw
signals, where adaptive variants (LMS or EMD) reached recognition
rates above 90%.

Average recognition rates for each pasture are detailed in Table 1. In
general, recognition rates were above 80% except for short alfalfa,
which was the most difficult pasture for event recognition. Between the
two pastures evaluated (alfalfa and fescue) the best results were ob-
tained for fescue, in some cases exceeding a 90% recognition rate.
Among detrending techniques, LMS and EMD produced the largest
improvements, whereas HPF showed small improvements. Among the
evaluated classifiers, MLP, SVM and RF achieved the best results, while

ELM generated the poorest results.
In order to confirm the advantages of a detrending stage, a more

challenging scenario was developed using signals from DB2. Cattle barn
is a known noisy environment. Hence, a random selection of 5-min
segments from grazing signals recorded in this environment was per-
formed. Because these signals were continuously recorded from mixed
pastures in different experimental conditions, the classifiers were re-
trained. The average recognition rates obtained on these segments are
summarized in Table 2. Only the techniques that achieved the best
results on DB1 were considered for experiments on DB2. In this sense,
the adaptive methods (LMS and EMD) were evaluated for the signal
conditioning stage and three classifiers (MLP, SVM and DT) were con-
sidered for the classification stage, based on recognition rates presented

Fig. 4. Data distribution for tall alfalfa (DB1): (a) amplitude and (b) duration against new CBIA symmetry feature.
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Fig. 5. Average recognition rates (%) of CBIA across all signals in DB1 for different
combinations of detrending and classification techniques.

Table 1
Average recognition rates (%) of CBIA obtained for each pasture of DB1 for different
combinations of detrending and classification techniques. Bold numbers indicate the best
results.

Pasture MLP SVM DT RF ELM RBF

RS Tall alfalfa 84.58 85.04 84.74 85.57 81.81 83.60
Short alfalfa 76.55 77.27 76.20 77.92 72.86 73.88
Tall fescue 88.34 88.47 87.47 86.70 78.99 86.52
Short fescue 86.42 88.00 84.12 86.22 80.40 85.19

HPF Tall alfalfa 84.39 86.14 85.42 86.46 82.18 85.72
Short alfalfa 76.47 78.50 75.93 78.54 73.46 75.00
Tall fescue 89.34 89.71 88.55 87.03 76.67 87.74
Short fescue 88.98 90.12 85.04 86.93 80.95 86.11

LMS Tall alfalfa 87.13 87.06 86.11 87.41 83.63 85.46
Short alfalfa 79.13 80.83 78.50 80.46 76.29 78.17
Tall fescue 89.85 90.18 87.97 89.30 80.28 86.52
Short fescue 90.14 90.05 85.79 86.54 83.06 86.05

EMD Tall alfalfa 88.01 87.52 85.00 85.97 84.12 86.76
Short alfalfa 79.71 82.00 79.09 81.23 75.97 78.36
Tall fescue 90.29 89.99 87.84 89.46 76.83 88.46
Short fescue 93.17 92.04 86.61 89.59 84.45 86.81

Table 2
Average recognition rates (%) of CBIA for adaptive detrending methods and selected
classifiers on 5-min segments from DB2. Bold numbers indicate the best results.

MLP SVM DT

RS 74.79 74.52 73.56
LMS 80.72 81.61 79.21
EMD 82.27 80.91 80.23
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in Table 1 and the simplicity of their implementation.
Baseline results in Table 2 were obtained on raw signals (RS) and

the use of adaptive detrending showed an improvement of 5.65% or
greater. The combination EMD+MLP achieved the best result
(82.27%) on these signals, surpassing MLP baseline results by 7.48%.
The second best combination was LMS+SVM (81.61%), with an im-
provement of 7.09% over RS for SVM classifier. The combinations
LMS+DT and EMD+DT also achieved very good recognition rates.

3.3. Comparison with existing methods

A comparison between proposed (CBIA) and former methods
(CBHMM and CBRTA) is presented in Table 3. The results obtained on
DB1 are averaged over all pastures and summarized by recognition rate,
recall and precision. Adaptive detrending methods and classifiers of
CBIA greatly improved the recognition rate over former algorithms.
Recall and precision were above 85% for all variants of the proposed
method.

Table 4 shows a detailed analysis of the computational costs for
each stage of the algorithms (former and proposed). The assumptions to
estimate these costs are detailed in Appendix A. With the exception of
CBHMM, the classification stage has a relatively low computational cost
compared to preceding stages. Signal detrending performed with EMD
requires 900 times more computations than LMS. Regarding classifi-
cation, SVM cost is several times higher than heuristic rules, MLP, or DT
costs. CBIA global cost using LMS has the same order of magnitude as
CBRTA. By contrast, CBHMM and CBIA with EMD are several orders of
magnitude more costly than other CBIA variants.

Fig. 6 illustrates the trade-off between recognition rate and com-
putational cost for the methods presented in Tables 3 and 4. CBHMM is
the most computationally expensive algorithm and achieved almost
80% recognition rate. By contrast, CBRTA has the lowest computational
cost and recognition rate. Among the proposed methods, the one that
used EMD produced very good recognition rates, but its computational
cost is very high. CBIA variants with LMS achieved very good re-
cognition rates and have relatively low computational cost.

4. Discussion

CBIA achieved good recognition rates for several variants of the
algorithm. Better performance rates were obtained for DB1 than for
DB2, due to the higher SNR of DB1 signals. However, the benefit of a

detrending stage was more evident on DB2 (Table 2). A comparison of
the CBIA variants with previous algorithms shows that better perfor-
mance rates are achieved with a minor increment in computational cost
(Fig. 6).

Regarding the detrending stage of the proposed algorithm, the
adaptive techniques (EMD and LMS) outperformed the fixed high-pass
filter (HPF), probably due to the fact that many of the noise sources
seem to be non-stationary. In this sense, EMD achieved the best results,
reaching up to 93% recognition rate, but its computational cost was
extremely high. Related algorithms such as ensemble empirical mode
decomposition (Wu and Huang, 2009) were not taken into account in
this work because they usually have even higher computational cost. In
contrast, LMS showed a performance almost as good as EMD for several
of the combinations evaluated (LMS+MLP, LMS+SVM), with a lower
computational cost. This establishes LMS as the most appropriate
technique for real-time execution of the algorithm.

Six classifiers were evaluated for the classification stage. From the
standpoint of recognition, the best results correspond to SVM, RF and
MLP, with a recognition rate of about 90% in some cases. From the
computational cost point of view, the best classifiers were DT, MLP and
SVM. While SVM generally achieves the best classification results, DT
and MLP are easily implemented in an embedded system. DT has the

Table 3
Comparison of performance measures (%) for different algorithms (including state-of-the-art methods) applied on DB1 and averaged over all pastures. Bold numbers indicate the best
results.

CBHMM CBRTA CBIA

LMS+DT LMS+MLP LMS+ SVM EMD+SVM

Recognition rate 79.50 77.00 87.85 89.76 90.23 90.74
Recall 83.27 70.76 88.16 91.63 90.88 92.57
Precision 85.09 83.85 86.35 89.75 89.51 92.21

Table 4
Comparison of computational costs for different algorithms given in terms of operations per second of recorded audio signal.

Algorithm stage CBHMMa CBRTA CBIA

LMS+DT LMS+MLP LMS+ SVM EMD+SVM

Signal conditioning and pre-processing NA NA 10,000 10,000 10,000 8,991,943
Detection and feature extraction 2,122,857 27,700 28,800 28,800 28,800 28,800
Classification 53,557,392 30 20 160 1600 1600

Global cost 55,680,249 27,730 38,820 38,960 40,400 9,022,343

a CBHMM does not perform event detection, features are extracted continuously.
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additional advantage that its rules allows an easy interpretion and
understanding on how the classification process is performed. MLP can
define arbitrary decision boundaries (e.g. non-linear boundaries) and
thus obtain higher recognition rates at the expense of a computational
cost slightly higher. For this reason, the cost-benefit analysis presents
LMS+MLP as the best combination for CBIA implementation.

Some interesting similarities were observed in the comparison be-
tween CBRTA heuristically derived rules (RR: ∼77%) and CBIA-DT
automatically learned rules (RR: ∼88%). Both strategies share a low
computational cost and easy interpretation. CBRTA rules are simpler
and require a small set of comparisons for classifying an event. In
contrast, CBIA-DT rules require two to four times more comparisons in
order to perform the same classification. Regarding rule definition, in a
multiclass problem, the selection of a CBIA-DT split takes all classes into
account. By contrast, the strategy to obtain heuristic rules concentrates
on one class at a time, disregarding what happens to the other classes.
CBRTA uses its rules separately for each type of event, whereas CBIA-
DT share some rules among classes. Regarding selected features and
their split values, CBRTA divided the feature space into rough regions,
while CBIA-DT performed a sharper division using similar split values
in combination with new ones. For instance, event duration was se-
lected as the most important feature and its split values were around
0.3 s, like it was defined for the CBRTA (see Fig. 3a).

Probably, changes in forage characteristics such as water content,
anatomy of tissues, and fiber content, and animal characteristics such as
dentition, head size and anatomy will tend to affect the sound produced
by the ingestion of forage (Galli et al., 2017). In this sense, short alfalfa
was the pasture with the worst results in recognition (see Table 1),
which is consistent with the results obtained by Milone et al. (2012) and
Chelotti et al. (2016). A possible explanation for this is that short alfalfa
plants have a higher ratio of stems to leaves than tall alfalfa and fescue.
This could produce bite sounds with lower amplitude, increasing con-
fusion between events and thus affecting the classification stage. Some
of these problems could be solved by designing specific electronic cir-
cuits of acquisition and analog signal conditioning as part of the system.
However, the commercial recorders used in this work do not allow such
attempt. A first approach considering this idea has been presented in
Deniz et al. (2017). On the other hand, the results in the present study
show that for animals of similar size, age and breed, CBIA was able to

detect and classify jaw movements in grazing cattle with high accuracy.

5. Conclusions

In this study an algorithm for detection and classification of mas-
ticatory events from acoustic signals was presented. The proposed CBIA
consists of five stages: (i) signal conditioning, (ii) pre-processing, (iii)
event detection, (iv) feature extraction, and (v) event classification.
Within the conditioning stage, three detrending methods were eval-
uated. Adaptive thresholding was used for event detection and an im-
proved set of discriminative features was extracted. Classical and ad-
vanced machine learning techniques were used for classification of
three types of masticatory events (chew, bite and chew-bite). The best
trade-off between recognition rate and computational cost was ob-
tained with LMS+MLP variant. The high recognition rates achieved
(up to 90% and over 80%) for databases recorded in different experi-
mental conditions, demonstrate the robustness of this approach. CBIA
outperformed previous methods (CBHMM and CBRTA) by at least 10%
in terms of the recognition rate. Many of the evaluated variants have
the additional advantage of a low computational cost, which allows
real-time execution.

In this study, models were trained and evaluated in a pasture-spe-
cific fashion. Most of the time the type of pasture can be known in
advance, thus this is not a real limitation for the system. Future research
will focus on recognizing masticatory events without this assumption,
in a pasture independent way, which may require different system ar-
chitecture or strategies.
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Appendix A. Computational costs

Computational costs of different algorithms were presented in Table 4 for each stage. Practical and typical values were considered in order to get
a straightforward comparison. Computations required are estimated for processing one second of audio signal, which sampling frequency was fixed
at 2 kHz ( =n 2000 samples). Event detection, feature extraction and classification for CBHMM and CBRTA were analyzed in Chelotti et al. (2016).
The CBHMM requires:

+ + + =n n n24(21 26·1.5 1.5 log(1.5 )) 53,557,392 55,680,249 ops. (A.1)

It is the most computationally expensive algorithm of those analyzed in this study. In fact, CBHMM does not perform event detection, features are
extracted with a sliding window, and then classification is accomplished. By contrast, CBRTA and CBIA perform event detection prior to feature
extraction, and then the corresponding classification of detected events. The event detection typically yields 1 or 2 events for each second of signal,2

and in the following it is assumed the worst case, 2 events per second. Detection and feature extraction cost of CBRTA is:

+ =n13 1,700 27,700 ops. (A.2)

To this cost it is necessary to add the cost of the evaluation of classification rules for the three events (30 operations). CBIA has a similar cost for
detection and feature extraction (27,800 operations) compared to CBRTA, but it requires extra symmetry computation (100 operations).

The cost of CBIA detrending techniques was estimated for LMS and EMD. LMS requires 5 operations per signal sample, thus, it requires 10,000
operations to process one second of audio signal, while EMD requires at least:

N n n41 log ( )S 2 (A.3)

operations for extracting all IMFs (Wang et al., 2014), where the typical number of siftings =N 10S was chosen, which gives a total of 8,991,943
operations per second of signal.

Classification cost of CBIA was evaluated for DT, MLP, and SVM. The number of features (4) and the number of classes (3) were considered. DT is

2 This is derived from the frequency of typical events of cattle feeding behavior.
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the simplest one requiring 10 operations per event (typical depth of 10). MLP has a cost of 80 operations per event, which is directly related to the
number of input nodes (4), the number of hidden layers (1), the number of hidden neurons (4 typically), and the number of outputs (3). Regarding
SVM, an average of 200 support vectors were selected to build classifiers. Then, as prediction complexity of SVM is proportional to the number of
support vectors and the number of features, it requires 800 operations per event, at least.
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