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Two new polyketides, pestalotiotones A (1) and B (2) were isolated from the cultured broth of
Pestalotiopsis sp. FT172. The structures of compounds 1 and 2 were determined by analysis of HRMS
and NMR spectroscopic data. The absolute configurations of compound 1 were assigned by Mosher reac-
tion, J-based configuration analysis, and DP4 NMR calculations. Both compounds were tested against can-
cer cell lines, pathogenic fungi and bacteria.

� 2017 Elsevier Ltd. All rights reserved.
Polyketides with C3 moieties are formally biosynthesized
through the polyketide pathway from C-3 modules, which are
found in different organisms including bacteria, fungi, insects,
and marine molluscs.1–5 Some of the polyketides with C3 moieties
have been totally synthesized because of their unique structures
and various activities.6–9 During our continuing investigation of
bioactive compounds from Hawaiian plant derived fungi,10–19 eight
ambuic acid derivatives were isolated from an endophytic fungus
Pestalotiopsis sp. FT172.15 Further investigation of the cultured
broth enabled us to isolate two new polyketide metabolites,
pestalotiotones A (1) and B (2)20 (Fig. 1), each with multiple C3

units.
Compound 120d was isolated as gum. Its molecular formula,

C22H36O5, was determined by HRESIMS at m/z 381.2637 [M+H]+

(calcd 381.2636), requiring five degrees of unsaturation. Compre-
hensive analysis of the 1D and 2D NMR spectra (Table 1) indicated
the presence of seven methyls, two methylenes, eight methines
(including two olefinic, two oxygenated), and five carbons with
no hydrogen attached. Two spin systems, 19–7–8 and 21–11
(10)–12–13(22)–14–15(23)–16–17, were established by the
1H–1H COSY spectrum as shown in Fig. 2, which was also verified
by the corresponding HMBC correlations (Fig. 2).

Besides, the HMBC correlations from singlet methyl (H3-20, dH
1.65) to the olefinic carbons C-9 and C-10, and the oxygenated
methine C-8 (dC 81.0) established the aliphatic chain from C-7 all
the way to C-17. Furthermore, HMBC correlations from the olefnic
methine (dH 6.06, H-5) to the oxygenated olefinic or carbonyl car-
bons dC169.8 (C-4) and dC166.1 (C-6), and from the methyl singlet
(H3-18, dH 1.84) to C-2 (dC 169.5), C-3 (dC 98.8), and C-4 (dC169.8)
implied the presence of the 3-methyl-4-hydroxy-pyran-2-one
moiety. Meanwhile, the observed HMBC cross-peaks from H-5 to
C-7, and from the methyl doublet (H3-19) to C-6, C-7 and C-8 sug-
gested the connection of the aliphatic chain to C-6 of the pyranone
moiety through C-7. Then, the planar structure of compound 1was
elucidated as shown. The configuration of the double bond at C9-
C10 was assigned to be E by the NOE correlations from H-10 to
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Table 1
NMR Spectroscopic Data for 1 and 2 in MeOH d4.

No. 1 2

1Ha 13Cb 1Ha 13Cb

1 1.06, t, 7.4 9.37
2 169.5 2.74, dq, 14.6, 7.4 31.2
3 98.8 205.3
4 169.8 137.2
5 6.06, s 103.1 6.79, dd, 9.7, 1.5 147.5
6 – 166.1 2.81, m 38.3
7 2.67, m 43.6 3.30, m 79.1
8 4.10, d, 9.7 81.0 1.64, m 34.6
9 136.1 1.35, m

0.95, m
42.0

10 5.40, d, 9.4 134.5 1.46, m 32.5
11 2.62, m 37.0 1.35, m

1.03, m
29.8

12 3.20, dd, 8.1, 4.0 79.1 0.84, t, 7.4 11.3
13 1.73, m 33.4 1.77, d, 1.4 11.7
14 1.42, m

0.97, m
42.6 1.01, d, 6.9 17.2

15 1.44, m 32.6 0.90, d, 6.7 14.9
16 1.36, m

1.08, m
30.3 0.87, d, 6.6 20.2

17 0.87, t, 5.7 11.6
18 1.84, s 8.4
19 1.03, d, 7.1 16.2
20 1.65, d, 1.3 11.0
21 0.91, d, 6.8 17.9
22 0.88, d, 7.0 14.2
23 0.86, d, 7.3 20.1

a Spectra recorded at 500 MHz.
b Spectra recorded at 125 MHz. Data based on 1H, 13C, HSQC, and HMBC experiments.

Fig. 2. COSY (Bold), key HMBC (Single headed) and NOESY (Double headed dash)
correlations of 1.
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H-8 and H-12. The absolute configurations of compound 1 were
determined by Mosher reaction, J–based configuration analysis,
as well as DP4 NMR calculations.

In order to determine the absolute configuration of C-8 and C-
12, compound 1 was reacted with R- and S-Mosher reagents.21

The results showed that compound 1 should have an S and R con-
figuration at 8- and 12-position, respectively (Fig. 3).

With the absolute configurations at C-8 and C-12 determined,
we next carried out a J-based configuration analysis to determine
the configuration of 7-, 11-, 13-, and 15-positions.22 For the 1,2
Fig. 3. Reactions of compound 1 with Mosher esters.
methine system at C7-8, both 3JH-7,H-8 (9.4 Hz) and 2JH-7,C-8 (�6.7
Hz) values indicated the anti configuration for H-7/H-8. However,
the data could not be used to distinguish between the two possible
rotamers threo A-3 and erythro B-3, so instead an NOE experiment
(Fig. 4) was carried out. Irradiation of the H3-19 signal resulted in
the enhancement of H3-20, which was evidence for only the erythro
B-3 rotamer. For the C11-12 methine system a medium coupling
constant (3JH-11,H-12 = 6.9 Hz) indicated that alternating conformers
were present in solution. Additional coupling constants (2JH-11,C-12
= �5.2 Hz, large; 3JH-12,C-10 = 1.3 Hz, small) showed that only the
erythro B-1, B-3 rotamers were present (Fig. 4). Hence, the relative
Fig. 4. J-based configuration analysis for the configuration of compound 1 at C-7, C-
8, C-11 and C-12.



Fig. 6. Isomers of 2 considered for DP4 calculations.
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stereochemistry of the C7-8 and C11-12 portions of the molecule
was determined by applying J-based configuration analysis. How-
ever, the experimental NMR data collected for 1 precluded the
unequivocal J-based configurational analysis at C-13 and C-15.

In order to overcome this limitation, we undertook quantum
calculations of NMR shifts, a useful strategy for the structural elu-
cidation of complex organic molecules,23 extensively used by us in
the elucidation process of a wide plethora of natural products
derived from Hawaiian plants.16–19 Among the different strategies
that have been developed for the correlation between experimen-
tal and calculated NMR data, the DP4 probability (developed by the
Goodman group)24 and the updated DP4+ version (developed by
the Sarotti group)25 emerge as the most popular methods for stere-
ochemical assignment when only one set of experimental NMR
data is available.23a One of the major differences between both
methodologies is the level of theory employed during the
geometry optimization stage (generally, the most time-
demanding step in the overall NMR calculation procedure):
MMFF in the case of DP4, and B3LYP/6-31G⁄ in the case of DP4+ .
For that reason, and taking into consideration the size and
conformational flexibility of the present system, we decided to
use the DP4 method. Since the configurations at C-8, C-9, C-11
and C-12 were determined by well-known experimental
procedures, we focused out attention on the stereochemistry at
the remaining centers (C-13 and C-15), leading to four possible
diastereoisomers (compounds 1a-d, Fig. 5). Following the original
procedure, exhaustive conformational searches of the target
compounds were carried out at the MMFF level, and NMR
calculations of all conformers located within a 10 kcal/mol
window in each case were performed at the B3LYP/6-31G⁄⁄ level
of theory (see Supporting Information). As shown in Fig. 5, the
DP4 calculations identified isomers 1a (�66%) and 1c (�34%) as
the most likely candidates. Noticeably, both compounds display
the opposite configuration at the remote C-15 position, therefore
suggesting that the C-11/C-13 stereotriad should be anti-syn. We
also noticed high errors in the NMR predictions of C-3 and C-4 in
all cases (Dd � 8.8 and 13.4 ppm, respectively), which is a typical
situation in related systems with possible tautomerism.23b

Nevertheless, the DP4 recomputed by removing these conflicting
resonances afforded almost the same preference towards 1a and
1c (�65% and � 35%, respectively). Hence, according to our
experimental and computational results herein described, the
most likely structure of pestalotiotone A should be 1a, featuring
a stereohexad with 7R,8S,11S,12R,13S,15S configuration.

Compound 220e was isolated as gum. The positive HRESIMS
quasi-molecular ion peak at m/z 255.2314 [M+H]+ (calcd
255.2319) suggested the molecular formula of 2 as C16H30O2, with
two degrees of unsaturation. The 1H, 13C and the HSQC NMR spec-
tra (Table 1) indicated the presence of six methyls, three methyle-
nes, five methines (including one olefinic, one oxygenated), and
two quaternaries including one ketone (dC 205.3) and one olefinic
Fig. 5. Isomers of 1 considered for DP4 calculations.
(dC 137.2) carbon. 1H–1H COSY spectrum indicated the presence
of two spin systems, 1–2 and 5–6 (14)–7–8(15) –9–10(16)–11–
12, which were also verified by the corresponding HMBC correla-
tions (Fig. 2). Furthermore, the observed HMBC correlations from
the methyl groups H3-1 and H3-13, and the only olefnic proton
H-5 to the ketone (dC 205.3), and from H2-2 and H3-13 to olefinic
quaternary carbon C-4 undoubtedly connected the two spin sys-
tems. The configuration of the double bond at C4-C5 was deter-
mined to be E by the NOE correlations between H-5 and H-7, as
well as H3-13 and H3-14.

Biogenetically, compound 2 could be the immediate precursor
of compound 1. Hence, the configuration at 6-, 7-, 8-, and 10-posi-
tions of compound 2 was suggested to be the same as 11-, 12-, 13-,
and 15-positions of compound 1, respectively, based on their NMR
similarity and the same sign of optical rotation. However, in order
to reinforce our assignment, we carried out NMR calculations at
the B3LYP/6-31G⁄⁄//MMFF level of theory of the four possible iso-
mers of 2 with a C-6/C-7 anti relationship (Fig. 6). In good agree-
ment with our computational findings discussed above for 1,
isomer 2a, which features the anti-syn-syn stereotetrad, was iden-
tified as the most likely isomer in high confidence (�84%).

Moreover, 1 and 2 are very similar to a group of compounds
called pestalpolyols A-I.5,26,27 The structure of pestalpolyol A,
which was unambiguously assigned by single-crystal X-ray diffrac-
tion analysis,5 has the same side chain as determined for 1 (Fig. 7).
Interestingly, the reported NMR data for pestapolyol A, which was
derived from one acetyl-CoA, nine malonyl-CoA and eight
L-methionine,27 matched nicely with our experimental findings
for 1 and 2 at the analogous positions, providing further evidence
Fig. 7. Structural similarity of 1 and 2 to pestalpolyol A.



Fig. 8. Proposed biosynthesis of compounds 1 and 2.
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in our stereoassignment based on Mosher reaction, J-based config-
uration analysis, and NMR calculations.

Like pestalpolyols A-I, biosynthetically compounds 1 and 2
could be derived from the polyketide pathway (Fig. 8).27 Com-
pound 2 was derived from one acetyl-CoA, five malonyl-CoA and
four L-methionine. Nucleophilic reaction between compound 2
and 4-hydroxy-3-methyl-2H-pyran-2-one yields compound 1.
Alternatively, compound 1 could also be directly derived from
one acetyl-CoA, seven malonyl-CoAs and six L-methionines.

Compounds 1 and 2 were tested against cancer cell lines A2780
and A2780CisR,28 but both were not active. Compounds 1 and 2
were also evaluated against four bacterial strains Escherichia coli,
Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis,
and four fungal strains Pennicillium chrysogenum, Aspergillus niger,
Paecilomyces lilacinus, and Fusarium graminearum for their antibac-
terial and anti-fungal activities,29 but neither was active.
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