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Abstract

Motivation: The importance of microRNAs (miRNAs) is widely recognized in the community nowadays because these short
segments of RNA can play several roles in almost all biological processes. The computational prediction of novel miRNAs
involves training a classifier for identifying sequences having the highest chance of being precursors of miRNAs (pre-
miRNAs). The big issue with this task is that well-known pre-miRNAs are usually few in comparison with the hundreds of
thousands of candidate sequences in a genome, which results in high class imbalance. This imbalance has a strong influ-
ence on most standard classifiers, and if not properly addressed in the model and the experiments, not only performance
reported can be completely unrealistic but also the classifier will not be able to work properly for pre-miRNA prediction.
Besides, another important issue is that for most of the machine learning (ML) approaches already used (supervised meth-
ods), it is necessary to have both positive and negative examples. The selection of positive examples is straightforward
(well-known pre-miRNAs). However, it is difficult to build a representative set of negative examples because they should be
sequences with hairpin structure that do not contain a pre-miRNA. Results: This review provides a comprehensive study

Georgina Stegmayer is an Assistant Professor in the Department of Informatics at Universidad Nacional del Litoral (UNL), and Independent Researcher
Scientist at sinc(i)-CONICET. Her current research interest involves machine learning, data mining and pattern recognition in bioinformatics.
Leandro Di Persia is an Assistant Professor in the Department of Informatics at UNL and Adjunct Researcher at CONICET. He is the vice-director of
sinc(i). His research interests include signal processing, pattern recognition and machine learning, applied to audio, speech, biomedical and bioinfor-
matics data.
Mariano Rubiolo is an Assistant Researcher at sinc(i), Teaching Assistant in the Department of Informatics at UNL, and Adjunct Professor at the
Department of Information Systems Engineering in UTN-FRSF. His research involves neural networks, pattern recognition and bioinformatics.
Matias Gerard received a degree in Biotechnology in 2007 and a PhD in Engineering in 2013 from UNL. He is an Assistant Researcher at sinc(i) and Teaching
Assistant in the Department of Informatics at UNL. His research interests include bioinformatics, machine learning and swarm intelligence.
Milton Pividori is a postdoctoral fellow at sinc(i). He is currently in a research stay at the University of Chicago, US, working in the Section of Genetics
Medicine. His research interests involve data mining and bioinformatics, with particular focus on consensus clustering.
Cristian Yones received the Computer Engineering degree in 2014 from UNL. Since 2014 he is a PhD student at sinc(i). His research interests include ma-
chine learning, data mining, semi-supervised learning, with applications in bioinformatics.
Leandro Bugnon is a PhD student at sinc(i) since 2013. His research interests include automatic learning, pattern recognition, signal and image processing,
with applications to affective computing, biomedical signals and bioinformatics.
Tadeo Rodriguez is a PhD student at sinc(i). His research interests include pattern recognition in big data and bioinformatics.
Jonathan Raad received the Bioengineering degree in 2012. He is a PhD student at sinc(i). His research interests include data mining with applications in
bioinformatics.
Diego H. Milone is a Full Professor in the Department of Informatics at UNL and Principal Research Scientist at CONICET. He is the Director of sinc(i). His re-
search interests include statistical learning, signal processing, neural and evolutionary computing, with applications to biomedical signals and
bioinformatics.
sinc(i) - Research Institute for Signals, Systems and Computational Intelligence. Research at sinc(i) aims to develop new algorithms for machine learning,
data mining, signal processing and complex systems, providing innovative technologies for advancing health care, bioinformatics, precision agriculture,
autonomous systems and human–computer interfaces. The sinc(i) was created and is supported by the two major institutions of highest education and re-
search in Argentina: the National University of Litoral (UNL) and the National Scientific and Technical Research Council (CONICET).
Submitted: 24 October 2017; Received (in revised form): 26 March 2018

VC The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

1

Briefings in Bioinformatics, 2018, 1–14

doi: 10.1093/bib/bby037
Review article

Downloaded from https://academic.oup.com/bib/advance-article-abstract/doi/10.1093/bib/bby037/5001762
by Universidad Nacional del Litoral user
on 24 May 2018

https://academic.oup.com/


and comparative assessment of methods from these two ML approaches for dealing with the prediction of novel pre-
miRNAs: supervised and unsupervised training. We present and analyze the ML proposals that have appeared during the
past 10 years in literature. They have been compared in several prediction tasks involving two model genomes and increas-
ing imbalance levels. This work provides a review of existing ML approaches for pre-miRNA prediction and fair comparisons
of the classifiers with same features and data sets, instead of just a revision of published software tools. The results and the
discussion can help the community to select the most adequate bioinformatics approach according to the prediction task at
hand. The comparative results obtained suggest that from low to mid-imbalance levels between classes, supervised meth-
ods can be the best. However, at very high imbalance levels, closer to real case scenarios, models including unsupervised
and deep learning can provide better performance.

Key words: miRNA prediction; machine learning; high class imbalance

Introduction

MicroRNAs (miRNAs) are a special type of noncoding RNA of
21 nucleotides in length, which function in the posttranscrip-
tional regulation of gene expression. Since their discovery, and
without any doubt, they have reshaped the community appreci-
ation on gene regulation. They may determine the genetic ex-
pression of cells and influence the state of the tissues [1].
Therefore, discovering new miRNAs, identifying their targets
and further inferring their functions are necessary tasks for
understanding miRNAs and their roles in genes regulation.
Given their important role in promoting or inhibiting certain
diseases and infections, the discovery of new miRNAs is of high
interest today [2, 3], for example for developing biomarkers and
targeted drug delivery [4, 5]. Precursors of miRNAs (pre-miRNAs)
generated during biogenesis have a well-known RNA secondary
structure, which has allowed the development of computation-
al algorithms for their identification. They are named pre-
miRNAs and are also known as hairpins. The pre-miRNAs
typically exhibit a stem-loop structure with few internal loops
or asymmetric bulges. However, a large number of hairpin-like
structures can be found in a genome. Owing to the difficulty in
systematically detecting pre-miRNAs by existing experimental
techniques, which are inefficient and costly, deep sequencing
[6] and computational based methods have played an increas-
ingly important role for their prediction [7, 8]. Indeed, in the past
decade, many different approaches have appeared for the com-
putational prediction of pre-miRNAs: homologous search, com-
parative genomics and machine learning (ML). Although the
first two kinds of methods can accurately identify miRNAs, they
cannot identify those nonhomologous or species-specific
miRNAs, because they depend mainly on sequence conserva-
tion among multiple (possibly related) species.

Under the ML category, there are a large number of methods
that use only RNA sequences as input data [7, 9, 10]. That is to
say, the RNA is cut and to represent each sequence, features are
extracted, among which sequence length can be included.
Predictions are based on the inherent characteristics of the
sequences and secondary structure of these types of molecules,
to identify hairpin structures in noncoding and nonrepetitive
regions of a genome. Well-known pre-miRNAs, such as those
included in miRBase [11], are used during the training process
as positive samples. To date, >25 000 mature miRNAs have been
reported in 193 species (miRBase, release 19).

Most of the published approaches deal with positive class
and negative class data [12–19]. In these works, to train super-
vised classifiers and measure sensitivity and specificity in a
cross-validation (CV) scheme, a reduced subset of negative
examples must be artificially defined, with a predefined class
imbalance. A set of sequences with hairpin structures that do

not contain miRNAs, for example some mRNAs, transfer RNAs
(tRNAs) and ribosomal RNAs (rRNAs), is generally used as nega-
tive training set. These sets are used to train a predictor that
should distinguish between presumed false and true pre-
miRNA sequences. Main strategies used to build a negative set
are under-sampling the large set of unknown sequences;
pseudo hairpins artificially created [20]; or randomly generating
sequences with the same length than the positive set [21].
However, how to accurately distinguish between true de novo
pre-miRNAs and negative cases still remains an important chal-
lenge, and a careful choice of the negative data set is crucial for
supervised methods, to produce good and reliable predictions
[10, 13]. A small number of methods identify pre-miRNAs in an
unsupervised fashion [22–26]. Basically, these methods apply
clustering and then use the labels of the well-known pre-
miRNAs, after training, to select the clusters where to look for
novel pre-miRNAs. They obtain a high number of initial candi-
dates, in the order of hundreds of thousands or tens of thou-
sands of sequences. After that, a reduced list of best candidates
can be selected by applying ad hoc rules to achieve a number of
sequences that can be validated experimentally.

A very recent study has shown [27] that the computational
prediction of pre-miRNAs is yet far away from being satisfactory
solved. The main reason is that, despite several existing reviews
[28–31] and all the comparative works already published in the
area, those are mostly centered in the revision of available pre-
diction software or Web servers. With our work, instead, we
want to provide to the bioinformatics community a much more
fundamental and conceptual review of existing computational
ML approaches for pre-miRNA prediction. It has not been
defined yet the most suitable ML approach to be applied for pre-
diction. In other words, which type of learning paradigm should
be applied to really tackle the true issue beneath the prediction
in genome-wide data: the very large class imbalance.

In this review, we compare and discuss the supervised and
unsupervised ML paradigms, in deep, when dealing with the
high class imbalance and the lack of definition for the negative
set in pre-miRNA prediction. We will explain and analyze each
method, providing also practical comparative results. In this
comprehensive study, we provide detailed analysis, in the same
exactly experimental conditions and for a wide range of pos-
sible class imbalances, to provide a useful guide for the bioinfor-
matics community regarding future software development for
in silico prediction of novel pre-miRNAs. The strong points of the
comprehensive comparison we offer are the following: (i) a
methodologically rigorous and fair comparative evaluation of
the most important ML approaches; (ii) a deep analysis of the
behavior and robustness of each ML algorithm in front of
increasing class imbalance levels; and (iii) to strongly support
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the comparative analysis from a rigorous experimental method-
ology, the ML methods were compared by using the same com-
puter language and exactly the same data sets, with the same
varying levels of imbalance and CV. All source code and data
sets are available for full reproducibility.

ML approaches

The first ML methods proposed for miRNA prediction have used
simple representations to extract the main structural features
of known pre-miRNAs [7]. Then, a binary classifier is trained to
identify other sequences highly likely to be pre-miRNAs. Among
all possible supervised classifiers, support vector machines
(SVMs) have been the first and most widely applied algorithm
for this task [12], followed by random forest (RF), k-nearest
neighbor (KNN) and naive Bayes (NB) (Table 1).

A classical supervised approach needs both positive (real
well-known pre-miRNA) and negative (pseudo and artificial

non-pre-miRNA) sequences to build a binary classifier for dis-
criminating between them. Thus, in supervised learning, the
labels of the two classes must be all known beforehand. Let
m be training samples as n-dimensional vectors xi ¼ ½xi1; :::; xin�T

such that L ¼ fðxi; yiÞg; i ¼ 1; . . . ;m, where xi 2 Rn and
yi 2 f�1;þ1g are the response variables. Given a set of points
each of which belongs to one of two possible classes, a super-
vised algorithm constructs a model capable of predicting
whether a new point (whose class is previously unknown)
belongs to one class or the other.

The KNN is a method that stores all the training examples as
the classification model [50], without building a parametric
model. It is the simplest classifier and an example of a lazy
learner, in which all computation occurs at classification time
(without training). It does not have to fit a model to the data.
The probability that a point pðxÞ falls within a volume V cen-
tered at point x is given by p ¼

Ð
VpðxÞdx, where the integral is

over the volume V. For a small volume p � pðxÞV, the probability

Table 1. ML approaches for pre-miRNAs prediction

ML method Name Positive class Negative class Reference

SVM Triplet-SVM Homo sapiens Random pseudo hairpins from H. sapiens [12]
MirAbela H. sapiens, Mus musculus, Rattus norvegicus tRNA, rRNA and mRNA from H. sapiens [32]
RNAmicro Animals (nematodes, insects and vertebrates) Random shuffling of animal miRNA features

and tRNAs
[13]

Micro-processorSVM H. sapiens ncRNA from H. sapiens [33]
MiRFinder Animals (human, mouse, pig, cattle, dog and

sheep)
Random sequences from human and mouse [14]

MIRenSVM H. sapiens, Anopheles gambiae Pseudo hairpins [34]
mirCos H. sapiens, M. musculus Random sampling of training genomes [35]
microPred H. sapiens Pseudo hairpins and other ncRNAs from

H. sapiens
[36]

PlantMiRNAPred All miRNA plants in miRBase Pseudo hairpins from the protein coding
sequences of A. thaliana and G. max

[37]

miRPara Animals, plants and virus in miRBase Sequences with pri-miRNAs identical to the
positive class

[38]

SMIRP Species-specific positive sets from miRBase ncRNA [39]
iMiRNA-SSF H. sapiens Pseudo pre-miRNAs from H. sapiens [40]
ViralmiR Virus Random virus sequences, human pre-

miRNAs and pseudo hairpins from
H. sapiens

[41]

YamiPred H. sapiens, animals Random pseudo hairpins from H. sapiens and
ncRNAs

[42]

iMcRNA-PseSSC H. sapiens Random pseudo hairpins from H. sapiens [43]
MiRNA-dis H. sapiens Random pseudo hairpins from H. sapiens [44]

KNN MinDist Drosophila melanogaster, A. gambiae Random sequences [25]
NB BayesMirnaFind H. sapiens, M. musculus Potential negative stem-loops [45]

MatureBayes H. sapiens, M. musculus Random sequences from H. sapiens,
M. musculus

[17]

Ensemble miPred H. sapiens Pseudo pre-miRNAs from H. sapiens [15]
HuntMi H. sapiens, A. thaliana, animals, plants Homo sapiens, A. thaliana, animals, plants [18]
pMIRNA H. sapiens, O. sativa and A. thaliana Pseudo hairpins and ncRNAs [46]
miR-BAG Animals (human, mouse, rat, dog, nematode

and fruit fly)
Pseudo hairpins of tRNA, rRNA, sRNA, mRNA [47]

Deep NN DP-miRNA H. sapiens, animals Random pseudo hairpins from H. sapiens and
ncRNAs

[48, 49]

deepSOM H. sapiens, A. thaliana, animals, plants,
Caenorhabditis elegans

[23]

HC MinDist D. melanogaster, A. gambiae [25]
MapMi Animals [26]

SOM miRNA-SOM C. elegans, E. multilocularis [22]
SC CWLan H. sapiens [24]

Sources: https://omictools.com, [9, 27–31].
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p may be approximated by the proportion of samples falling
within V. If k is the number of samples falling within V, out of a
total of m, p � k=m, thus pðxÞ � k=mV. From a Bayesian point of
view, we are interested in obtaining the posterior pðyjjxÞ for
each class j. This is done by growing a region around a point x
until it includes k neighbors, with a volume V, and within the k
neighbors, there are kj samples from class yj. The joint probabil-
ity will be pðx; yjÞ ¼ kj=mV, with m the number of data points,
and thus, the posterior will be pðyjjxÞ ¼ pðx; yjÞ=

P
i pðx; yiÞ ¼ kj=k.

For a given test example z, the decision rule is to assign z to
the class that has maximum a posteriori probability,
yðzÞ ¼ argmaxjfpðyjðzÞÞg, which is the same as the one that
receives the largest votes kj among the KNNs of z [51]. Standard
KNN has not been used for pre-miRNAs prediction. In [25], the
authors have seen that known precursors tend to concentrate
in a particular region of the feature space. Thus, they proposed
to take the coordinates of all known precursors to set a distance
range to identify the closest candidates, instead of assigning a
class label according to the KNNs. This allows different pre-
miRNA structural clusters to emerge around the known precur-
sors. The number of candidates that are included in the accept-
ance region is controlled by the maximum distance allowed to
the closest pre-miRNA (and not by the k parameter as in stand-
ard KNN).

NB classifiers are a family of simple probabilistic classifiers
based on applying Bayes’ theorem [50, 52] with strong assump-
tions of independence between the features. It calculates the
probability that a given example belongs to a certain class, mak-
ing the simplifying assumption that the features constituting
the instance are conditionally independent given the class.
Given an example x, one looks for a class yj that maximizes the
likelihood pðxjyjÞ ¼ pðx1; . . . ; xnjyjÞ. The (naive) assumption of
conditional independence among the features, given the class,
allows to express this conditional probability pðxjyjÞ as a product
of simpler probabilities pðxjyjÞ ¼

Qn
i¼1 pðxijyjÞ. In this way, an NB

classifier is the function that assigns to an unknown input z, a
class label yðzÞ ¼ argmaxjfpðyjÞ

Qn
i¼1 pðzijyjÞg, where the posterior

is proportional to product of the prior pðyjÞ and the conditional
probability pðzjyjÞ. A standard NB classifier has been used in [45]
for automatically generating a model from sequence and struc-
ture information from a variety of species. This model, together
with a balanced distribution of the data, has helped to reduce
the false-positive rate. Another work [17] has also used a clas-
sical NB classifier to identify the location and starting position
of human mature miRNAs candidates based on sequence and
secondary structure information of pre-miRNAs.

SVMs are binary classifiers originally proposed by Vapnik [53].
SVMs can efficiently perform classification by using the so-called
kernel trick, implicitly mapping the inputs into high-dimensional
feature spaces. SVM separates the classes in the training data by
looking for the optimal separating hyperplane with a maximal
margin between the classþ 1 and the class �1 samples. For this
two-classes problem, assumed as linearly separable in a mapped
domain, a linear machine can be used as yðxÞ ¼ wT/ðxÞ þ b,
where w is a weight vector and b is a bias, which defines a separ-
ation hyperplane. Suppose that we are looking for the optimal
parameters fw; bg such as the margin is maximized. This prob-
lem can be stated as minimizing the Lagrangian equation
Lðw; b;aÞ ¼ 1

2 jjwjj
2 �

Pm
i¼1 ai yi wT/ðxÞ þ b

� �
� 1

� �
, where a is a vec-

tor of Lagrange multipliers, with ai � 0; 8i. This is a convex quad-
ratic optimization problem, which can be solved in a dual
formulation with the kernel kf ðxi; xjÞ ¼ /ðxiÞT/ðxjÞ by using the
Karush–Kuhn–Tucker conditions [54, 55]. The vectors xi for which
the corresponding ai are not 0 are called support vectors, and

they are the ones that define the separating hyperplane. For a
never seen data z, the output of the classifier is given by
yðzÞ ¼ sgnð

P
i2S aiyikf ðx; xiÞ þ bÞ, where S is the set of support vec-

tors. SVM has been widely used in bioinformatics [6, 56]. It has
been the first computational method used for pre-miRNA predic-
tion [9, 12]. It is still the one most widely applied in its standard
form with radial basis function (Gaussian) kernels and default
parameters [13, 14, 32–44], with varying feature sets and
genomes. In [36], a standard SVM has been applied together with
a classical ML strategy for balancing imbalanced data sets [57]
with the advantage in that case of improving the performance of
the classical classifier. In [42], a standard SVM has been used as
well, but together with a feature selection step based on genetic
algorithms. In [35] three classical SVM models are applied se-
quentially, like filters, for increasing the specificity of predictions.
In [34], an ensemble of SVM has been tried, also to improve per-
formance. It is already well known in ML that ensembles are su-
perior to single classifiers. That is why in this study, we have
included ensemble of classifiers in the comparisons.

Ensembles of classifiers have been widely applied with suc-
cess to genomics data for prediction and classification, variable
selection, pathway analysis, genetic association and epistasis
detection. The most popular and proven powerful classifier en-
semble is RF, which is an ensemble of decision trees [58, 59].
A tree classifier consists in a number of nodes starting from a
root node. At each node, the training set for that node, D, is split
into two nonoverlapping sets Dl and Dr: a feature k is selected,
and for that feature, a threshold hk is chosen such that if
xk � hk , the sample x is assigned to Dl or is assigned to Dr other-
wise [60]. The tree is grown until maximum depth is reached.
For the prediction of a new case z, it is pushed down the tree. It
is then assigned as output hðzÞ the label of the terminal node
where it ends. As individual decision trees tend to overfit, usu-
ally bootstrap-aggregated (bagged) decision trees are used to
combine the results of many trees. The final decision for an un-
known input vector z using the ensemble of J trees (the RF
model) is made by the rule yðzÞ ¼ argmaxwk

P
j IðhjðzÞ ¼ wkÞ,

where yjðzÞ is the output assigned to the pattern by the j-th tree
in the ensemble. For pre-miRNA prediction, in [46], authors pro-
posed a combination of a set of standard base algorithms such
as SVM and KNN, aggregating their prediction through a classic-
al voting system. Similarly, in [47], it is proposed a bagging en-
semble, that is to say, a committee of complementary base
classifiers that learns from different training subsets. MiPred
[15] was the first truly ensemble method (RF) proposed, which
achieved high discriminative power for human pre-miRNAs.
More recently, HuntMi [18] performed a complete study compar-
ing many standard supervised methods (NB, SVM and RF),
where RF was confirmed to be the best one for the identification
of new pre-miRNAs in animals, plants and viruses.

In unsupervised ML methods, no target variable is provided
during learning. Instead, the algorithm searches for patterns
and hidden structures or similarities among all the samples.
The most common unsupervised method is clustering [61].
Clustering refers to grouping records, observations or cases into
classes of similar objects. A cluster is a collection of data points
that are similar to one another and dissimilar to data in other
clusters. To use an unsupervised model as a classifier, the class
label of the positive samples is used, after training, for labeling
the clusters found. For example, for pre-miRNAs prediction, the
clusters where there is at least one well-known pre-miRNA are
labeled as positive. The clusters that have only unlabeled
sequences are labeled as negative class. Therefore, for finding
candidates to novel pre-miRNAs, only the unlabeled sequences
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clustered together with the labeled ones have to be looked at.
The most popular and widely known unsupervised algorithms
are hierarchical clustering (HC), k-means (KM), self-organizing
maps (SOM) and spectral clustering (SC), although they have not
been widely applied for pre-miRNA predictions (Table 1).

HC is one of the simplest and most popular unsupervised
method in postgenomic data analyses [62]. It clusters data by
forming a tree diagram or dendrogram, which shows the rela-
tionships between samples according to a distance measure.
The root node of the dendrogram represents the whole data set,
and each leaf is regarded as a data point. The clusters are
obtained by cutting the dendrogram at different levels [63].
Agglomerative HC starts with m singleton clusters Gi, each of
which includes exactly one data point, Gi ¼ fxig. The distance
among two clusters Gi and Gj is defined as the minimum dis-
tance between all possible pairs of members of the clusters,
dðGi;GjÞ ¼min8xp2Gi ;xq2Gj

jjxp � xqjj. The algorithm then succes-
sively merges clusters by selecting the two with minimum dis-
tance and iterating this procedure until all samples belong to
the same cluster. In [25], a standard agglomerative HC was used
to perform clustering over the candidate structures along with
known pre-miRNA structures. This way, mixed clusters allow
the identification of candidates that are similar to well-known
precursors. HC has been applied in [26], not for the discovery of
novel pre-miRNAs but for the mapping of validated miRNAs in
one species to their most likely orthologues in other species.
That is to say, it has been used as tool for automated miRNA
mapping across and within species, through sequence similar-
ity and secondary structure.

The KM algorithm is one of the best known and most popu-
lar clustering algorithm [64]. It begins by assigning k centroids
to data points randomly chosen from the training set,
ci ¼ xrndð1;...;NÞ. At each iteration, a data point xj is classified by
assigning it to the cluster Gi whose centroid ci is the closest one,
that is i�j ¼ argmin8ifjjci � xjjjg. Then, new cluster centroids are
computed as the average of all the points belonging to each
cluster. This process continues for each xj 2 ‘ until both, the
cluster centroids and the class assignments, no longer change.
To the best of our knowledge, there are no published proposals
for pre-miRNA prediction with KM. It has been included in this
study for completeness, as it is the most used and cited cluster-
ing method over the past 50 years [64].

In recent years, SC has become one of the most popular and
modern clustering algorithms [65]. SC considers each sample xk

as a vertex in a graph and weights the connections between
samples with some measure of similarity [66]. This measure
can be coded in a weight matrix S, where the entry sij represents
the strength of the connection between samples xi and xj.
The similarity between samples is usually measured as
sij ¼ sðxi; xjÞ ¼ exp ð�jjxi � xjjj2=ð2r2ÞÞ. From the weight matrix
S, a graph Laplacian is built as L ¼ D� S, where D is a diagonal
matrix with dii ¼

Pm
j¼1 sij. Then, this unnormalized Laplacian is

normalized as LN ¼ D�1=2LD�1=2. The next step is computing the
k smallest eigenvectors of LN and stores them as columns in a
matrix U. This matrix results of size m by k. That is, the rows of
U can be interpreted as data points bx i 2 Rk, which can be now
clustered with any clustering algorithm. Similarly as for KM,
there are no published works on SC-based pre-miRNA predic-
tion. This algorithm has only been used in this area in [24] for
clustering miRNAs with similar function.

SOMs are a special class of neural networks that use un-
supervised learning, based on the idea of neurons that compete
in response to a given input [67]. The training begins by choos-
ing random weights wij 2 ½�0:5;þ0:5� for each neuron in the

map. Given an input sample, its distance to each neuron
weights is computed, and the winning neuron for this data
sample is looked by i�j ¼ argmin8ifjjwi � xjjjg. The weight vector
of this winning neuron (and a number of its neighbors) is fur-
ther moved with wi ¼ wi þ gðxr �wiÞ; 8i 2 Nc, where Nc is a set of
neighboring neurons of the winning neuron, and g the learning
rate [68]. This is repeated until no significant changes in weights
are performed. SOMs have the capability of identifying similar
input patterns in the feature space, by assigning them to the
same neuron or a group of adjacent neurons on the map
[69, 70]. The first SOM proposed for pre-miRNA prediction has
appeared very recently in [22]. In [23], a deepSOM architecture
with several levels of hidden SOMs was proposed, where each
inner SOM discards bad candidates to pre-miRNAs. Only best
candidates survive to the next SOM level. The size of the maps
in the topology and the number of layers are automatically
adjusted according to the data samples in each level. At the last
level, the unlabeled data in the neurons having clustered
(at least) one well-known labeled sample are identified as the
best pre-miRNAs candidates.

A deep neural network (deepNN) can be built from several
layers of nonlinear feedforward networks. Layers that are com-
monly used in deep learning include latent variables organized
layer-wise in deep generative models such as the restricted
Boltzmann machines (RBMs) [71]. A single RBM consists of a
layer that receives the input vectors x and has a set of connec-
tion weights wij in a hidden layer of neurons with activation
outputs h ¼ ½h1; . . . ;hP�. The joint distribution of hidden variables
h and observation samples x can be written as pðx;hÞ / e�Eðx;hÞ,
where Eðx;hÞ ¼ hTWxþ bTxþ cTh is the energy function, W is
the weight matrix, and b and c are bias vectors for the input and
the hidden layer. The parameters fW; b; cg can be learnt by an
unsupervised algorithm based on Gibbs sampling [71]. After this
unsupervised stage, a supervised training is applied, and there-
fore, this model uses an hybrid learning approach. It has been
shown that RBMs have the universal approximation property
[72]. Very recently, in [48, 49], a deepNN for pre-miRNA predic-
tion was proposed. It consists of three hidden layers, each
pretrained as a RBM. For the first hidden layer, the input pat-
terns x are used to produce an internal representation h0. Once
the parameters of this network are trained, a second layer is
trained using the h0 as input and producing a second hidden
layer h00. This is repeated to produce h0 0 0. Then, a final standard
feedforward output layer trained by error backpropagation is
added, which predicts the class labels.

Materials and performance measures
Data sets

Selecting an informative feature set is important for the pre-
miRNA prediction, and most commonly used feature sets con-
tain information about sequence, topology and structure [73].
The earliest work in this field proposed features named triplets,
computed from the sequence itself [12]. miPred [15] was the first
method that proposed a representative feature set with great
discriminative power, adopted by most other methods [18].
Thus, we have used them in this study: triplets, maximal length
of the amino acid string, cumulative size of internal loops found
in the secondary structure and percentage of low complexity
regions detected in the sequence. The features have been nor-
malized with z-score.

For this study, we have created a number of data sets of
varying levels of class imbalance using already available public
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data [18], which provide a negative class and a positive class
with all well-known pre-miRNAs in miRBase v17 [11] for Homo
sapiens (1406 positive and 81 228 negative samples) and
Arabidopsis thaliana (231 positive and 28 359 negative samples).
Differently from most published reviews, in this work, we focus
on providing a broad spectrum of comparative results for ML
methods regarding the large class imbalance issue, allowing a
comprehensive assessment of the supervised versus unsuper-
vised approaches at increasing imbalance levels. Thus, different
artificial imbalance ratios (IR) (defined as the ratio of negative to
positive class samples) have been produced for this compara-
tive study by randomly varying the number of available ele-
ments in each class, ranging from 1:1 (no imbalance) up to
1:2000 (very high imbalance).

A classical ML strategy for balancing imbalanced data sets
(for the supervised models) has been evaluated as well: the syn-
thetic minority oversampling technique (SMOTE) [57], which is
an approach for oversampling the minority class. In fact,
SMOTE is the most used technique nowadays in supervised pre-
miRNA classifiers [74]. It is limited to the strict assumption that
the local space between any two positive instances is positive.
SMOTE first randomly selects several nearest neighbors of a mi-
nority class instance and produces new instances based on lin-
ear interpolations between the original examples and the
randomly selected nearest neighbors. It produces artificial sam-
ples as convex combinations of each positive sample and one of
its nearest neighbors.

Measures

The prediction quality of each model was assessed by the fol-
lowing classical classification measures: sensitivity (sþ), specifi-
city (s–), precision (p) and harmonic mean of sensitivity and
precision (F1):

sþ ¼ TP
TPþ FN

; p ¼ TP
TPþ FP

;

s� ¼ TN
TNþ FP

; F1 ¼ 2
sþp

sþ þ p
;

where TP, TN, FP and FN are the number of true-positive, true-
negative, false-positive and false-negative classifications,
respectively.

The sþ measures how good is a classification method at rec-
ognizing (and not missing) the TPs. The s–, instead, measures
the recognized TNs. The precision p measures the relation be-
tween TPs and false positives (FPs), which in this large imbal-
ance context is important because FPs, regardless of being just a
fraction of the total of negatives, are a large number of samples
in comparison with TPs. This is of relevance especially when
thinking in a realistic scenario. Considering the characteristics
of the prediction under study and given the large class imbalan-
ces, it is important to take into account both sensitivity and the
number of FPs. Therefore, F1, being the harmonic score between
precision and recall, is used as a global comparative measure
among many prediction methods.

For each ML model tested, a stratified 10-fold CV procedure
has been used, giving reliable estimates of classification per-
formance. Each model hyperparameters were determined with
an inner grid search of a range of possible values, within each
training partition. In the case of supervised methods, hyper-
parameters are, for example, the number of neighbors in KNN

or the number of layers and neurons in deepNN. In the case of
unsupervised models, the corresponding hyperparameter is
number of clusters. If a small number of clusters is used, the
larger the clusters, the more likely it is that they include a well-
known positive. However, at the same time, more FPs can be
obtained and precision falls. Therefore, there is a trade-off be-
tween sensibility and precision when clusters grow.

The performance in each experiment is reported as the aver-
age values on 10-folds for the test partitions only. To statistical-
ly evaluate the differences between classifiers, that is, to detect
differences in methods across multiple imbalanced data sets, a
Friedman rank test at significance level a ¼ 0:05 is carried out
for F1. After that, the Nemenyi test will be used as a post hoc
test to show which methods are significantly different from
each other according to the mean rank differences of the groups
[75].

Results
Supervised models performance

Tables 2 and 3 show the results after testing all the supervised
ML approaches included in this review, ranging from very low
to very high class imbalance, without and with SMOTE for class
balancing, respectively. It can be seen that in both tables and all
cases, in both data sets and for all methods, the s� (TN rate) is
always very high, >95.00%. In most cases and for most classi-
fiers, it is around 99.00%. This is an expected as well as a useless
result, because due to the existing large class imbalance and the
abundance of negative cases, any classifier could be good to ac-
curately detect the negative cases just by always predicting
‘negative class’ at the output. This is not useful, however, from
a practical point of view, as the true interest is in the minority
(positive) class. Looking at the sþ (TP rate) and p together, or the
global measure F1, is where one can really understand how hard
this problem is, as imbalance increases.

In Table 2, it can be clearly seen how imbalance has a direct
(and negative) impact on all the supervised classifiers perform-
ance, in particular for SVM that is the most widely used in lit-
erature. For example, for SVM in H. sapiens and very low class
imbalance (1:1 to 1:50), sþ goes from 96.14 to 66.21%. It keeps
decreasing up to an extremely low value of <10% at the highest
imbalance level (1:2000). This means that most positive samples
(well-known pre-miRNAs) will not be correctly recognized with
this method at such high imbalance level. The SVM precision
begins at a high 96.79% but then it decreases, reaching an ex-
tremely low p of 20.00% at the highest imbalance because there
are many FPs returned by SVM at this level. It should be men-
tioned that this really bad performance would not be, however,
correctly reported if accuracy had been calculated (as many
published work do), as it is a performance measure that is
biased toward the majority class and does not take into account
p and sþ together. Instead, F1, that takes into account p and sþ

together, correctly reflects this performance decrease as imbal-
ance growths, showing how SVMs can have, in a very large im-
balance situation a very poor global performance. In A. thaliana,
similar conclusions can be achieved for SVM, s� is always high;
sþ is high (around 80.00–90.00%) at low imbalance, but at me-
dium and high imbalance levels (from 1:50 on), it goes down to
<50.00%. At the extremes, from 1:500 and on, sþ has diminished
to unacceptable levels. Regarding precision of SVM, it has been
maintained >90.00% values up to imbalance 1:200; being how-
ever extremely poor after 1:500, meaning that it has identified a
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very large number of FPs. This is correctly reflected by F1 with
values <50.00%.

In Table 3, the use of SMOTE for artificial class balancing has
not significantly improved SVM performance. It can be stated
that it has had a little impact at the highest imbalance levels,
depending on the training data set, or it has even made it worse.
In any case, the global performance F1 is unacceptable, <50.00%.
This can be explained by the fact that SMOTE is interpolating

positive samples as intermediate points between the known
ones, where many of them are located close to the other class
samples. This artificial balance is not helping setting the sup-
port vectors in a better position in the decision frontier between
classes. Owing to the existing very high class imbalance, the hy-
pothesis that the local space between two near positive samples
corresponds to a positive class sample does not hold, especially
if the boundary between classes is complex. When this is the

Table 2. Supervised ML methods for pre-miRNA prediction

Imbalance SVM KNN RF NB deepNN

(1: IR) sþ p s– F1 sþ p s– F1 sþ p s– F1 sþ p s– F1 sþ p s– F1

Homo sapiens
1 96.14 96.79 96.79 96.45 96.64 95.70 95.64 96.17 96.64 97.01 97.00 96.82 92.29 97.15 97.29 94.64 95.43 96.78 96.79 96.07
5 89.96 91.17 98.25 90.47 88.86 93.31 98.72 91.00 91.14 94.82 99.00 92.93 91.36 89.31 97.81 90.29 92.43 93.21 98.63 92.77
10 84.86 89.14 98.97 86.93 86.00 90.12 99.05 87.99 86.50 93.20 99.37 89.70 90.86 81.23 97.97 86.04 87.86 91.41 99.16 89.49
50 66.21 80.43 99.68 72.58 36.00 81.82 99.67 76.94 73.50 90.10 99.84 80.91 87.29 47.66 98.09 61.65 75.07 90.02 99.83 81.79
100 52.10 79.08 99.86 62.64 66.79 73.49 99.75 69.82 66.67 88.60 99.92 75.92 87.78 32.89 98.20 47.82 75.93 84.39 99.85 79.60
200 32.75 74.28 99.94 45.15 59.00 69.23 99.86 63.06 59.25 87.29 99.96 70.35 86.75 19.15 98.19 31.36 63.75 83.09 99.93 71.05
500 15.63 77.00 99.99 25.11 51.25 60.96 99.92 54.15 53.75 86.23 99.98 65.21 89.38 11.36 98.62 20.16 60.62 82.87 99.97 68.05
1000 7.50 45.00 99.99 12.67 41.25 45.94 99.95 42.48 33.75 77.17 99.99 45.93 86.25 5.80 98.61 10.86 48.75 65.14 99.97 55.02
1500 10.00 50.00 100.00 16.67 46.00 50.96 99.96 44.12 34.00 81.33 100.00 45.14 94.00 4.99 98.86 9.46 44.00 74.33 99.99 52.08
2000 5.00 20.00 100.00 8.00 42.50 55.83 99.98 45.71 25.00 56.67 99.99 33.71 95.00 3.54 98.70 6.82 20.00 51.67 99.99 27.71
Arabidopsis thaliana
1 89.57 98.30 98.26 93.48 95.22 97.10 96.96 96.03 95.65 98.28 98.26 96.91 92.17 98.20 98.26 94.98 93.91 96.99 96.96 95.34
5 77.83 98.21 99.74 86.37 93.91 96.54 99.30 95.05 93.91 97.93 99.57 95.73 90.87 93.19 98.61 91.83 91.30 87.33 97.30 89.06
10 69.13 98.76 99.91 80.96 92.61 96.50 99.65 94.45 92.17 98.26 99.83 95.04 90.87 88.51 98.79 89.58 89.57 95.79 99.57 92.27
50 47.83 98.42 99.98 63.37 90.43 92.99 99.86 91.64 86.52 96.94 99.94 91.10 89.57 63.84 98.98 74.42 86.96 92.16 99.84 89.27
100 38.70 97.55 99.99 54.62 83.04 89.68 99.90 85.90 83.48 94.41 99.95 88.19 88.26 47.59 99.00 61.60 91.74 90.87 99.90 91.09
200 27.86 93.33 99.99 41.29 85.00 91.10 99.96 87.72 78.57 94.66 99.98 85.48 87.14 31.72 99.05 46.34 85.00 93.22 99.96 88.35
500 8.00 30.00 100.00 12.38 76.00 81.31 99.96 76.62 68.00 91.83 99.99 75.96 78.00 12.80 99.07 21.90 56.00 58.83 99.98 54.36
1000 0.00 0.00 100.00 0.00 65.00 60.00 99.97 59.00 40.00 55.00 99.99 43.33 65.00 9.13 99.57 15.95 70.00 72.33 99.98 66.72
1500 0.00 0.00 100.00 0.00 60.00 55.00 99.99 56.67 50.00 45.00 99.99 46.67 60.00 8.92 99.70 15.34 0.00 0.00 100.00 0.00
2000 0.00 0.00 100.00 0.00 60.00 55.00 99.99 56.67 40.00 40.00 99.99 40.00 70.00 8.64 99.67 15.12 0.00 0.00 100.00 0.00

Table 3. Supervised ML methods (with SMOTE) for pre-miRNA prediction

Imbalance SVM KNN RF NB deepNN

(1: IR) sþ p s� F1 sþ p s� F1 sþ p s� F1 sþ p s–� F1 sþ p s� F1

Homo sapiens
1 96.14 96.79 96.79 96.45 96.64 95.70 95.64 96.17 96.64 97.01 97.00 96.82 92.29 97.15 97.29 94.64 95.36 96.86 96.86 96.07
5 72.57 95.11 99.25 82.28 91.14 85.35 96.87 88.13 94.00 91.82 98.32 92.88 92.14 89.34 97.80 90.69 96.07 86.05 96.84 90.71
10 68.43 92.85 99.47 78.73 88.93 79.44 97.70 83.88 92.86 87.16 98.63 89.91 92.07 81.49 97.92 86.45 96.07 76.16 96.94 84.85
50 52.64 87.68 99.85 65.67 79.36 61.47 99.00 69.22 84.71 73.42 99.39 78.65 90.43 45.70 97.86 60.71 90.29 54.87 98.49 68.08
100 39.63 85.25 99.93 53.66 72.84 53.10 99.35 61.32 80.62 69.31 99.64 74.41 91.11 30.96 97.97 46.19 84.57 48.30 99.10 61.45
200 25.25 72.57 99.95 37.08 65.25 43.34 99.58 52.01 73.75 64.33 99.79 68.52 91.00 17.89 97.94 29.90 78.75 38.77 99.36 51.49
500 15.00 69.17 99.99 23.55 62.50 40.39 99.81 48.54 65.00 60.75 99.92 61.84 91.88 9.85 98.33 17.78 72.50 43.27 99.81 53.75
1000 15.00 69.83 99.99 23.13 53.75 28.26 99.87 36.59 48.75 47.58 99.94 47.32 93.75 4.76 98.14 9.05 61.25 29.83 99.86 39.98
1500 16.00 36.67 99.99 22.14 60.00 33.92 99.92 42.28 60.00 55.57 99.97 57.00 94.00 4.21 98.65 8.06 62.00 37.64 99.93 45.57
2000 12.50 45.00 100.0 19.33 62.50 43.28 99.95 49.65 52.50 39.45 99.97 43.61 92.50 2.95 98.48 5.71 67.50 50.92 99.96 54.69
Arabidopsis thaliana
1 89.57 98.30 98.26 93.48 95.22 97.10 96.96 96.03 95.65 98.28 98.26 96.91 92.17 98.20 98.26 94.98 93.48 97.46 97.39 95.31
5 83.91 98.01 99.65 90.13 94.78 90.52 97.91 92.42 95.22 97.08 99.39 96.01 91.74 93.66 98.70 92.51 98.70 75.09 93.04 84.94
10 78.26 98.00 99.83 86.68 94.35 89.08 98.79 91.48 94.35 97.76 99.78 95.95 91.74 89.05 98.83 90.24 97.83 66.72 95.06 79.21
50 37.83 96.11 99.95 51.01 90.43 80.40 99.55 84.93 91.30 92.10 99.83 91.31 90.43 62.51 98.91 73.77 94.78 68.90 99.04 78.95
100 23.48 96.41 99.99 36.69 87.83 73.22 99.67 79.37 90.43 89.69 99.90 89.95 89.57 45.80 98.92 60.47 91.74 72.87 99.65 80.91
200 17.86 88.00 99.99 28.74 83.57 77.59 99.88 80.27 87.14 88.24 99.94 87.23 89.29 28.63 98.89 43.26 91.43 74.14 99.82 80.98
500 10.00 26.67 100.00 14.05 84.00 66.55 99.92 72.74 74.00 85.67 99.98 77.74 84.00 10.53 98.73 18.66 82.00 71.71 99.94 74.23
1000 5.00 10.00 100.00 6.67 70.00 45.00 99.94 53.33 45.00 45.00 99.98 42.33 80.00 6.37 99.22 11.78 80.00 49.52 99.94 59.11
1500 10.00 10.00 100.00 10.00 70.00 47.50 99.96 54.00 50.00 45.00 99.98 46.67 80.00 11.00 99.74 19.20 90.00 47.83 99.95 59.00
2000 0.00 0.00 100.00 0.00 70.00 63.33 99.98 65.00 30.00 25.00 99.98 26.67 80.00 9.15 99.69 16.29 90.00 60.00 99.96 67.86
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case, the support vectors located in a region full of samples
from the opposite class produce bad test results. In fact, this
can be clearly seen in the Figure 1 of the Supplementary
Material.

For the KNN classifier, a similar analysis can be done. In
Table 2, without SMOTE, at low imbalance levels (up to 1:10), all
measures are high in both data sets; between 86.00 and 96.00%.
But at mid-level imbalance (1:100), for example in H. sapiens, it
has already decreased performance to 66.00% in sþ and around
40.00% at the highest class imbalance. The same with p. The
global F1 decreases much as well with increasing imbalance,
from 96.00% down to around 45.00%. In the A. thaliana data set,
the performance values are slightly better up to imbalance
1:200, being all of them of around 56.00% at the highest imbal-
ance. When SMOTE is applied to a KNN classifier (in Table 3), it
has only a noticeable influence on sþ at the very high imbalance
levels, raising just a 10.00–20.00% more the performance values.
Global performance F1 is around 45.00–50.00% for the H. sapiens
data set and around 60.00–65.00% in A. thaliana.

Regarding RF in human data set without SMOTE (in Table 2),
it has very high sþ, p and F1 (74.00% and higher, up to 97.00%) at
the very low imbalance levels (1:1–1:50). Then, when imbalance
increases, it is more difficult to distinguish TP from FPs. These
rates diminish significatively in the middle imbalance cases to
53.75% for sþ and 86.23% for p at 1:500. This means that here RF
can still have an acceptable precision (low number of FPs), but
at the cost of missing (mis-classifying) half of the TPs. However,
at a very large imbalance level (1:1000 and 1:2000), RF does not
work properly anymore; sþ is as low as 25.00% and p is 56.67%,
meaning that this classifier is not capable of recognizing true
samples. It suffers from overfitting of the negative class because
of the large imbalance in data. In fact, this is perfectly reflected
by F1, which has high values at the low imbalance situations
(90.00–96.00%), and then falls <50.00% as imbalance increases
much more. In the other data set, the trend and global behavior
is the same for RF. The use of SMOTE in RF (Table 3) is a little bit
helpful at the highest imbalance, rising sþ and p in H. sapiens;
however, for A. thaliana, SMOTE does not help at all. A similar
explanation to the use of SMOTE with SVM can be applied here
as well, with SMOTE inducing changes in the decision boundary
that are undesirable because there are artificial positive sam-
ples in the negative region.

NB has obtained the best results among the supervised
methods evaluated regarding sþ, from mid- to high imbalance
ratio (IR). For example, in H. sapiens, the sþ of NB is higher than
80.00–90.00% even at the highest imbalance level, with and
without SMOTE, apparently showing robustness to large class
imbalance. It can be stated that it almost seems to be unaffected
by the IR regarding TP recognition. However, when looking at
the precision p, extremely low values can be seen for high
imbalances (1:500 and 1:1000) in both data sets. Low values,
<10.00% even with SMOTE, are observed. That seems to be the
price to pay for high sensitivity: a large number of FPs. This fact
is correctly reflected by the global measure F1, with values
<10.00–20.00% at the extreme imbalance, without real practical
use.

Finally, the hybrid deepNN predictor behaved similarly to
the other supervised models. Very high s� is achieved no matter
the IR in both genomes. High sþ is provided in low and mid-
range imbalance, with poor performance in the highest imbal-
ance levels, which means not recognizing TPs. For example, in
H. sapiens, at the highest imbalance level, 80% of the TPs are
lost; for A. thaliana, TPs are not recognized at all. These facts
lead to very poor values in F1 at the highest imbalance here

evaluated. When SMOTE is used for balancing, the results im-
prove in sþ, p and F1, in particular at the highest imbalance lev-
els. While these very recent neural models are being applied
with success in many areas, and for pre-miRNA prediction they
have shown to be among the best models, deep neural networks
have to be applied with caution in front of high class imbalance.
More research is required to reach acceptable levels of
performance.

Unsupervised models performance

Regarding the unsupervised ML methods in Table 4, for s�

(TN rate), the same conclusions as before can be achieved in all
cases in both data sets and for all methods: it is very high even
at high imbalances, with values between 80.00 and 99.00%. This
is however misleading when TP rate and precision are analyzed
more deeply. Regarding the recognition of TPs (sþ), all the meth-
ods are equally good at low and mid-class imbalance (1:1–1:50),
in both data sets, with high values, between 83 and 99%. Only
very large imbalance, larger than 1:200, impacts on sþ for SOM,
HC and SC. In the A. thaliana data set, both KM and SOM main-
tain a very high sensitivity of 90.00% at the worst imbalance
level.

In the case of KM, the sþ is the highest of all unsupervised
methods at the highest imbalance level, being 92.50% for H. sapi-
ens and 90.00% for A. thaliana. Furthermore, it could be stated
that increasing imbalance has no effect on this method when
used as classifier because high performance is maintained for
positive class recognition. However, precision is really bad,
<65.00% in low to mid-imbalance and >5.00% at the highest im-
balance, meaning that in the KM labeled clusters there is a large
amount of FPs. In fact, F1 is low for the mid-to-high imbalance
levels, being <5.00% for KM in both data sets. For this method, it
can be said that it will almost never miss a true candidate, but
many false candidates will be predicted as well.

SC has a similar behavior to KM; thus, an analogous analysis
can be done. It is good for recognizing true miRNAs at low or no
imbalance, though having a bad performance at the highest im-
balance levels, with modest sensitivity and very low precision.
For example, in human, it has a TP rate sþ between 86.00 and
99.00% up to 1:200, falling to 60.00% when data imbalance is
increased 10 times. In the other data set, the drop is up to
60.00% as well. The same happens with SC precision: it is ex-
tremely low (<5.00%) at mid- to high imbalances because it has
a large number of FPs. F1 reflects this fact with very poor results,
indeed. The same happens in both data sets.

Instead, SOM and HC have more balanced results in both sþ

and p, being equally good in both data sets at the low to middle
imbalance levels. For example, SOM in A. thaliana maintains an
always high sþ, from no imbalance to the extreme 1:1500 imbal-
ance level. It can be stated that this model is capable of main-
taining very high TP recognition, >80.00%, no matter the
imbalance present in data. The precision falls from around
94.00 to 21.00% of course, as imbalance increases, being how-
ever >10 times better than KM and SC. The F1 of SOM in this
data set at 1:2000 is 26.86%, the second best global value, after
HC, in comparison with all other unsupervised approaches eval-
uated. The F1 of SOM in the human data set is the best one of all
at the extreme 1:2000.

HC, in the imbalance range from 1:1 to 1:100 in both data
sets, has high values in TP rates and precision, and in the global
F1 measure as well. It is the best method also for the Arabidopsis
data set regarding precision and F1 from mid- to high imbalance
level. For the mid-range, it presents very good global F1
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performance around 75.00% in A. thaliana. At high class imbal-
ance, however, it is affected, but it preserves good precision,
around 36.00–20.00%. This is reflected with a F1 of approximate-
ly 30.00–44.00% in both data sets at the extreme 1:2000 imbal-
ance evaluated.

Finally, the deepSOM model is the best of all unsupervised
models. This deep topology of SOMs appears as the most robust
model in front of the diverse imbalance levels evaluated and for
performance indexes measured. As happens with all other
models, s� is close to 100.00% in almost all cases and both
genomes. At the highest imbalance levels, sensitivity remains
>60.00% in H. sapiens up to 1:500. After that levels, it is affected
by the imbalance but still recognizing with acceptable precision.
In the case of the A. thaliana genome, this balance between not
losing TPs and not having too much FPs is the best possible,
beating all other unsupervised models, and even most of the
supervised ones. The F1 for deepSOM at the extreme imbalance
case is the best result achieved in the Table 4.

Global comparative results

To summarize the results and to more easily evaluate the global
behavior of all of the ML approaches, Figures 1 and 2 show the
F1 score obtained by all methods in each data set without
SMOTE, and for each imbalance level. In these figures, in par-
ticular, a further extreme imbalance case of twice the highest
imbalance reported in the tables (1:5000) has been included to
show the behavior closer to more real cases. Supervised models
are indicated with shades of red, unsupervised learners with
shades of blue, and deepNN is in green line because it is a hy-
brid model having an unsupervised stage before the last super-
vised tuning of the neural network. From the figures, it can be
easily seen how all methods noticeable decrease performance
as imbalance increases.

Figure 1 shows the F1 scores for all methods in the H. sapiens
data set. Up to 1:200, most of supervised models maintain ac-
ceptable F1 scores, being the best ones RF and KNN, together
with the hybrid deepNN. At the 1:500 imbalance, two separated
groups are easily identified: RF, KNN, deepNN, HC, SOM and
deepSOM versus very poor performance of SVM, NB, KM and SC.
After this point up to 1:2000, all methods continue falling up to
<50.00%. Between 1:2500 and 1:5000, all supervised methods
maintain poor values, except only for KNN that falls to 41.11%.
It is noteworthy that in this imbalance range, deepSOM and HC
increase performance up to around 50%. The best classifiers at
the highest imbalance level are the hybrid deepNN and the un-
supervised learners deepSOM and HC, while all the other meth-
ods have very low performance. Moreover, it can be seen that
globally, up to 1:1500 supervised methods are the best ones, but
in the highest imbalance methods including unsupervised
learning stages have the best performance. That is, supervised
methods are those more significantly degraded.

Figure 2 shows the F1 scores for all methods in the A. thaliana

data set. Again here, all methods are compromised by the
increasing imbalance level. Up to 1:1500, two groups of classi-
fiers are easily identified. The best group includes KNN and RF
together with the hybrid deepNN and the unsupervised HC,
SOM and deepSOM. The worst group includes NB, SVM, KM and
SC, with extremely low F1 scores, which continue decreasing
performance from this point forward. At 1:2500, the hybrid
deepNN and two unsupervised methods are the best ones.
Between 1:2500 and the highest class imbalance, deepSOM
increases F1 being the best one, followed by RF and SOM. All
other models inevitably collapse because of the high class im-
balance. It should be noted in particular that deepSOM, based
on unsupervised models, performs much better compared with
the most widely used model in this field (Triplet-SVM) in both
data sets.

Table 4. Unsupervised ML methods for pre-miRNA prediction

Imbalance KM SOM HC SC deepSOM

(1: IR) sþ p s� F1 sþ p s� F1 sþ p s� F1 sþ p s� F1 sþ p s� F1

Homo sapiens
1 99.64 65.52 46.86 78.98 96.14 93.30 93.07 94.69 98.14 87.40 85.79 92.40 99.36 82.10 78.21 89.88 95.07 95.16 95.14 95.10
5 99.43 36.52 65.18 53.34 92.14 82.88 96.19 87.23 94.14 77.56 94.54 85.01 98.57 48.93 79.45 65.37 90.14 87.62 97.44 88.82
10 99.00 23.43 67.48 37.84 90.57 76.10 97.16 82.68 91.36 72.14 96.47 80.59 98.71 32.09 79.13 48.41 89.64 81.15 97.92 85.16
50 98.57 8.28 78.17 15.27 85.29 43.55 97.80 57.64 83.21 48.24 98.21 61.04 98.43 7.98 77.31 14.75 83.79 46.33 98.07 59.65
100 97.65 5.44 83.00 10.30 80.37 36.92 98.62 50.56 79.63 41.43 98.87 54.44 96.17 4.84 81.09 9.21 77.53 40.62 98.87 53.27
200 95.25 3.34 86.36 6.45 75.50 27.69 99.02 40.44 70.00 33.18 99.30 44.94 86.75 2.90 85.69 5.62 69.00 36.91 99.40 47.74
500 92.50 2.94 93.88 5.69 75.00 25.00 99.54 37.20 69.38 29.32 99.65 40.61 73.75 1.98 92.79 3.86 64.38 37.70 99.78 47.02
1000 91.25 1.96 95.41 3.84 61.25 15.68 99.67 24.91 58.75 18.53 99.74 27.88 70.00 1.22 94.40 2.39 47.50 31.16 99.90 37.23
1500 92.00 2.48 97.67 4.82 70.00 22.29 99.82 32.90 62.00 18.21 99.83 27.82 54.00 0.98 96.74 1.93 40.00 28.57 99.93 31.66
2000 92.50 2.69 98.19 5.22 65.00 21.98 99.89 32.48 67.50 20.34 99.87 30.60 60.00 1.16 97.25 2.26 42.50 30.78 99.94 34.32
Arabidopsis thaliana
1 99.13 59.27 30.87 74.05 96.52 93.88 93.48 95.09 96.96 90.72 90.00 93.70 97.39 94.03 93.48 95.57 95.22 96.70 96.52 95.85
5 96.96 34.43 62.78 50.74 94.35 92.85 98.43 93.31 95.22 85.22 96.61 89.83 95.65 77.17 94.26 85.33 93.48 94.19 98.78 93.70
10 96.96 26.03 71.39 40.85 93.04 93.46 99.35 93.17 93.48 83.18 98.05 87.82 93.91 58.10 93.07 71.59 93.04 96.46 99.65 94.67
50 96.09 10.22 82.81 18.45 89.13 79.00 99.49 83.25 91.30 77.42 99.45 83.42 94.78 19.13 91.92 31.78 91.30 86.35 99.69 88.42
100 96.09 7.43 87.91 13.78 89.13 68.96 99.60 77.69 89.57 65.71 99.52 75.35 93.91 9.36 90.85 17.01 88.70 76.86 99.72 81.96
200 93.57 4.79 90.58 9.09 87.14 63.24 99.74 72.95 88.57 66.88 99.76 75.50 94.29 8.16 94.62 14.99 84.29 69.97 99.81 75.56
500 88.00 3.17 95.05 6.12 84.00 48.61 99.83 60.62 86.00 62.15 99.88 68.18 80.00 4.36 96.76 8.24 82.00 51.31 99.85 62.16
1000 90.00 1.38 95.23 2.72 85.00 38.36 99.89 52.04 75.00 36.19 99.91 47.78 50.00 1.26 97.30 2.46 55.00 63.33 99.97 54.67
1500 80.00 1.22 97.46 2.41 90.00 43.67 99.93 54.52 70.00 36.5 99.92 44.00 70.00 1.38 97.88 2.69 40.00 30.00 99.97 33.34
2000 90.00 1.03 96.70 2.04 50.00 20.83 99.92 26.86 60.00 24.10 99.89 31.10 60.00 1.15 98.21 2.27 60.00 45.00 99.98 50.00
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To statistically evaluate differences between all the classi-
fiers in high class imbalance (1:1000–1:5000) in both data sets
and all folds, a Friedman rank test for F1 was applied and
resulted in P<1.73E-47 at a ¼ 0:05, indicating that the differen-
ces among the scores are statistically significant. The corre-
sponding critical difference (CD) diagram for post hoc Nemenyi
test [75], which obtained a CD¼ 1.55, is shown in Figure 3. This
statistical analysis clearly indicates that, for the high imbalance

present in pre-miRNAs, the best models are deepSOM, KNN,
deepNN, HC and SOM. In this group, SOM, deepSOM and HC are
the best unsupervised methods, being not statistically different
from KNN and the hybrid deepNN, which need positive and
negative labeled data sets. The CD shows that there are no dif-
ferences between NB, KM, SC and SVM, being SVM the worst
one. Thus, deepSOM, KNN, deepNN, HC, SOM and RF versus NB,
KM, SC and SVM are confirmed to be the best and worst

Figure 1. ML approaches for pre-miRNA prediction with increasing imbalance levels in H. sapiens data set. Supervised (shades of red lines), unsupervised (shades of

blue lines) and hybrid learner (green line).

Figure 2. ML approaches for pre-miRNA prediction with increasing imbalance levels in A. thaliana data set. Supervised (shades of red lines), unsupervised (shades of

blue lines) and hybrid learner (green line).
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classifiers for pre-miRNA prediction, respectively. The differ-
ence between these two groups of classifiers is statistically
significant.

This final comparative result is interesting. First of all, it is a
strong evidence that the most used and published SVM models
(such as triplet-SVM) are not the adequate classifier for pre-
miRNAs predictions in close to real-life scenarios. It also clearly
shows that the more recent models including unsupervised
stages can be superior to standard supervised approaches. In
more real situations where the imbalance can be even higher,
models with unsupervised learning could be preferably
explored, as they can offer better performance, and they do not
need a negative class definition.

Discussion

It has to be remembered at this point that the differences be-
tween unsupervised and supervised ML approaches are basic-

ally that supervised models need both class labels for training,
while unsupervised methods do not need class labels during
training. For classification, the class labels of the positive sam-
ples are required only after training. They first model the com-
plete feature space regardless of class labels. Therefore,
unsupervised models look at which sequences are the closest
ones to well-known pre-miRNAs only after learning.

For supervised methods, a negative class definition is
required. In practice, it is difficult to build an appropriate set of
negative examples for training them adequately, capable of ef-
fectively describing the non-pre-miRNA class. Even though
tRNAs and rRNAs have been generally used as negative training
sets, it is not known for sure whether hairpins from those RNA
segments could not generate miRNAs [76]. Thus, the main
drawback of the supervised ML approaches is the lack of an ap-
propriate negative set, which represent negative examples that
the classifier could find when analyzing genomics data. As the
real number of miRNAs in any given genome is still an open
issue, in most works, it is assumed that the probability of find-
ing a pre-miRNA in any randomly chosen stem-loop extracted
from a genome is very low. However, it cannot be generally
guaranteed that hairpins that would normally be processed by

the miRNA-maturation pathway are not being included in the
negative training set.

This is particularly relevant in a high class imbalance con-
text. In fact, a recent study on the impact of the negative sets
when predicting human pre-miRNAs has stated that most exist-
ing supervised classifiers cannot provide reliable predictive per-
formance on independent testing data sets because their
negative training sets are not sufficiently representative when
there is a high class imbalance [77]. In such case, the obviously
negative class is well learned and a large number of unknown
sequences are predicted as positive (FPs) that are difficult to val-
idate with wet-lab experiments. Furthermore, when positive
predictivity is analyzed in detail, it may fall <50%. In particular,
it has already been shown that supervised models are less
affected by low class imbalance, but they are the models most
affected in presence of high class imbalance [76].

As the quantity of true pre-miRNA is increasing as time
passes, if imbalance decreases, supervised models could per-
form better after SMOTE. It would strongly depend on the real
quantity of pre-miRNAs present in a given organism, and the
rate of novel pre-miRNA discovery for such organism. In a real
scenario, the number of known pre-miRNAs is in the order of
hundreds for most genomes, and in the order of thousands in
the case of the human genome (there are 1881 well-known
human miRNAs up-to-date in MirBase). The rest of the un-
labeled sequences can be in the order of millions. Thus, it is un-
likely that such high class imbalance could decrease enough to
be adjusted with SMOTE.

Unsupervised models, instead, build a model from the data,
reflecting the data closeness into the clusters. They only look
for the closer centroid to each sample and classify sequences as
pre-miRNA candidates if this centroid belongs to a pre-miRNA
cluster. An unsupervised approach does not use class labels to
shape the acceptance region in the learning stage and, as it
does not try to identify the optimal margin between positive
and negative examples, it is also less likely to suffer from over-
training. Thus, it can be stated that the negative class labels
have a less important role in unsupervised methods than in
supervised ones. For supervised learners, both types of labels
must be defined. In unsupervised ones, the negative class labels
can be missing. After training, the class assignment depends
only on the presence of (at least) one positive case in a cluster,
no matter how many other unknown negatives samples there
are also, together, in the same cluster. All the feature space is
learned with the same detail, that is, both positive and negative
classes are modeled although in an unsupervised fashion, with-
out class labels. After training, the original labels of the positive
class are used to identify the clusters that have the best pre-
miRNAs candidates.

From the results obtained in the comparisons, it can be
stated that regarding the question on which ML approach is the
best (supervised or unsupervised), the answer strongly depends
on the level of class imbalance present. The comparative results
show that when there is low to mid-imbalance, supervised
models have the best performance. However, in the case of high
class imbalance, closer to a real genome-wide prediction task
where there can be 100 well-known pre-miRNA in millions of
unlabeled sequences to classify, models including unsupervised
learning could perform better, being also more simple to under-
stand, generate and use.

It can be stated that unsupervised learning has many advan-
tages for this application and that there is plenty of room for fu-
ture research in computational algorithms based on this
approach for novel pre-miRNAs discovery. For example, a

CD
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3.3684 deepSOM

3.7961 KNN

4.3947 deepNN

4.5329 HC

4.6513 SOM4.7237RF
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7.2763KM

7.7368SC

8.1316SVM

Figure 3. Statistical significance diagram. CD diagram for Nemenyi tests per-

formed on human and Arabidopsis data sets for F1 of supervised and unsuper-

vised ML approaches for pre-miRNA prediction. Bold lines indicate groups of

classifiers, which are not significantly different (their average ranks differ by

less than CD value).
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negative class must be neither defined nor artificially created.
This makes these models much simpler to build for a nonexpert
user, as all available sequence data can be provided as input
without the labeling process. Independently from the method
and the number of clusters, after training, the results are more
easy to interpret. Once the clusters that have well-known pre-
miRNAs are located, the better candidates to new pre-miRNAs
can be identified fast, simply as those other sequences within
such clusters. Furthermore, in a high class imbalance context
such as the pre-miRNA prediction, this is of particular relevance
because in a more real scenario, there are always few positive
examples in proportion to the unknown ones. Thus, when
working with genome-wide data, the unsupervised approach
could be more naturally suited to learn the specific characteris-
tics of the well-known examples, even if only a few, not being
biased by the class imbalance and the sequences that are dis-
tant to pre-miRNA clusters. This way, it can be stated that these
kinds of models can be used in more realistic situations where
genome-wide data are under analysis. In summary, with the
unsupervised approach, all genome-wide data of the same spe-
cies could be simply used, and the best highly likely candidates
to pre-miRNAs can be easily identified, after training, as those
sequences clustered together with well-known pre-miRNAs.

Conclusions

In pre-miRNA prediction, there is a very high class imbalance be-
tween well-known pre-miRNAs and unlabeled sequences that
the supervised classification models cannot properly handle.
This work provides to the bioinformatics community a
conceptual and updated review of existing ML approaches for
pre-miRNA prediction. The results obtained in the comparisons
indicate that unsupervised ML and deep neural architectures can
be more suited for future research in computational methods for
pre-miRNA prediction than classical supervised approaches, such
as SVM. Comparative results have clearly shown that unsuper-
vised approaches and deep neural networks including unsuper-
vised learning are capable of maintaining good performance
rates, while classical supervised models quickly deteriorate when
class imbalance increases. Additionally, the unsupervised
approaches are more naturally suited to an end user that has
good knowledge on the pre-miRNAs of the genome under study
but has no knowledge regarding the definition of a negative class
for training a supervised classifier.

Key Points

• The computational prediction of novel miRNAs involves
identifying good candidate sequences in high class
imbalanced data in the context of machine learning.

• Supervised models need the definition of positive and
negative class samples. But negative samples must be
defined artificially by a manual process.

• Unsupervised machine learning methods do not need
class labels for training. The class labels, only of the
positive samples, are used later for the classification
task. These approaches model the complete feature
space with the same detail, regardless of class labels.
Thus, learning is not biased by the majority class.

• The answer to the question on which machine learning
approach is the best (supervised or unsupervised) for
this task strongly depends on the level of class imbal-
ance present.

• This study has shown that supervised methods are
those more significantly degraded as imbalance ratio
increases. At high class imbalance and as long as the
imbalance remains high, like in a real genome-wide
prediction task with about 1000 well-known pre-
miRNAs and millions of unlabeled sequences, unsuper-
vised approaches can be a better choice.

• Future research in computational methods for pre-
miRNA prediction should be oriented toward the design
of deep neural networks predictors and models that in-
clude unsupervised learning stages, to properly handle
the inherent high class imbalance.
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