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e Facultad de Matemática, Astronomı́a y Fı́sica Universidad Nacional de Córdoba (FaMAF–UNC) Bvd. Medina Allende s/n, Ciudad Universitaria, X5000BGR,
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Abstract

Machine learning algorithms are highly useful for the classification of time series data in astronomy in this era of peta-scale public
survey data releases. These methods can facilitate the discovery of new unknown events in most astrophysical areas, as well as
improving the analysis of samples of known phenomena. Machine learning algorithms use features extracted from collected data
as input predictive variables. A public tool called Feature Analysis for Time Series (FATS) has proved an excellent workhorse for
feature extraction, particularly light curve classification for variable objects. In this study, we present a major improvement to FATS,
which corrects inconvenient design choices, minor details, and documentation for the re-engineering process. This improvement
comprises a new Python package called feets, which is important for future code-refactoring for astronomical software tools.

Keywords: Astroinformatics, Machine learning algorithm: Feature selection, Software and its engineering: Software
post-development issue

1. Introduction.

Machine learning (ML) has proved to be an important tool
for data analysis in astronomy. Numerous projects such as As-
troML (VanderPlas et al., 2014), - UPSILoN (Kim and Bailer-
Jones, 2016), MeSsI (de los Rios et al., 2016), and Feature
Analysis for Time Series (FATS)(Nun et al., 2015) have been
developed to help astronomers use the ML approach. Lan-
guages such as R 1 and Python2 provide massive collections
of ready-to-use packages for complex data analysis and a large
number of ML tools. However, if we conduct in-depth analy-
sis of these systems, it is apparent that some projects lack ad-
equate software engineering design (Cowling, 1998), and thus
they are often difficult to test, maintain, and extend, and some
of these solutions may also under-perform in terms of speed
and memory. Moreover, many projects run in critical environ-
ments and process large volumes of data over short timescales,
and thus they can be inefficient if they are not optimized cor-
rectly. Thus, in simple terms, many scientific systems have a
“bad code smell” (Tufano et al., 2015).

According to Fowler, code smell is a:

. . . a surface indication that usually corresponds

∗Corresponding author
Email address: jbcabral@oac.unc.edu.ar (J. B. Cabral)

1https://www.r-project.org/
2https://www.python.org/

to a deeper problem in the software; and we cur-
rently know that most of times code artifacts are
affected by so-called “bad smells” since their cre-
ation. . . (Fowler, 2006).

In these cases, the most pragmatic solution is to replace most of
the code for a superior implementation, but to avoid any func-
tional changes. This type of process is called code refactoring
(Fowler and Beck, 1999).

In this study, we employed a code refactoring process to pro-
vide a more robust time-series feature extraction library based
on the FATS project (Nun et al., 2015). The current version of
FATS (1.3.6)3 is written entirely in Python and based on the nu-
merical libraries comprising Numpy (Walt et al., 2011), Scipy
(Jones et al., 2014), and StatsModels (Seabold and Perktold,
2010). FATS can extract up to 64 features from time series data
inputs, and it also includes pre-processing functions and tools
for importing data from the MACHO survey (Cook et al., 1995).
The project tutorial for feature extraction4 is instructive, but it
lacks internal documentation, which is crucial when adding fea-
tures to this otherwise excellent tool. In particular, we identified
several limitations when we attempted to use FATS for classi-
fying periodic variable stars from large data sets, such as the

3https://pypi.org/project/FATS
4http://isadoranun.github.io/tsfeat/

FeaturesDocumentation.html
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VVV/VVV(x) (Catelan et al., 2011; Minniti, 2018) projects.
Thus, we engineered an upgrade, which was carefully designed
to build on the strengths of FATS by re-utilizing as much code
and documentation as possible.

The remainder of this study is organized as follows. In sec-
tion 2, we explain the feature extraction formalism and the rel-
evance of automatic classification. In section 3, we consider
the original project to identify advantages and weaknesses. The
theoretical background of the re-engineering process and the se-
lected actions required to implement feets are described in sec-
tion 4. In section 5, we provide detailed explanations of the in-
ternal details that make feets a better choice for extracting time
series features. Finally, in section 6, we give our conclusions
and suggestions for future improvements to the FATS project.

2. Feature engineering and ML

ML algorithms can be applied to large volumes of data in
order to improve their performance at a given task (Samuel,
1959). These tasks may include classification, regression, opti-
mization, or clustering, which are the most common ML appli-
cations (Michalski et al., 2013). The data employed may origi-
nate from a wide range of sources, but individual observations
are always represented by a set of values called features. The
process conducted for defining and extracting these features is
called feature engineering. The highly specific nature of the
feature engineering process makes it expensive, difficult, and
time consuming, where it requires expertise in the area of ap-
plication, and it is also the most critical step in a ML project
(Ng, 2013).

3. FATS

The FATS tool is used to extract characteristics from time se-
ries data. In particular, the FATS project aims to standardize the
feature extraction process for astronomical light curves. FATS
is built on top of the Python scientific stack (Numpy and Scipy)
and it also uses StatsModels for additional statistical analysis.

3.1. Simple example
A sample from the original documentation is shown below to

clearly illustrate the different components of FATS.

The library receives as input the time series data
and returns as output an array with the calculated fea-
tures. Depending on the available input the user can
calculate different features. For example, if the user
has only the vectors magnitude and time, just the fea-
tures that need this data will be able to be computed.

Obviously the number of data points, data cadence, etc. will
also influence the number of possible features.

In order to calculate all the possible features
the following vectors (also termed as raw data) are
needed per light curve:

• magnitude

• time

• error

• magnitude2

• aligned magnitude

• aligned magnitude2

• aligned time

• aligned error

• aligned error2

where 2 refers to a different observation band. It
should be noted that the magnitude vector is the only
input that is strictly required by the library because
it is necessary for calculating all the features. The
remaining vectors are optional because they are only
needed by some features. Thus, if the user does not
have these additional data or time series other than
light curves are being analyzed, it is still possible to
calculate some of the features (. . . )

We illustrate this point with the following Python code,
which calculates features for a randomly generated light curve.
Only magnitude and time data are used, so the smallest feature
set will be obtained. This code is also based on the FATS tuto-
rial.

>>> import numpy as np

>>> import FATS

# randomly generate the data

>>> magnitude_ex = np.random.rand(30)

>>> time_ex = np.arange(0, 30)

# create the light curve array with the same

# order as the previous list

>>> lc_example = np.array([magnitude_ex, time_ex])

# create the feature space (this object serves

# as an entry point for extracting all the features)

# by specifying the available data

>>> fs = FATS.FeatureSpace(

... Data=['magnitude','time'])
Warning: the feature Beyond1Std could not be

calculated because

['magnitude', 'error'] are needed.

...

Warning: the feature CAR_mean could not be

calculated because

['magnitude', 'time', 'error'] are needed.

# calculate the features of the light curve

>>> fs.calculateFeature(

... lc_example).result("dict")

{'Amplitude': 0.46422830004583993,

'AndersonDarling': 0.69055170152838952,

'Autocor_length': 1.0,

'Con': 0.0,
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'Eta_e': 1.2660816816234817,

...

'Period_fit': 0.99987790236635843,

'Psi_CS': 0.25119898781877714,

'Psi_eta': 1.4069202501024807,

'Q31': 0.47029269745864666,

'Rcs': 0.21319202165853643,

'Skew': 0.19709543035122007,

'SmallKurtosis': -0.93310208660425609,

'Std': 0.28904604267318268}

3.2. Functionalities
In addition to the previous example, FATS provides the fol-

lowing functionalities.

Features Extraction Framework: FATS includes a simple
tool for creating your own feature extractor. Ev-
ery feature extractor is a python class inside the
FATS.FeatureFunciontLib module. This class must
contain object attributes that define the data required for
the light curve and a fit() method used for calculating
the feature. The following code is an example of a class
that returns the number of observations in a time series.

class Count(Base):

def __init__(self):

# this attribute sets the

# data required to calculate the feature

self.Data = ['time']

def fit(self, data):

# the extractor retrieves the

# time data from the light curve

time = data[1]

# finally, the extractor simply

# returns the number of

# observations

return len(time)

Next, the extractor can be used as follows:

# create the feature space

# specify the required feature data

>>> fs = FATS.FeatureSpace(

... featureList=["Count"])

# calculate the features of the light curve

>>> fs.calculateFeature(

... lc_example).result("dict")

{'Count': 30}

Time Series Preprocessing: Two functions are integrated for
light curve data pre-processing, where the first is a time
series error parameter based on a sigma-clipping algorithm
(as implemented in the FATS.Preprocess LC class) and
the second is a class called FATS.Align LC for aligning
two time series. The documentation suggests that these
functionalities are used before any features are extracted.

MACHO-survey Light-Curve Parser: The
FATS.ReadLC MACHO class retrieves the magnitude,
time, and error from a given MACHO-id object (the id is
assigned in the MACHO survey). This implementation
does not search any of the data from the MACHO survey,
but instead the user is responsible for downloading the
light curve to the current working directory.

3.3. Advantages and disadvantages of FATS

From a software engineering perspective, many design de-
cisions in the FATS project are good implementations, whereas
others are inadequate. In the following, the ”good” design deci-
sions are described in short paragraphs, before focusing on the
problematic design decisions.

3.3.1. Good design choices
A good design choice in FATS is separating the API5 into

two parts as follows.

1. Extraction is configured in the FATS_FeatureSpace class.
2. The extraction of configured features is implemented as

a class hierarchy inside the FATS_FeatureFunciontLib

module.

This split between the functionality for analysis
(FATS_FeatureSpace) and the creation of the feature ex-
traction framework simplifies the operation of the system,
but allows the possibility of implementing complex feature
extractors. In addition, as noted above, preprocessing and
MACHO light curve manipulation are not associated directly
with the core functionality of the library, but instead they are
provided as an additional option in the project.

3.3.2. Criticisms
We consider several weak aspects of the current FATS imple-

mentation where the code is analyzed in depth. Some problems
are simple style errors. Others are related to the development
process and design bugs, which may cause errors and limita-
tions during feature extraction.

The complete experiment that forms the basis of
many of our criticisms can be found at: https:

//github.com/carpyncho/feets_paper/blob/master/

reports/FATS_tests.ipynb

Style and Maintainability Python has a strict coding style de-
fined in Python Enhancement Proposal 8 (PEP-8) 6. This
document defines guidelines for making code easy to un-
derstand by any Python developer. When a project follows
these guidelines, as well as others such as PEP-20 7 (re-
lated to the philosophy behind python design), the Python
community refers to the code as ”Pythonic” (easy to under-
stand and maintain). PEP-8 errors can be checked easily

5Abstract programming interface: The collection of functions, classes, and
objects that the programmer can use the library.

6https://www.python.org/dev/peps/pep-0008/
7https://www.python.org/dev/peps/pep-0020/
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with several tools such as flake88 and pylint 9, so avoiding
style errors is a straightforward task.

FATS does not adhere to the recommendations and 828
style errors were found in 1249 lines of code in a recent
executed count (i.e., 66% of the lines contained errors if
we assume a uniform distribution of errors).

Global Configurations The FATS documentation states the
following10.

Note: Some features depend on other fea-
tures and consequently must be computed to-
gether. For instance, Period fit returns the
false alarm probability of the estimated period.
Thus, it is also necessary to calculate the period
PeriodLS.

These dependencies are implemented as global vari-
ables. For example, we can check this with
the StructureFunction index 21 class from the
FATS.FeatureFunctionLib module.

1 class StructureFunction_index_21(Base):

2

3 def __init__(self):

4 self.Data = ['magnitude', 'time']
5

6 def fit(self, data):

7 magnitude = data[0]

8 time = data[1]

9

10 global m_21

11 global m_31

12 global m_32

13

14 # more code here

15

16 m_21, b_21 = np.polyfit(sf1_log, sf2_log, 1)

17 m_31, b_31 = np.polyfit(sf1_log, sf3_log, 1)

18 m_32, b_32 = np.polyfit(sf2_log, sf3_log, 1)

19

20 return m_21

According to this example, the m 21, m 31, and m 32 (lines
16–18) variables are calculated and stored in the global

environment/module level (lines 10–12) but only the m 21

value is returned (line 20).

In addition, if we check the
StructureFunction index 31 class in the same
module:

1 class StructureFunction_index_31(Base):

2

8http://flake8.pycqa.org
9https://www.pylint.org/

10http://isadoranun.github.io/tsfeat/

FeaturesDocumentation.html

3 def __init__(self):

4 self.Data = ['magnitude', 'time']
5

6 def fit(self, data):

7 try:

8 return m_31

9 except:

10 print ("error: please run "

11 "StructureFunction_index_21 "

12 "first...")

we can see that this class is only used to retrieve the m 31

variable from the global environment (line 31), or to print
an error to the console (line 10).

This design choice creates a bug, which can be exploited to
retrieve incorrect values according to the following simple
procedure.

1. First, import the modules and create two synthetic
light curves: normal lc (the magnitudes are gen-
erated from a Gaussian distribution of values) and
uniform lc (the magnitudes are generated from a
uniform value distribution).
>>> import numpy as np

>>> import FATS

>>> mag = np.random.normal(size=10000)

>>> time = np.arange(10000)

>>> normal_lc = [mag, time]

>>> mag2 = np.random.uniform(size=10000)

>>> time2 = np.arange(10000)

>>> uniform_lc = [mag2, time2]

2. Second, create a feature space from which
to extract the main built-in features com-
prising StructureFunction index 21 and
StructureFunction index 31 from the normal
light curve (normal lc).
>>> fs_normal = FATS.FeatureSpace(

... featureList=[

... 'StructureFunction_index_21',

... 'StructureFunction_index_31'])

# extract the features

>>> fs.calculateFeature(normal_lc)

>>> result = fs.result(method='dict')

# print the results

>>> print "Normal LC:"

>>> for f, v in result.items():

... f = f.split("_", 1)[-1]

... print " {} = {}".format(f, v)

Normal LC:

index_21 = 1.97547953389

index_31 = 3.05091739197

3. Create a new feature space and try to extract only
the StructureFunction index 31 feature from

4
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the uniform light curve. (uniform lc). The
value obtained should be the same as that for the
StructureFunction index 31 of the normal light
curve.

>>> fs2 = FATS.FeatureSpace(

... featureList=[

... 'StructureFunction_index_31'])

# extract the features

>>> fs2.calculateFeature(uniform_lc)

>>> result = fs2.result(method='dict')

>>> print "Bad Uniform LC:"

>>> for f, v in result.items():

... f = f.split("_", 1)[-1]

... print " {} = {}".format(f, v)

Bads Uniform LC:

index_31 = 3.05091739197

The only way to avoid this problem is to calculate
StructureFunction index 21 by default for all of the
input light curves.

>>> fs3 = FATS.FeatureSpace(

... featureList=[

... 'StructureFunction_index_21',

... 'StructureFunction_index_31'])

# extract the features

>>> fs3.calculateFeature(uniform_lc)

>>> result = fs3.result(method='dict')

>>> print "Uniform LC:"

>>> for f, v in result.items():

... f = f.split("_", 1)[-1]

... print " {} = {}".format(f, v)

Uniform LC:

index_21 = 1.89689583705

index_31 = 2.74650784403

In fact, the same bug affects all of the features
stored using a global configuration: Period fit,
Psi CS, CAR tau, CAR mean, the Fourier com-
ponents, and StructureFunction index 31 and
StructureFunction index 32, as mentioned above.

Python exit The Python language defines errors as excep-
tions11 so in the presence of any misconfiguration, some
exceptional states are created to inform the caller code that
”something has gone wrong.”

For example, if we want to write a division function that
fails with a divisor equal to 0, we could write the follow-
ing.

11Anomalous or exceptional conditions requiring special processing

>>> def division(a, b):

... if b == 0:

... raise Exception("b can't be 0")

... return a / b

The following result is obtained if the function is called.

>>> result = division(1, 2.)

>>> print result

0.5

>>> result = division(1, 0)

Traceback (most recent call last):

...

raise Exception("b can't be 0")

Exception: b can't be 0

If it is desirable to print the null Python value None when
an exception occurs so it is possible to manage the error
with the try-except construct.

>>> try:

... result = division(1, 0)

... except Exception:

... result = None

>>> print result

None

This simple example shows how Python can be used by the
programmer to correctly manage exceptional states: if you
do not know how to deal with a configuration, then throw
an exception and ignore it without halting the system.

The error exceptions provided to the programmer
by Python can be reduced to two basic types:
BaseExceptions and Exceptions. The first type com-
prises exceptions that may only be managed in very un-
usual cases, such as SystemExit.

The SystemExit exception errors are raised when the
function sys.exit() is called. This function call turns
off the virtual machine and sends the exit code to the op-
erating system. For example, the following piece of code:

>>> import sys

>>> sys.exit()

ends the Python virtual machine and sends a 0 value (no
error) to the operating system.

In FATS, this occurs when a FeatureSpace is configured
incorrectly and the Python virtual machine is turned off.
The system becomes unstable at least inside a multipro-
cessing environment (such as a web server, pipeline, or
simple multi-core calculation). The following two codes
reproduce this error.

1- Ask for an invalid feature

$ python

Python 2.7.6 (default, ...)

>>> import FATS

# ask for a nonexistent feature

5



>>> FATS.FeatureSpace(

... featureList=['Foo'])
could not find feature Foo

# python ends here

2- Send an invalid configuration for a feature

$ python

Python 2.7.6 (default, ...)

>>> import FATS

# ask for a nonexistent feature

>>> FATS.FeatureSpace(

... featureList=['Std'], Std=(1,2,3))

error in feature Std

# python ends here

The following code may manage this error.

>>> import FATS

# ask for a nonexistent feature

>>> try:

>>> FATS.FeatureSpace(

... featureList=['Std'], Std=(1,2,3))

... except:

... # some manipulation

However, as mentioned above, the SystemExit was not
designed to be managed.

Python 3 Python 3 is a new language part of the Python family
to replace the 2.7.x branch at 202012. This version is back-
ward incompatible with Python 2.x but it includes several
improvements in terms of expressibility and velocity13

Currently, all the foundations of the Python scientificstack,
based on which FATS is built, have already been ported
to the 3.x branch, but the code base of the project is still
Python 2.x only14. This issue essentially represents an im-
pending death sentence for the package in the next two
years.

Light Curve Order This is a minor issue. Most of the light
curve data sets represent the data in the following format:
time/magnitude/magnitude-error, whereas FATS uses the
following format: magnitude/time/magnitude-error. Thus,
preprocessing is required in many cases.

Inefficient Routines In FATS, some performance issues are
linked with the calculation of two features: MaxSlope and
PeriodLS. The code in the MaxSlope class is displayed
below for analysis.

1 class MaxSlope(Base):

2 """

3 Examining successive (time-sorted)

12https://www.python.org/dev/peps/pep-0373/
13https://speed.python.org/comparison/
14This issue are already been reported to the authors at: https://github.

com/isadoranun/FATS/issues/7

4 magnitudes, the maximal first difference

5 (value of delta magnitude over delta time)

6 """

7 def __init__(self):

8 self.Data = ['magnitude', 'time']
9

10 def fit(self, data):

11 magnitude = data[0]

12 time = data[1]

13 slope = (

14 np.abs(magnitude[1:] - magnitude[:-1]) /

15 (time[1:] - time[:-1]))

16 np.max(slope)

17 return np.max(slope)

The np.max function is called two times in lines 16 and
17. The result from line 16 is not used, so this calculation
can be removed.

The problem is more complicated for PeriodLS because
the full implementation of the Lomb–Scargle Method
(VanderPlas, 2018), which is included with FATS, is pro-
grammed in IDL Language (Landsman, 1995) 15 based
on the published Numerical Recipes (Press, 2007) rou-
tine. This makes the code difficult to maintain and it has
some performance issues due to the incorrect usage of the
Numpy library. Furthermore, this implementation of the
Lomb–Scargle methodology is applied iteratively to cal-
culate the nine Fourier features.

We extracted a high number of features for a particular
light curve in the MACHO Survey and the computational
time decreased by 20% when all the features calculated
using the Lomb–Scargle Periodogram were neglected.

Testing and Coverage Measuring the qualitative and quanti-
tative metrics for a software project involves unit testing
and code coverage.

Unit testing attempts to show that each part of the pro-
gram is correct (Jazayeri, 2007) by isolating independent
pieces of code and running tests on them. Code coverage
measures the percentage of code executed by the unit tests
(Miller and Maloney, 1963).

In the FATS tutorial, a static result is presented based on
a test of invariance using unequal sampled data 16 The
project has 19 automated unit testing cases and only one
currently fails17. Unfortunately, the entire test suite only
executes 62% of the entire code, which is significantly be-
low the requirement of 90% adhered to by other astronomy
projects such as Astropy (Robitaille et al., 2013).

15https://github.com/isadoranun/FATS/blob/master/FATS/

lomb.py
16http://isadoranun.github.io/tsfeat/

FeaturesDocumentation.html#Appendix
17This issue has been reported to the authors at:https://github.com/

isadoranun/FATS/issues/9
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AndersonDarling StetsonJ StetsonK
count 100000 1000000 100000
mean 0.6052 5.953862e+05 0.2047
std 0.2576 3.775754e+05 0.0662
min 0.0930 2.442287e+05 0.0342
25% 0.3796 4.204386e+05 0.1564
50% 0.5993 5.104198e+05 0.2036
75% 0.8427 6.616722e+05 0.2510
max 1.0000 4.056122e+07 0.4484

Table 1: Statistical analysis of the AndersonDarling, StetsonJ, and StetsonK
features executed with 100,000 randomly generated Gaussian light curves.

Some features do not produce the expected values The
FATS documentation 18 states the following.

• The feature StetsonK for a Gaussian mag-
nitude distribution should take a value
close to 2/π = 0.798.
• For a Gaussian magnitude distribution,

StetsonJ should take a value close to zero.
• For a normal distribution the Anderson-

Darling statistic should take values close
to 0.25.

To validate the documentation, we calculated these three
features for 100,000 randomly generated Gaussian light
curves and the results were not as expected. The results are
presented in Table 1, which shows that the mean values for
StetsonK,AndersonDarling, and StetsonJ differ by several
orders of magnitude from the expected values.

Missing Dependencies The current version of FATS (1.3.6) is
distributed in the same manner as any standard Python
third-party package via a service called ”Python Package
Index” (PyPI)19, which allows the package to be installed
in Linux distributions with the following simple bash com-
mand.

$ pip install FATS

However, attempting to run this command would lead to a
”missing packages” message and failure of the instal-
lation process. As mentioned above, FATS is built on top
of the Python scientific-stack comprising libraries such as
Numpy, Scipy, and Pandas, as well as specific libraries in-
cluding Matplotlib and StatsModels, which are required
but not installed automatically. The user is responsible for
manually installing these packages in order to start work-
ing with the project. In addition, the standard Python sci-
entific plotting library called Matplotlib is not used for any
of the core tasks in FATS, which is an unnecessary obsta-
cle.

18http://isadoranun.github.io/tsfeat/

FeaturesDocumentation.html
19https://pypi.org/project/FATS/

Most of these problems are fixed in the current code base
in the GitHub repository, but no new releases have been
made public since the aforementioned version 1.3.6 on
June 7, 2015.

Missing in-code documentation The only documentation for
the project is the tutorial. Internally, all of the components
are undocumented.

Two particular cases that are not mentioned in the tutorial
are as follows.

• Structure functions: the
StructureFunction index 21,
StructureFunction index 22, and
StructureFunction index 31 features are
part of the FATS codebase in GitHub (since Febru-
ary 9, 2016), but other than the comment posted in
the version control commit stating that: ”Adding
Structure Function from Simonetti et al. 1984”(20

there are no descriptions of these features and their
interpretations.

• Importing light curves toolbox: The FATS docu-
mentation states the following.

In addition to the features library, we
provide a basic toolbox for importing and
preprocessing the data (. . . )

(. . . ) the function ReadLC MACHO() re-
ceives a MACHO id (object id assigned in
the MACHO survey) as an input and returns
the following output: magnitude measure-
ment, time of measurement, associated ob-
servational error (. . . )

A demonstration of how to import a
MACHO light-curve is presented below
(. . . )
lc_B = FATS.ReadLC_MACHO(

'lc_1.3444.614.B.mjd')

However, the documentation is incorrect because
ReadLC MACHO() receives a full path to a previously
downloaded MACHO light curve.

4. Code Refactoring: Improving FATS

In Section 1, we explained that bad design choices can be
addressed using the code refactoring technique, thereby modi-
fying the design of FATS but without changing its functionality.
This is ensured by the following method.

1. First, all of the feature extractors in FATS are executed for
an example light curve and the results are stored.

2. Second, a unit test case is conducted, which executes the
same extractors and checks whether the results are the
same as those stored in the stored file.

20Structure Functions commit: https://github.com/isadoranun/

FATS/commit/b45b5c1
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3. Next, porting of the new architecture is commenced pro-
gressively while checking whether the test is still passed.

4. If an extractor directly changes the result for any feature
extractor, then the test is modified in order to assess this
change.

This approach where a test is specified and the code is then
built is called test-driven development. This technique makes
it easier to trust that each new piece of code written during the
refactoring process is not generating new regression bugs21.

After the initial test, the code refactoring process is divided
into the following six sequential tasks.

1. Update each feature extraction function while maintaining
the same behavior22.

2. Write a new FeatureSpace stateless class.
3. Test to ensure that each feature extractor returns reason-

able values, at least for usual expected inputs.
4. Continue by performing more tests until 90% code cover-

age is achieved.
5. Include documentation for the features and extractors in-

side the code as Python docstrings23.
6. Port the tutorial. This process includes auto-generating

documentation for every feature extractor.

5. Results: feATURES eXTRACTOR for tIME sERIES
(feets)

Due to the radical restructuring of the project, we decided
to create a new package called feATURE eXTRACTOR FOR
tIME sERIES (feets). The FATS functionalities can be found
inside this new feets library and most of the issues described
in Section 3.3.2 have been addressed. Error handling strategies
were applied in cases where this was not possible in order to
inform the user about any possible issues with the results.

5.1. Clear code, high coverage rate, and public API documen-
tation

Testing in feets includes 49 unit test cases that are currently
passed, with up to 90% code coverage. The source code is
completely PEP8 style compliant. A continuous integration24

tool automatically executes the tests whenever a new version
of the project is uploaded to the public code repository. Fi-
nally, documentation was written for most of the public ob-
jects, classes, and functions in feets. This documentation is
compiled automatically and published on the following page:
http://feets.readthedocs.io.

5.2. Support for Python 3.x
The current version of feets25 (0.4) is compatible with Python

versions 2.7, 3.5, 3.6, and 3.7, where compatibility is achieved
via the six library26.

21Regression is something that used to work, but no longer does
22the results must be the same for the same input in order to pass the initial

test
23https://docs.scipy.org/doc/numpy-1.14.0/reference/
24https://travis-ci.org/carpyncho/feets
25https://pypi.org/project/feets/#history
26https://pypi.org/project/six/

5.3. Better encapsulation of extractors

The extractors were redesigned in order to avoid global vari-
ables and they now return a fixed set of features because the
FeatureSpace is in charge of discarding the unused ones. The
new infrastructure is capable of making compile-time checks
for any extractor introduced by a user in order to avoid unex-
pected behavior during feature extraction.

Finally, a feets.register extractor function is pro-
vided, which os capable of including user-defined extractor
classes in the feets functionalities. More detailed explanations
of these topics can be found in the tutorial (http://feets.
readthedocs.io/en/latest/#Library-structure).

5.4. Exceptions and Warnings

If the user misconfigures the feets.FeatureSpace, an ex-
ception is raised instead of sys.exit(), which shuts down
the entire Python virtual machine. In addition, a warning is
shown when the user requests a feature from any of the extrac-
tors with inconsistent behavior: (StetsonK, StetsonJ (Richards
et al., 2011), and Anderson-Darling (Kim et al., 2009)).

5.5. Integration with Astropy and other dependencies

The homepage of the Astropy27 project (Robitaille et al.,
2013) states the following.

The Astropy Project is a community effort to de-
velop a core package for astronomy using the Python
programming language and improve usability, in-
teroperability, and collaboration between astronomy
Python packages.

Our decision to include the Astropy package was dependent on
two objectives: to replace the built-in Lomb-Scargle 28 imple-
mentation of FATS with that distributed by the Astropy project
in order to improve the performance of the period feature ex-
tractor; and to propose feets as part of the Astropy-Afiliated-
Packages29 in order to demonstrate a commitment to Astropy’s
goals for Python astronomy and astrophysics packages.

In addition to Astropy, each dependency in feets is included
into the Python-Package-Index installer, so the project is ready
to use with a single pip install feets command. Finally,
Matplotlib was removed as a dependency.

5.6. Other Enhancements

• The order of the input parameters was updated to Time-
Magnitude-Magnitude Error, which is now consistent
with most previous studies.

• The preprocessing functions were renamed in order to
make them more intuitive. For example,

27http://www.astropy.org
28https://github.com/isadoranun/FATS/blob/

6fcd852adf213a477fda878650be5b467a5dd0d8/FATS/lomb.py
29http://www.astropy.org/affiliated/index.html
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FATS.Preprocess_LC(

mag, time, error).Preprocess()

FATS.Align_LC(

time, time2, mag, mag2, error, error2)

was renamed as follows.

feets.preprocess.remove_noise(

time, mag, error)

feets.preprocess.align(

time, time2, mag, mag2, error, error2)

• The feets.dataset module was included to retrieve
light curves from the MACHO, OGLE-III(Udalski, 2004)
survey as well as for creating synthetic light curves based
on a set of random distributions of parameters (e.g., peri-
ods).

6. Conclusions and Future Work

In this study, we redesigned a Python library for extracting
times series features, where we addressed the design flaws of
its predecessor. This new feets package is compatible with up-
coming Python versions and it is fully documented. This pack-
age includes a larger test suite with 90% code coverage, greater
extensibility, integration with more data sets, and has been be-
ing proposed to be including as Astropy affiliated package. The
project was developed in a public repository, with more than
233 commits and five contributors. Future development will
focus on the following three areas: incorporating new features,
improving documentation, and possible integration with tools
for interactively analyzing features.
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