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Abstract 

For innovative products, the issue of reproducibly obtaining their desired end-use 

properties at industrial scale is the main problem to be addressed and solved in process 

development. Lacking a reliable first-principles process model, a Bayesian optimization 

algorithm is proposed. On this basis, a short of sequence of experimental runs for 

pinpointing operating conditions that maximize the probability of successfully 

complying with end-use product properties is defined. Bayesian optimization is able to 

take advantage of the full information provided by the sequence of experiments made 

using a probabilistic model (Gaussian process) of the probability of success based on a 

one-class classification method. The metric which is maximized to decide the conditions 

for the next experiment is designed around the expected improvement for a binary 

response. The proposed algorithm’s performance is demonstrated using simulation data 

from a fed-batch reactor for emulsion polymerization of styrene.  

Keywords: Bayesian optimization, end-use product properties, Gaussian processes, 

one-class classification, scale-up. 

1. Introduction 

For innovative products, the issue of reproducibly obtaining their desired end-use 

properties is the main problem to be addressed in process development (Colombo et al., 

2016). For example, emulsion polymerization processes are well-known examples of 

the importance of guaranteeing reproducibility of end-use properties such as tensile 

strength and melt index by properly choosing the operating policy (Valappil and 

Georgakis, 2002). Similar problems are encountered in production of high-quality 

graphene sheets, single-walled carbon nanotubes and functionalized polymer 

nanofibers. The main drawback in the development of this type of innovative, high-

value products is lacking a reliable first-principles model to predict the binary outcome 

(success/failure) of a production run for a given setting of the controlled variables in the 

face of variability because of uncontrolled factors on end-use properties. Also, even at 

bench scale, experiments are time consuming and/or expensive, which demand fast 

pinpointing operating conditions where the probability of success is maximum.  

The problem of sequential experimental design for process optimization with stochastic 

binary outcomes is addressed by combining one-class classification with Gaussian 

processes (Xiao et al., 2015) and Bayesian optimization (Shahriari, et al., 2016). It is 

assumed that errors (failures) incurred in the sequence of runs are not punished, but 

instead it is of major concern the final recommendation for operating conditions once 

the available budget (in time and/or money) for experimental optimization is over. 
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2. Problem statement 

Given an initial Region of Interest (ROI) 𝕏 ⊂  ℝ𝑑for the controlled inputs, an unknown 

objective function  𝕏 [0, 1] descriptive of the probability of complying with 

product end-use properties and a maximum budget of n experiments, the problem of 

sequentially making decisions 𝐗𝑖 = [𝑥1, 𝑥2, … , 𝑥𝑖]
𝑇which are rewarded by a “success" 

with probability (x) and “failure" with probability 1 ̶ (x),  is to recommend, after n 

experiments, the operating conditions x* that maximizes . Note that the choice of the 

operating conditions for each experiment xi in the sequence is based solely on 

knowledge of the binary outcomes 𝐲𝑖 = [𝑦1, 𝑦2, … , 𝑦𝑖]𝑇 from previous runs. The 

observations at 𝑥𝑖 are considered to be drawn from a Bernoulli distribution with a 

success probability 𝑝(𝑦 = 1|𝑥𝑖).The probability of success is related to a latent function 

𝑓(𝑥): ℝ𝑑 → ℝ  that is mapped to a unit interval by a sigmoid transformation. The 

transformation used is the probit function 𝑝(𝑦 = 1|𝑥𝑖) = Φ(𝑓(𝑥𝑖)), where Φ denotes 

the cumulative probability function of the standard Normal density. 

As there not exist correct examples of the success probability over ROI but 

evaluative feedback from binary outcomes {-1, +1}, using Gaussian processes (GPs) for 

one-class classification is a more appropriate choice for probabilistic modelling of the 

objective function being maximized. At the observed inputs, the latent variables 𝐟 =
{𝑓(𝑥𝑖)}𝑖=1

𝑛  have a Gaussian prior distribution. Given a training set D = (X, y), the 

probabilistic model chosen p(y∗|D, x∗) aims to predict the target value y∗ for a new 

sample x∗ by computing the posterior probability 𝑝 = (𝐟|𝐗) = 𝑁(𝐟|𝜇, 𝐊f,f), where 𝐊f,f is 

the covariance matrix and 𝜇 is the mean function. Since neither of the class labels is 

considered more probable, the prior mean is often set to zero. As a GP generate an 

output 𝑧 in the range (−∞, ∞), a monotonically increasing response function 𝜎(𝑧)is 

used convert the GP outputs to values within [-1, 1] which can be interpreted as class 

probabilities (Rasmussen and Williams, 2006). In particular, the latent GP 𝑓 defines a 

Gaussian probability density function 𝑝𝑓
𝑥 for an input 𝑥 ∈ 𝕏. At any given x, the 

corresponding probability density for the positive class (success) is defined as 𝑝𝜋
𝑥. 

The inference step for conditioning the posterior GP on sampled observations X and y 

require computing the following integral to determine the posterior 𝑓 at any 𝑥∗ over  𝕏:  

𝑝(𝑓∗|𝐱, 𝐲, 𝑥∗) = ∫ 𝑝(𝑓∗|𝐱, 𝐲, 𝑥∗) 𝑝(𝐟∗|𝐱, 𝐲)𝑑𝐟∗ (1) 

In this equation, 𝐟∗ represents the GP prior on the latent function at 𝑥∗.The main idea is 

to use a mean of the prior with a smaller value than our positive class labels (i.e., y=1), 

such as a zero mean. This restricts the space of probable latent functions to those whose 

values gradually decrease when being far away from observed points. By choosing a 

smooth covariance function such as the simple squared exponential 

𝑘((𝐱𝒓, 𝐱𝒎|𝜁, ℓ)) = 𝜁2 exp (−
‖𝐱𝒓 − 𝐱𝒎‖2

2ℓ2
) (2) 

an important subset of latent functions is obtained. The parameter ℓ defines its 

characteristic length scale whose value must be optimized for improved discriminatory 

power, and 𝜁2 is the magnitude parameter. The GP mean 𝜇∗ typically decreases for 
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inputs distant from the training data and can be directly utilized as a measure of 

membership for the positive class. Conversely, the variance 𝜎∗
2 of the prediction is 

always increasing for distant inputs, which suggests that the negative variance value can 

serve as an alternative criterion for discriminating operating conditions for successes 

from those end-use properties are obtained. As it is shown by Rasmussen and Williams 

(2006), if 𝜎 is the Gaussian cumulative density function, the expected value of the 

probability of success (posterior) at 𝑥∗ can be approximated by 

𝔼[𝑝𝜋
𝑥] = 𝜋̅(𝑥) = Φ (

𝜇∗

√1 + 𝜎∗
2

) (3) 

3. Bayesian optimization 

Mathematically speaking, given the problem of finding a global maximum of the 

unknown objective function 𝜋̅ over 𝕏 which is defined based on a priori knowledge 

𝑥𝑏𝑒𝑠𝑡 = arg 𝑚𝑎𝑥 𝜋̅(𝑥), 𝑥 ∈ 𝕏 (4) 

The sequential Bayesian experimental design algorithm in Fig. 1 selects, at each 

iteration i, the operating conditions 𝑥𝑖+1 for the next experiment and observe the binary 

outcome 𝑦𝑖+1. After n experiments, the algorithm makes a final recommendation 𝑥∗ 

which represents the algorithm’s best estimate (based on the available experimental 

budget) of the operating conditions for which the probability of success is the global 

maximum. 

The Bayesian optimization algorithm (see Fig. 1 for details) resorts to a selection metric 

(often known as acquisition function) that allows selecting the next experiment to be 

made using a trade-off between exploration and exploitation. In this work, the expected 

improvement for stochastic binary outcomes proposed by Tesch et al. (2013) is used. By 

querying the GP posterior at each point in X, and letting 

𝜋̃𝑚𝑎𝑥 = 𝑚𝑎𝑥  𝜋̅(𝑥), 𝑥 ∈ X (5) 

The improvement 𝐼𝜋 for stochastic binary outcomes at any 𝑥 ∈  𝕏 is defined as follows  

𝐼𝜋(𝜋(𝑥)) = 𝑚𝑎𝑥 (𝜋(𝑥) − 𝜋̃𝑚𝑎𝑥 , 0), 𝑥 ∈  𝕏 (6) 

The corresponding expectation for 𝐼𝜋 over 𝕏 is  

𝔼𝐼𝜋(𝜋̃𝑚𝑎𝑥) = 𝑚𝑎𝑥 ∫ (𝜎(𝑧) − 𝜋̃𝑚𝑎𝑥)
∞

𝜎−1(𝜋̃𝑚𝑎𝑥)

𝑝𝑓
𝑥(𝑧) 𝑑𝑧 (7) 

4. Case study 

4.1. Process description 

The proposed methodology is tested by simulation of the emulsion polymerization of 

styrene. The reactor operates in fed-batch mode, with two inlets: the monomer feed (x1) 

and the chain transfer agent (CTA) feed (x2), both measured in mol/s. The reactor is 

initially charged with solvent and an initiator, and is seeded with particles of three 
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different sizes. As the monomer is fed, polymer chains growth unevenly, giving rise to a 

distribution of chain lengths (and molecular weights). The CTA modifies the length of 

the chains. The end-use properties of the product depend on the distribution of 

molecular weights, both in weight (MWw) and in number (MWn). 

 

Figure 1. Bayesian optimization algorithm for stochastic binary outcomes. 

 

In this work, the melt flow index (MI) and the tensile strength (TS) are the end-use 

properties of interest. A batch is considered successful if both properties are kept within 

their desired intervals: 

1.25 × 10−4 < 𝑀𝐼 ≤ 7.5 × 10−4 [𝑔/𝑚𝑖𝑛];  6900 < 𝑇𝑆 ≤ 7200 [𝑝𝑠𝑖]                     (8) 

These end-use properties are correlated with the molecular weights as follows: 
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The variability due to uncontrolled factors is introduced in the simulation as a 5% 

perturbation (normally distributed) in the initial charge of seeded particles and the 

initiator concentration. Details of the stochastic simulation model for the polymerization 

process can be found in Colombo et al. (2016).  The contour lines for the probability of 

 

Algorithm: Bayesian optimization 

•  Inputs: n0, n, 𝐷0 = {𝐗0, 𝐲0} 

  For i = n0 + 1 to n do 

 •  Select new 𝑥𝑖 by optimizing the expected improvement 𝔼𝐼𝜋(𝑥) 

                 𝑥𝑖+1 = arg 𝑚𝑎𝑥 𝔼𝐼𝜋(𝑥, 𝐷𝑖), 𝑥 ∈ 𝕏 

    •  Do the next experiment at 𝑥𝑖+1 and observe 𝑦𝑖+1 

    •  Augment dataset 𝐷𝑖+1 = {𝐷𝑖 , (𝑥𝑖+1,  𝑦𝑖+1)} 

    •  Update statistical model 𝑓 

 End for 

• 𝑥∗ = arg 𝑚𝑎𝑥 𝜋̅(𝑥), 𝑥 ∈ 𝐗𝑛 

•  Output:  𝑥∗ 
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success in the ROI are shown in Fig. 2. 

 

Figure 2. Contour plots for the probability of success in the case study. 

 

4.2. Results 

The proposed algorithm is tested for the case study described in Section 4.1 using the 

stochastic simulation model. In each trial, 50 experiments are performed before the 

method selects the optimal operation condition x* that maximizes . Experiments are 

divided between an initial sampling set (with n0  points) and experiments designed based 

on Bayesian optimization. Thus, the algorithm in Fig. 1 is tested using 100 independent 

sequences generated from different number and selection of the initial experiments. The 

initial n0 points where chosen using Latin hypercube sampling. A simple squared 

exponential covariance with fixed hyper-parameters (length scale of 𝑒0.75 and signal 

variance of 𝑒5) was used. Results obtained are shown in Table I.   

Fig. 3 depicts the GP approximation 𝜋̅(𝑥1, 𝑥2) of the probability of success, after 50 

experiments in one the independent trials made, obtained using the proposed algorithm 

in Fig. 1. It is worth noting that for the process simulation model the (assumed 

unknown) maximum probability of success is 0.97.  

5. Concluding remarks 

The role of Bayesian optimization in sequentially making decisions regarding operating 

conditions aiming at maximizing the probability of success in achieving the desired 

end-use properties has been discussed. The proposed algorithm is based on expected 

improvement for stochastic binary outcomes and one-class classification using Gaussian 

processes. Simulations results are promising bearing in mind the level of variability 

considered and that Bayesian optimization does not require a first-principles model. 
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Figure 3. Response surface and contour plots for the estimated 𝜋̅(𝑥1, 𝑥2) in a trial. 

 

Table I. Bayesian optimization based on 100 independent trials of 50 runs. 

n0 
𝑥̅1

∗
 

[mol/s] 

𝑥̅2
∗

 

[mol/s] x 104 
𝜋̅  𝜎2(𝜋) 𝜋(𝑥̅1

∗, 𝑥̅2
∗) 

5 0,0229 3,679 0,860 0,015 0,927 

10 0,0229 3,522 0,879 0,013 0,939 

15 0,0230 3,602 0,867 0,018 0,930 

20 0,0228 3,522 0,843 0,020 0,915 

25 0,0227 3,630 0,840 0,024 0,915 

30 0,0225 3,695 0,801 0,029 0,881 

45 0,0229 3,840 0,812 0,037 0,916 
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