
Diversity and Distributions. 2018;1–14.	 wileyonlinelibrary.com/journal/ddi�  |  1© 2018 John Wiley & Sons Ltd

 

DOI: 10.1111/ddi.12739

B I O D I V E R S I T Y  R E S E A R C H

Integrating multiple data sources for assessing blue whale 
abundance and distribution in Chilean Northern Patagonia

Luis Bedriñana-Romano1,2  | Rodrigo Hucke-Gaete1,2 |  
Francisco Alejandro Viddi1,2 | Juan Morales3 | Rob Williams4 | Erin Ashe4 |  
José Garcés-Vargas1,5 | Juan Pablo Torres-Florez2,6 | Jorge Ruiz1,2

1Facultad de Ciencias, Instituto de Ciencias 
Marinas y Limnológicas, Universidad Austral 
de Chile, Valdivia, Chile
2NGO Centro Ballena Azul, Valdivia, Chile
3LaboratorioEcotono, INIBIOMA-
CONICET, Universidad Nacional del 
Comahue, Bariloche, Argentina
4Oceans Initiative, Seattle, WA, USA
5Centro FONDAP de Investigación en 
Dinámica de Ecosistemas Marinos de Altas 
Latitudes (IDEAL), Valdivia, Chile
6Departamento de Genetica e 
Evolução, Universidade Federal de São 
Carlos, São Carlos, SP, Brazil

Correspondence
Luis Bedriñana-Romano, Facultad de 
Ciencias, Instituto de Ciencias Marinas y 
Limnológicas, Universidad Austral de Chile, 
Valdivia, Chile.
Email: luis.bedrinana.romano@gmail.com

Funding information
Fondo Nacional de Desarrollo Regional, 
Gobierno Regional de Los Lagos, Grant/
Award Number: BIP N°30040215-0 
ID1857-17LP07; Whitley Fund for Nature; 
Kilverstone Wildlife Charitable Trust; World 
Wildlife Fund (WWF) Germany

Editor: Clare Embling

Abstract
Aim: Species distribution models are useful tools for depicting important habitat, as-
sessing abundance and orienting conservation efforts. For small populations in 
poorly studied ecosystems, available data are often scarce and patchy. To overcome 
this limitation, we aim to evaluate the use of different data types within a hierarchical 
Bayesian framework with the goal of modelling the abundance and distribution of a 
small and highly migratory population of blue whale (BW, Balaenoptera musculus) 
summering in Chilean Northern Patagonian (CNP).
Location: CNP, Eastern South Pacific (ESP).
Methods: We constructed a Bayesian hierarchical species distribution Model 
(HSDM), combining a binomial N-mixture model used to model BW groups counts in 
line-transect data (2009, 2012 and 2014) with a logistic regression for modelling 
presence-availability data (2009–2016), allowing both models to share covariate pa-
rameters for borrowing strength in estimations.
Results: Distance to areas of high chlorophyll-a concentration during spring before 
summering season (AHCC-s) was the most important and consistent explanatory 
variable for assessing BW abundance and distribution in CNP. Incorporating accesso-
rial presence-only data reduced uncertainty in parameters estimation when compar-
ing with a model using only line-transect data, although other covariates of secondary 
importance failed to be retained in this model.
Main conclusions: Our results remark the capability of HSDM for integrating differ-
ent data types providing a potential powerful tool when data are limited and hetero-
geneous. Results indicate that AHCC-s, and possibly thermal fronts, could modulate 
BW abundance and distribution patterns in CNP. Preliminary model-based delimita-
tions of possible priority conservation areas for BW in CNP overlap with highly used 
vessel navigation routes and areas destined to aquaculture.
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1  | INTRODUC TION

Located in the Eastern South Pacific (ESP), Chilean Northern 
Patagonia (CNP) represents a region of both elevated primary and 
subsequent secondary productivity, which are mainly mediated by 
the interplay of a large input of low salinity micronutrient-loaded 
superficial fresh water, high salinity macronutrient-loaded oce-
anic deeper water and drastic seasonal changes in light regimes 
(González et al., 2011; Iriarte, González, & Nahuelhual, 2010; Torres 
et al., 2011). These complex oceanographic processes sustain a high 
but poorly studied marine biodiversity, including the most important 
summering and nursing area for the endangered blue whale (BW, 
Balaenoptera musculus) in the ESP (Hucke-Gaete, Osman, Moreno, 
Findlay, & Ljungblad, 2004; Hucke-Gaete, Ruiz, & Alvarez, 2010; 
Reilly et al., 2008). It also hosts one of the largest aquaculture indus-
tries in the world (Buschmann et al., 2006; Niklitschek, Soto, Lafon, 
Molinet, & Toledo, 2013).

Balaenoptera musculus are a local priority for conservation 
and marine spatial planning initiatives (Hucke-Gaete et al., 2010; 
Outeiro et al., 2015) due to potential threats, including ship strikes, 
fishery and aquaculture net entanglement, poorly regulated whale 
watching activities and noise (Colpaert, Briones, Chiang, & Sayigh, 
2016; Hoyt & Iñíguez, 2008; Hucke-Gaete et al., 2010, 2013; Van 
Waerebeek et al., 2007; Viddi, Harcourt, & Hucke-Gaete, 2015). 
Thereby, reliable spatially explicit density maps for spatial planning 
and risk assessment are needed (Pennino et al., 2017; Redfern et al., 
2013; Williams et al., 2014). Additionally, a new US trade rule re-
quires countries, including Chile, to demonstrate that their fishery 
and aquaculture activities are comparable in effectiveness to the US 
Marine Mammal Protection Act or risk losing the ability to export 
seafood products to the lucrative US market (Williams, Burgess, 
Ashe, Gaines, & Reeves, 2016). These national and international ef-
forts create a pressing need for information on BW abundance and 
distribution in the region.

During 2009, private and public agencies joined efforts to 
generate the first abundance estimate for BW in CNP covering 
most of its coastal waters, as part of a broader initiative setting 
a baseline for the implementation of a multiple-use marine pro-
tected area (Hucke-Gaete et al., 2010). After 1,278 km of dedi-
cated marine survey, only 33 BW groups were recorded on-effort 
yielding an abundance estimate of 222 (115–430) for an area of 
34,899 km2, using classic design-based distance sampling analy-
sis (Hucke-Gaete et al., 2010). To date, no similar survey has ever 
covered the extension of 2009 survey in CNP, yet over the years, 
heterogeneous data on BW distribution (i.e., smaller line-transect 
surveys and opportunistic sightings database) have become avail-
able. This poses a major challenge to address BW abundance 
and distribution patterns in CNP and pleas for integrating these 
dissimilar data in one comprehensive species distribution model 
(SDM, Elith & Leathwick, 2009), provided a biological hypothesis 
exists.

In other parts of its range, BW distribution has been tied to 
upwelling-modified highly productive waters. Krill, the primary 

BW prey, are in turn associated with the upwelling process itself 
(e.g., distance to shelf edge, sea surface temperature (SST) and 
sea surface height: Croll et al., 2005; Fiedler et al., 1998; Gill et al., 
2011; Redfern et al., 2017; Visser, Hartman, Pierce, Valavanis, & 
Huisman, 2011). However, CNP is a transitional zone between 
areas of seasonal upwelling dominance and areas of perma-
nent downwelling dominance (south of 45° S), thus presenting a 
large synoptic variability even during spring/summer “upwelling-
favourable season” (Strub, Mesias, Montecino, Rutllant, & Salinas, 
1998). In this scenario, most covariates associated with the occur-
rence of upwelling waters are not expected to be directly transfer-
able to CNP as proxies for krill availability (Redfern et al., 2017). 
Based in BW (and other large whales) ecology and CNP oceano-
graphic characteristics, two main environmental factors could be 
inspected when assessing BW distribution and abundance. First, 
because krill abundance in coastal areas is typically positively 
correlated with high phytoplankton concentrations (Feinberg & 
Peterson, 2003; Riquelme-Bugueno et al., 2013; Tanasichuk 1998), 
chlorophyll-a (chl-a) concentration is commonly used as a useful 
proxy for krill availability (Buchan & Quiñones, 2016;  Branch et al., 
2007; CPPS 2014; Croll et al., 2005; Zerbini et al., 2016). Within 
CNP, spatio-temporal patterns in chl-a distribution have revealed 
sharp differences among distinct microbasins (González et al., 
2010, 2011; Montero et al., 2011; Tello & Rodriguez-Benito, 2009), 
which should affect BW distribution. Second, thermal fronts (TF) 
are mesoscale phenomena that not only influence primary produc-
tivity but might also elicit a herding effect on small fish and zoo-
plankton biomass such as krill (Acha, Mianzan, Guerrero, Favero, & 
Bava, 2004; Doniol-Valcroze et al., 2007; Littaye, Gannier, Laran, & 
Wilson, 2004; Lutjeharms, Walters, & Allanson, 1985). These phe-
nomena could be particularly important in areas with a significant 
freshwater discharge (Sharples & Simpson, 1993) such as CNP. For 
BW, the concentrating effect of TF could be crucial because of it, 
energetically costly feeding behaviour (Acevedo-Gutierrez et al., 
2002; Potvin et al., 2009), that to be cost-effective, requires krill 
not only to be abundant, but also highly concentrated (Goldbogen 
et al., 2011, 2015).

To test the hypothesis that areas of high chl-a concentration and/
or areas of recurrent TF trigger higher BW abundance and therefore 
modulates its distribution in CNP, we constructed a hierarchical spe-
cies distribution model (HSDM) integrating classical distance sam-
pling methods, a collection of independent BW sightings database 
(presence-only), and oceanographic data obtained from satellite, 
over a period of 8 years (2009–2016).

2  | METHODS

2.1 | Line-transect surveys

Line-transect surveys were carried out off CNP (41°00′S–45°30′S) 
during austral summer of 2009 and early autumns of 2012 and 
2014, covering distinct but overlapping areas and never exceed-
ing ca. 25 km from the nearest coast (Figure 1). Field protocols 
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followed standard line-transect survey methods (Buckland et al., 
2001) with some specific modifications for small-boat surveys 
(Dawson, Wade, Slooten, & Barlow, 2008; Williams et al., 2017). 
A 17-m motor vessel was used for most surveys, except for the 
exposed western coast of Chiloe Island during 2009 where a 17-m 
sailboat was used. The observer team comprised three persons, 
plus a fourth person operating the computer to enter data. An 
angle board mounted on the deck was used to measure radial angle 
to the group of animals, and visual distance estimate to the animals 
was estimated at first sighting. To calibrate visual distance estima-
tion, radial distance estimates from observer-specific estimations 
were corrected (Williams, Leaper, Zerbini, & Hammond, 2007) 
using known distances from landmarks (i.e., islands, lighthouses, 
salmon farms and other vessels) derived from the vessels′ radar.

2.2 | Presence-only data

Focal-group marine surveys were undertaken in the Corcovado 
Gulf and Mouth of the Moraleda Channel (hereafter CGMC), Ancud 

Gulf and Reloncavi Sound during summer/autumn of 2004–2016 
(Figure 1). These surveys were undertaken mostly on board a 7.6-m 
semi-rigid hull inflatable vessel. Additional surveys from explora-
tory flights or cruise expeditions that were not specifically aimed for 
marine mammal research were also available, covering other areas 
of CNP. During all these surveys, observers recorded the groups’ 
geographical position using a handheld GPS, time of sighting and 
group size. Only data from 2009 to 2016 were used in subsequent 
modelling because before 2009, data were restricted to CGMC. This 
yielded a total of 180 BW groups GPS locations; however, as these 
data are likely to be highly spatially and temporally auto-correlated, 
we used a raster with grid cells of 8 km per side from the study area 
as sampling units and assigned a value of 1 on each grid cell that 
presented at least one BW sighting on it for each year. Grid cells with 
BW sightings in more than 1 year were not considered duplicates as 
their associated covariates were different. This resulted in a data-
base of 81 blue whale presences for analysis.

2.3 | Satellite oceanographic and 
topographic covariates

Chl-a concentration data were extracted from satellite level 3 images 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
sensor onboard the Aqua satellite (Data set ID: erdMH1chlamday), 
corresponding to monthly averages in a grid size of 4.64 km. Based 
on these images, four different covariates were constructed, (1) 
spring average chl-a concentration: generated by a composite of 
satellite images from September, October and November (austral 
spring) from the year before (2008–2015) each selected field sea-
son (2009–2016); (2) summer average chl-a concentration: the same 
as the later but using images from January, February and March of 
each selected field season (2009–2016); (3) distance to areas of high 
chlorophyll-a concentration during spring (AHCC-s): consisted in dis-
tance to polygons enclosing areas with an average chl-a concentra-
tion equal or higher than 5 mg/m (Montero et al., 2011) during spring 
months; and (4) AHCC-su: the same as the later but using summer 
months.

Daily averages level 4 SST satellite images were obtained from 
Multi-Scale Ultra-High Resolution (MUR) SST Analysis database 
(Data set ID: jplMURSST41). MUR-SST maps merge data from dif-
ferent satellites, combined with in situ measurements, using the 
Multi-Resolution Variational Analysis statistical interpolation (Chin, 
Milliff, & Large, 1998), in a grid size of 0.01° (ca. 1 km2). From MUR-
SST maps, thermal fronts (TF) were identified using a single-image-
edge-detection (SIED) algorithm with a threshold detection of 0.5°C 
(Cayula & Cornillon 1992; Cayula & Cornillon 1995). SIED tools were 
available in ArcMap 10.1 through the Marine Geospatial Ecology 
Tools (Roberts, Best, Dunn, Treml, & Halpin, 2010). Areas of thermal 
front recurrence (ATFR) were constructed using SIED on daily im-
ages ranging from 1 January to 30 April for each year skipping every 
third day for time-saving purposes during data analysis. A composite 
of this set was used to account for the times each grid cell within the 
study area was catalogued as holding a TF during the 4 months span 

F IGURE  1 Map of Chilean Northern Patagonia depicting 
relevant geographical landmarks. The light-blue polygon represents 
the study area comprising waters within 25 km from the coast. 
Squares represent 8 × 8 km segments of transects undertaken 
during 2009 (open black contoured squares), 2012 (roughed brown 
filled squares) and 2014 (filled blue squares). Black dots indicate 
grid-cell centroids where presence-only data were available
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of every year. These new rasters presented grid cell values in a range 
of 0–16 TF detections within the 4 months’ time span. Percentiles 
for all rasters were very similar across years showing that 90% of the 
grid cells for the entire study area presented three or less TF detec-
tions. Therefore, we selected a threshold value of 4 for construct-
ing polygons yielding ATFR, which only represent areas where the 
strongest and most conspicuous TF occur. Distance to these ATFR 
polygons was used as a covariate in the subsequent models.

Summer SST was extracted from level 3 monthly composites 
from the Aqua MODIS satellite database in a grid size of 4 km 
(Data set ID: erdMH1sstdmday). Data from January to March of 
every year (2009–2016) were averaged and this composite was 
used for data extraction. Raw data for depth were obtained from 
the Chilean Navy (Servicio Hidrográfico y Oceanográfico de la 
Armada), from which a triangular irregular network (TIN) model 
was created using 3D Analyst in ArcGIS and the resultant raster 
was used to extract depth values. Distance to the coast (DTC) was 
extracted in QGIS (QGIS Development Team, 2009) and was also 
used as a covariate.

2.4 | Modelling approach

We divided on-effort tracks from line-transect surveys into con-
tiguous equal-sized sampling segments (Hedley & Buckland, 2004; 
Williams, Hedley, & Hammond, 2006) of 8 km per side (64 km2). For 
each one of these sampling segments (hereafter tracks), a response 
variable, BW group counts and environmental covariates were ex-
tracted assuming the centroid of each track as the spatial point from 
which the covariates were extracted. Before analyses, all variables 
were standardized and correlations were assessed through Pearson 
correlation analysis.

Based on the binomial N-mixture model from Chelgren et al. 
(2011), true BW group abundance Ni for each track i was modelled 
by a Poisson distribution, which we modified to be modelled through 
a zero-inflated version 

where ψ is the probability of a non-zero true abundance and λi is 
the usual Poisson parameter, which depends on the exponential of a 
linear function of covariates

Habitati is an offset term accounting for effective area sampled 
at each transect (subtracting land cover when required), β0,y are in-
tercepts which are calculated for each year y, β is a vector of parame-
ters coefficients and Xi is the corresponding design matrix. Intercepts 
(β0,y) were assumed to come from a normal distribution, for which we 
estimated its respective mean and variance hyperparameters. If re-
quired, model selection was performed through a “model identity” 
variable with each category representing a unique set of covariates, 
allowing to draw a posterior probability for each one from within 
the HSDM (Kruschke, 2014; Royle, Chandler, Sollmann, & Gardner, 
2013).

Instead of assuming the observed number of BW groups ni in 
each track as the true local group abundance (Ni), a second part 
relates ni to Ni as a binomial outcome with probability of success 
determined by detection probability pi, thus making Ni a latent 
variable.

Assuming a truncation distance of 4 km, the probability of de-
tection pi was derived from un-binned perpendicular distances yd 
from each d detection, using a half-normal distribution with a sin-
gle parameter Σ. Even when we did not use covariates for modelling 
Σ, i subscript still applies to pi to account for differences in Habitati 
(Chelgren et al., 2011). Error in distance estimation was assessed by 
regressing estimated training distances to a series of landmarks by 
observers against trues distances provided by the vessel′s radar. The 
slope of this linear regression (Figure S1.1) was used to divide an-
gular distances to BW groups previously to multiplying by the sine 
of the angle in perpendicular distance estimation (Hammond et al., 
2002).

Maps of whale densities predictions and associated uncertain-
ties from 2009 to 2016 were calculated using rasters of the entire 
study area with a grid-cell size of 8 km per side. Model′s estimated 
parameters were used to predict the number of whales in each grid 
cell, based on their standardized covariates values, estimated mean 
group size and estimated intercept parameter for the correspond-
ing year if line-transect data were available or drawing an intercept 
value from the normal distribution of intercepts if not. As the bulk 
of the data was gathered in 2009, we provide an overall abundance 
estimate only for this year, which was equal to the sum of all grid-cell 
values in that year.

As a measure of goodness-of-fit, we conducted a posterior pre-
dictive check (PPCheck, Gelman, Meng, & Stern, 1996) based on chi-
squared tests, which allowed us to calculate the ratio between the 
sum of discrepancy measures in observed and simulated data, the 
c-hat parameter, and a Bayesian p-value, which is the probability to 
obtain a test statistic that is at least as extreme as the observed test 
statistic computed from the actual data (should be around 0.5 for a 
good fit, Kery & Royle, 2015). All previously described steps were 
undertaken from within the HSDM as a one-stage approach (Miller, 
Burt, Rexstad, & Thomas, 2013).

Presence-availability set-ups are often modelled through a logis-
tic regression that uses values of “one” for the recorded presence 
of the species and “zeros” for a sample of randomly selected points 
within the study area, termed pseudo-absences or availability data. 
Aarts, Fieberg, and Matthiopoulos (2012) have shown that count, 
presence–absence and logistic regression models are all approxima-
tions of the inhomogeneous Poisson point process, for which the 
linear predictor function is proportional to the expected density of 
observations. Based on this, an alternative model (model 2) incorpo-
rated a logistic regression model for the presence-only data sharing 
covariate parameters with those of the main count model to bor-
row strength in estimations. To assess how the subjective process of 
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availability data selection (Beyer et al., 2010) influenced the new co-
variate parameters, we constructed five alternative model variants 
using different number of availability points and changing the geo-
graphical areas where these points were extracted from (Figure 2). 
As sample size was small, we also repeatedly ran the model leaving 
one data value out every time to check how the parameters poste-
rior distribution fluctuates.

All models were fit in R (R Development Core Team 2015) and 
JAGS (Plummer, 2003) for Markov Chain Monte Carlo estimation 
methods. Vague priors were used for all parameters. Three chains 
were run in parallel through 100,000 iterations each. The first 
20,000 samples were discarded as burn-in, and one of every two 
remaining samples was retained, for a total of 120,000 samples to 
form the posterior distribution of model parameter estimates. See 
Appendix S1 for more details about methods and results.

The 2009 abundance estimate and associated credible interval 
were used to estimate a precautionary minimum abundance esti-
mate (Nmin) to estimate a sustainable annual allowable harm limit 
from all anthropogenic sources of mortality, namely the “poten-
tial biological removal” (“PBR,” Wade, 1998). Under US legislation, 
PBR is defined as the product of a minimum estimate of abun-
dance (Nmin) times one half of the maximum net productivity of a 
stock (0.5 Rmax) times a recovery factor (Fr) between 0.1 and 1.0 
(Wade, 1998). Guidelines for assessing marine mammal stocks are 
well established in the United States, and we follow convention 
sing the 80th percentile of the distribution as our value for Nmin 
and a 4% default value for Rmax (Wade, 1998). The recovery fac-
tor is a precautionary adjustment term governing the desired rate 
of recovery. We follow recommendations for recovery factors for 
endangered marine mammals and use a value of 0.1 for Fr (Taylor, 
Michael, Heyning, & Barlow, 2003).

3  | RESULTS

On-effort tracks comprised 106 sampling units for 2009 (848 km), 
35 for 2012 (272 km) and 47 for 2012 (368 km) (Figure 1). A total 
of 44 BW sightings were observed while on effort during all three 
line-transect surveys (2009 = 34, 2012 = 2, and 2014 = 8). Three 
sightings from 2009 were excluded after truncation of perpendicu-
lar distance data (4 km) yielding 41 sightings for analysis, including 
fitting the half-normal detection function (Figure S1.2). Group size 
ranged between 1 and 3 individuals, with a mean of 1.5.

Sea surface temperature was correlated with spring chl-a con-
centration and all chl-a-related covariates were correlated among 
them (r ≥ .5, p < .01). Only AHCC-s was retained by model 1 when 
used independently of other chl-a-related covariates in trial runs 
of this model. As AHCC-su presented a similar value for the co-
variate parameter but including zero in its posterior distribution, 
we wanted to address whether the inclusion of more data in model 
2 modified this. Using the model identity variable showed that 
AHCC-s presented a probability of 0.82 against 0.18 of AHCC-su 
as the most likely to explain the data in trial runs of model 2. Based 

on these results, we used AHCC-s in all further models yielding 
five variables to be tested in both models, AHCC-s, ATFR, SST, 
DTC and depth.

Model 1 retained AHCC-s, ATFR, SST and DTC. An interaction 
parameter between the two most important covariates (AHCC-s and 
ATFR) was evaluated but not retained by the model. Only AHCC-s 
was retained by model 2 regardless of modifications on availability 
data selection (Table S1.1). AHCC-s was the only covariate retained 
in all models, experiencing a reduction in the CI and SD of parameters 
involved in calculating λ, when incorporating accessory presence-
only data (Table 1). For 2009, the year with more data available, 
model 2 predicted larger total abundance (442, CI: 236–744) when 
comparing to model 1 (373, CI: 191–652). PPCheck results indicated 
that c-hat and Bayesian p-value presented values very near 1 and .5, 
respectively, indicating a good fit of the model to the data (Table 1 
and Figure S1.3). Removing one sampling unit from analysis at a time 
did not produced large differences in parameters posterior distribu-
tion (Figure S1.4).

Plots of predicted density using both models showed a large 
variation in BW distribution among years (Figures 3 and 4). Although 
some areas such as Ancud Gulf and the Western Coast of Chiloe 
showed some consistency in concentrating higher BW densities, 
overall predictions uncertainty for those years where line-transect 
data were not available was large (Figure 3). To get a more straight-
forward comparison between models, we reran both models using 
only AHCC-s as covariate and focused only on those years where 
line-transect data were available to show how predictions un-
certainty was reduced when incorporating presence-only data 
(Figures 2 and 4).

The point estimate of abundance in 2009 was 373 (model 1). 
Using 274 as the 20th percentile of the posterior distribution of N, 
we estimate a potential biological removal of 0.548, or one human-
caused death or serious injury every 1.8 years.

4  | DISCUSSION

4.1 | Modelling approach

Literature provides several options to model abundance and distri-
bution from non-systematic line-transect effort and sightings data 
(Hedley, Buckland, & Borchers, 1999; Redfern et al., 2006; Miller 
et al., 2013; and original references cited therein). Pooling all available 
information into one single count model would have added strength 
in covariate parameter estimation; however, this would have resulted 
in averaging all possible intercepts of the function modelling λ and 
hence precluding depicting differences in abundance between years. 
Presence-availability designs would have provided an easy way of 
incorporating presence-only data as well, but at the expense of dis-
carding information on the observation process and increased risk of 
bias in intercept estimation (Aarts et al., 2012; Lele & Keim, 2006).

Within a hierarchical Bayesian framework, we accommodated 
uncertainty on distance estimation, using different types of data 
to borrow strength for covariates parameters estimations (without 
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losing possible differences in absolute densities between years), 
allowed for alternative model comparison, estimated overall abun-
dance and assessed goodness-of-fit, all with full uncertainty propa-
gation capacity in one single modelling step. Further research should 
be conducted to understand the limitations of this approach as 
model comparison has not yet been broadly developed for hierarchi-
cal models (Kery & Royle, 2015).

The main difference between the more orthodox model 1 and 
the alternative model 2 was the exclusion of all other explanatory co-
variates besides AHCC-s, which could be the result of the spatial and 
temporal bias of presence-only data (see next section). Incorporating 
presence-only additional data reduced uncertainty associated with 
the most important covariate parameter, and less pronouncedly, to 
all intercepts (Table 1). The increase in the mean, SD and credible 
interval size for total abundance estimation during 2009 when using 

model 2 is interpreted as the loss of explanatory power that was pro-
vided mainly by ATFR in model 1 (Table 1). When using only AHCC-s 
as covariate in both models, we see that all parameters show smaller 
SD and credible interval size in model 2 (Figure 2). As any other 
method, our approach should not be regarded as an invitation to 
avoid properly designed systematic surveys, which should be al-
ways pursued (Buckland et al., 2001; Redfern et al., 2006). However, 
the capability of HSDM to integrate several sources of information 
might prove a valuable tool for assessing species abundance and 
distribution patterns when systematic and homogeneous data are 
limited. Eventually, new presence-only data can be added to improve 
covariate parameters. Additional line-transect data can be added to 
improve intercepts and their hyperparameters, thereby improving 
predictability for absolute abundance. Other nonlinear types of 
functions for modelling λ and p, more sophisticated functions than 

F IGURE  2 Parameters posterior 
distributions for model 1 (blue line) 
and 2 (red line) using only distance to 
areas of high chlorophyll concentration 
during spring (AHCC-s) as covariate. 
For comparison purposes, the posterior 
distribution of β1 AHCC-s is presented 
under different approaches, using a 
logistic regression for all combined data 
including line-transect data (black), using 
model 2 with 300 and 500 availability 
points samples from the entire study area 
(yellow, difference is indistinguishable), 
using model 2 with 300 and 500 
availability points samples extracted 
only from Chiloe Inner Sea (red, the one 
concentrating more probability mass 
around the mean correspond to the 
variation using 500 samples) and using 
model 2 with all availability points (green). 
The mean accompanied with standard 
deviation and credible intervals (in 
parentheses) for each model is presented 
at the bottom of each plot
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logistic regression for modelling presence-only data (Lele & Keim, 
2006) and different models for distance correction (or more data), 
could be added and tested through the model identity variable 
(Kruschke, 2014; Royle et al., 2013).

4.2 | Blue whale abundance and distribution in 
Chilean Northern Patagonia

This study is the first to assess specific driving forces of environmen-
tal conditions on BW abundance and distribution patterns in CNP, 
providing evidence for the importance of chl-a, and secondarily, of 
TFs as local proxies for prey availability. Chl-a concentration has 
long been considered a useful proxy for locating profitable habitat 
patches for large whales, with time-lags often associated between 
phytoplankton blooms and the peak of zooplankton and whales 
(Croll et al., 2005; Littaye et al., 2004; Visser et al., 2011). In our 
case, plain chl-a concentration failed to be retained by the models, 
suggesting that at the observed scale, krill availability is not neces-
sarily correlated with chl-a concentration. The location of high krill 
densities is mediated by advection processes, krill vertical migration, 
food availability and predator avoidance; therefore, at finer scales, 

spatio-temporal mismatch between chl-a concentration and krill 
abundance could occur if net export relocates krill biomass to neigh-
bouring areas or if krill grazing impact phytoplankton abundance 
(Dorman, Powell, Sydeman, & Bograd, 2011; Mackas, Denman, & 
Abbott, 1985; Santora, Sydeman, Schroeder, Wells, & Field, 2011). 
The former could be the case here as results provided support for 
AHCC-s as the most important and consistent covariate (Table 1, 
Figure 2). This would imply that higher krill aggregations occur at or 
nearby areas of high productivity, which has been reported at least 
for Ancud Gulf and CGMC (Buchan & Quiñones, 2016; González 
et al., 2010, 2011), and that time-lags between two and 4 months are 
linking spring high chl-a concentration and BW occurrence in sum-
mer/autumn season, which is consistent with previous work on BWs 
elsewhere (Croll et al., 2005; Visser et al., 2011).

Thermal fronts might be the result of tide or wind-induced upwell-
ing and therefore co-occur within AHCC while TF concentrating effect 
might enhance primary production, making these features possibly 
correlated (Acha et al., 2004; Letelier, Pizarro, & Nuñez, 2009). As the 
interaction parameter between AHCC and ATFR parameters in this 
study was not retained in the model and ATFR was observed to occur 
in areas where AHCC was absent, we can argue that the influence of 

TABLE  1 Parameters estimations for the model using only line-transect data (model 1) and the alternative model incorporating the 
accessory presence-only data through a logistic regression (model 2). Standard deviations, median and credible intervals are provided for 
each parameter. Covariate parameters estimation (β) for the five potential explanatory variables is provided for both models to compare 
results. The remaining parameters were calculated using only covariates that not included zero within their posterior credible intervals

Parameter

Model 1 Model 2

Mean SD 2.5% Median 97.5% Mean SD 2.5% Median 97.5%

Hβ0 mean −5.361 0.525 −6.438 −5.344 −4.378 −4.663 0.469 −5.641 −4.641 −3.814

Hβ0 variance 0.211 0.495 0.043 0.121 0.905 0.348 0.775 0.050 0.178 1.653

β0 2009 −5.205 0.474 −6.176 −5.192 −4.310 −4.208 0.293 −4.808 −4.198 −3.663

β0 2012 −5.446 0.581 −6.652 −5.423 −4.368 −4.905 0.568 −6.146 −4.866 −3.895

β0 2014 −5.439 0.509 −6.493 −5.421 −4.764 −4.889 0.399 −5.715 −4.873 −4.154

β1 AHCC-s −0.982 0.472 −1.992 −0.953 −0.141 −0.738 0.218 −1.189 −0.729 −0.335

β2 ATFR −0.795 0.299 −1.410 −0.785 −0.240 0.077 0.052 −0.028 0.078 0.176

β3 SST 0.505 0.214 0.087 0.504 0.930 0.110 0.096 −0.078 0.110 0.298

β4 DTC 0.457 0.208 0.041 0.459 0.857 −0.001 0.0002 −0.002 −0.001 −0.001

β5 Depth −0.079 0.242 −0.553 −0.079 0.402 0.118 0.101 −0.082 0.119 0.314

Σ 2.696 0.368 2.066 2,663 3,514 2.691 0.369 2.060 2.659 3.515

Group size 1.513 0.191 1.163 1.504 1.910 1.513 0.191 1.164 1.504 1.911

Total 
Abundance 
2009

372.585 118.948 191.276 355.576 651.564 441.526 130.381 235.765 424.749 743.853

c-hat 1.052 0.320 0.540 1.015 1.787 1.073 0.328 0.553 1.033 1.835

Bayesian 
p-value

.510 .500 .000 1 1 .545 .498 0 1 1

Hβ0 mean, hyperparameter mean of the normal distribution for intercepts; Hβ0 variance, hyperparameter variance of the normal distribution for inter-
cepts; β0 2009, intercept for 2009 survey; β0 2012, intercept for 2012 survey; β0 2014, intercept for 2014 survey; β1 AHCC-s, covariate parameter for 
distance to areas of high chlorophyll concentration; β2 ATFR, covariate parameter for distance to areas of thermal front recurrence; β3 SST, covariate 
parameter for sea surface temperature; β4 DTC, covariate parameter for distance to the coast; β5 Depth, covariate parameter for depth; Σ, parameter 
of the half-normal distribution used for modelling detection probability; group size, average group size.
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F IGURE  3 Predicted blue whale abundance (Nt) and uncertainty (sd) at each grid cell (8 km per side) using model 1, from 2009 (top left) 
to 2016 (bottom right). Dots indicate blue whale groups’ locations recorded through line-transect surveys (black) or through focal-group 
marine surveys (white)
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F IGURE  4 Comparison of predicted blue whale abundance (Nt) and uncertainty (sd) at each grid cell (8 km per side) when using model 
1 (line-transect only) vs. model 2 (incorporating presence-only data through a logistic regression). Focusing only in those years where line-
transect data were available, we show that uncertainty (posterior SD) was reduced in model 2. Dots indicate blue whale groups’ locations 
recorded through line-transect surveys (black) or through focal-group marine surveys (white)
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TF on BW distribution is not necessarily a by-product of AHCC, but an 
independent phenomenon that might elicit a herding effect on prey. 
Studies performed on sympatric large whale species have found that 
the distribution of BW is more highly correlated with distance to TF 
than other species, presumably because unlike the main prey item for 
this species (krill), fish and other mobile prey species might escape the 
concentrating effect of TF (Doniol-Valcroze et al., 2007). The real ef-
fect of TF on modulating BW distribution here might have been un-
derestimated as our gradient threshold of 0.5°C/km was extremely 
conservative, taking into consideration that BWs appear to be sensi-
tive to TFs produced by SST gradients between 0.03 and 0.3°C/km 
(Etnoyer et al., 2006). This lack of resolution, the fact that these strong 
TFs tended to be more abundant in the Western coast of Chiloe Island 
and that presence-only data were restricted to Chiloe Inner Sea, could 

explain why ATFR was removed from model 2, but further research is 
needed to confirm this supposition.

4.3 | Interannual differences in BW abundance and 
distribution

Galletti-Vernazzani, Jackson, Cabrera, Carlson, and Brownell (2017) 
found no trends in population size for BW summering in CNP and 
hypothesized that apparent trends are better explained by temporal 
differences in habitat use. In the absence of systematic effort across 
years, our model predictions provide some insights into the interan-
nual variations in BW distribution in the area.

During 2010 and 2012, both models predicted a decrease in BW 
abundance in CGMC (Figures 3 and 4). For both years, a drop in chl-a 
concentration during previous spring, a decrease in SST (for 2010), 
a decrease in the number of TF detected and salp outbreaks were 
observed (Figure S1.5, Buchan & Quiñones, 2016; Giesecke et al., 
2014; Lara, Saldías, Tapia, Iriarte, & Broitman, 2016). These changes 
in oceanographic characteristics within CNP were hypothesized to 
be produced by an atypical pattern of oceanic sea surface currents 
mediated by negative anomalies in southern annular mode (SAM, 
Giesecke et al., 2014). SAM modulates intraseasonal to interannual 
changes in atmospheric conditions in the Southern Hemisphere, 
producing shifts in the westerly winds patterns and a significant de-
crease in SST in subtropical zones during negative anomalies (Hall & 
Visbeck, 2002; Marshall 2003; Lovenduski & Gruber, 2005) which did 
occur during 2010 and 2012 (Figure S1.6).

Although preliminary, these observations suggest that a reduc-
tion in spring chl-a concentration and weakening of TF produced 
by more homogeneous colder waters might result in a decrease in 
BW habitat suitability through diminished krill recruitment and/
or availability. This reduction in BW abundance might be seized by 
other large whales that not rely exclusively on krill, as data on rela-
tive abundance for large whale species in CGMC from 2004 to 2012 
showed that for most years, BW was by far the most frequent large 
whale species, a pattern that was disrupted during 2010 and 2012 
when the relative abundance of humpback whales (Megaptera novae-
angliae) and sei whales (Balaenoptera borealis) was higher (Table S2.2).

4.4 | Implications for blue whale conservation and 
future research

To date, all BW abundance estimates in ESP place the population 
in the mid-hundreds which suggests that the population has not 
yet reached pre-whaling levels (Galletti-Vernazzani et al., 2017; 
Hucke-Gaete et al., 2010; Torres-Florez, Hucke-Gaete, Rosenbaum, 
& Figueroa, 2014; Williams et al., 2011; this study). Although none 
of these estimations resulted from sampling the population’s entire 
distributional range, our estimates for 2009 are within the lowest 
range of those from Galletti-Vernazzani et al. (2017) for the same 
area. We consider this is an agreement for independent studies, 
with differences most likely explained by the utilized methods, as 
these authors used mark–recapture models that can account for 

F IGURE  5 Red contoured polygons indicate areas holding the 
20% highest predicted blue whale densities, when averaging results 
from all models and years. Small dark-blue dots indicate salmon 
farm concessions in 2013 (dots placed on land correspond to lakes 
not shown in the figure). Grey to green density polygon indicates 
vessel traffic density averaging data from 2012 to 2013. Traffic 
density was expressed as total length (in km) of vessel transiting 
over the study area that fell within a radius of 10 km in the 
neighbourhood of each output raster cell of 2 km2. Values indicate 
km covered per unit area. Vessel traffic data were obtained from 
www.exactearth.com, and salmon farm data were extracted from 
Chilean Fishery Sub Secretariat www.subpesca.cl

http://www.exactearth.com
http://www.subpesca.cl
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animals not typically using the study area (Pradel, Hines, Lebreton, & 
Nichols, 1997). A population of a few hundred whales, still recover-
ing from commercial exploitation, has limited resilience to human-
caused mortality and serious injury. Our analyses suggest that the 
population cannot withstand sustained mortality of even one whale 
annually from human activities.

Vessel collisions with large whales and salmon farm net entan-
glements have been reported in CNP (Hucke-Gaete et al., 2013; 
Van Waerebeek et al., 2007). Hence, additional information is 
needed on ship strikes and entanglement in fishing and aquacul-
ture gear, to assess whether human-caused mortality and injury 
could be exceeding sustainable limits. So far, areas exhibiting most 
of expected BW abundance overlap with shipping routes and aqua-
culture activities (Figure 5). As such, more properly designed sur-
veys are desired to validate current estimations of abundance and 
distribution patterns, while simultaneously assessing ship strike 
and entanglement risk to inform marine spatial planning initiatives 
(Becker et al., 2012; Redfern et al., 2006; Williams et al., 2017). 
Complementary approaches underway such as telemetry (Hucke-
Gaete et al., 2010), spatially explicit passive acoustic (Buchan, 
Stafford, & Hucke-Gaete, 2015) and photo identification (Galletti-
Vernazzani et al., 2017) should be strengthened in a cooperative 
manner to gain deeper insights into how blue whales respond to 
anthropogenic and large-scale oceanographic oscillations in CNP.
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