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Abstract
We present theoretical calculations of single ionization of He atoms by protons and multiply
charged ions. The kinematical conditions are deliberately chosen in such a way that the ejected
electron velocity matches the projectile impact velocity. The computed fully differential cross
sections (FDCS) in the scattering plane using the continuum-distorted wave-eikonal initial state
show a distinct peaked structure for a polar electron emission angle θk=0°. This element is
absent when a first order theory is employed. Consequently, we can argue that this peak is a clear
manifestation of a three-body effect, not observed before in FDCS. We discuss a possible
interpretation of this new feature.
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1. Introduction

The interaction of atoms and molecules with charged parti-
cles, such as electrons and heavy ions, and photons is of
instrumental interest in the subsequent study in diverse areas
of research, e.g. plasma and biological physics (see e.g. [1]
and [2] and references therein). Furthermore, the under-
standing of particle-atom interactions is also important from a
fundamental point of view, considering typically we deal with
the dynamics of what is known as ‘few-body Coulomb pro-
blem’. In fact, the processes occurring in collisions of various
particles with atoms are particularly suitable to study the
complex and highly correlated reaction dynamics in such
systems.

Thanks to the development of both the cold target recoil
ion momentum spectroscopy [3] and reaction microscope [4]
techniques, a complete new branch of collision experiments
has emerged. This resulted in a considerable advance in the
understanding of the few-body dynamics. With these techni-
ques it is possible to simultaneously measure and fully
momentum-analyze all the particles, both the light and heavy
ones, which participate in the process (for a review see [5]).
As a consequence, from these ‘kinematically complete

experiments’ it is possible to extract fully differential cross
sections (FDCS) for a variety of processes and for a large
fraction of the total phase space. Initially, experimental efforts
focused on studying the few-body dynamics in collisions of
charged particles with atomic targets, especially helium (see
e.g. [6–18] and for a comprehensive review see [19]).

The workhorse in the theoretical description of single
ionization of single and multielectronic atoms by the impact
of heavy ions is the continuum-distorted wave-eikonal initial
state (CDW-EIS) approach of Crothers and McCann [20].
This approach can be easily extended to the treatment of
collisions of heavy particles with mutielectronic targets
[21, 22] by reducing the many electron problem to a three-
body system consisting of the projectile, the active electron
(the one ionized) and the target nucleus together with the
frozen core of the passive electrons (the ones not ionized). In
addition, the interaction between the heavy ions, the so-called
NN interaction, can be easily incorporated in a semiclassical
way [23–25]. This theory is able to reproduce FDCS rea-
sonably well for single ionization of helium by highly
charged ions in a broad range of projectile velocities (see e.g.
[26–31]).
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Other approaches were also employed to obtain FDCS
ranging from the simple First Born Approximation (FBA),
supposedly valid at high enough impact energies where the
contributions of higher orders may be disregarded, to more
elaborated ones verifying the boundary conditions imposed
by the Coulomb interactions present in the final channel of the
reaction. Among them, we can cite the three-Coulomb wave-
Hartree–Fock (3CW-HF) [32], the three-distorted wave
(3DW) [16, 33] and the CCW-PT [34] models.

The 3CW-HF model employs an asymptotically exact
three-body-final-state wavefunction that includes all active
two-particle interactions to infinite order by means of per-
turbation theory. A Hartree–Fock wavefunction is used to
represent the initial state of the active electron whereas its
final state is described through a numerical continuum
eigenfunction. In turn, the final-state distorted wave in the
3DW approach is an approximation to the final-state wave-
function satisfying incoming boundary conditions. In the
CCW-PT model, the final state is represented by a continuum
correlated wavefunction that takes into account the interaction
between the projectile and the residual target. The correlated
wavefunctions are nonseparable solutions of the wave
equation combining the dynamics of the electron motion
relative to the target and projectile, satisfying the Redmondʼs
asymptotic conditions corresponding to long range interac-
tions. In this way, this continuum wavefunction includes in a
partial way the correlation of the electron-projectile and
electron-target relative motion as coupling terms of the wave
equation.

In addition, semiclassical calculations were implemented
based on three-body classical trajectory Monte Carlo techni-
ques [35], performing a full three-body treatment of the
reaction where all interactions are included all the way
through the collision. A central model potential based on
Hartree–Fock calculations is used to represent the interaction
of the target nucleus with both the active electron and the
projectile.

2. Theory

We will compute FDCS for single ionization of He by ion
impact as a function of the ionized electron momentum
k=(k, θk, fk), being k the magnitude of the vector and θk and
fk the corresponding polar and azimuthal angles, respec-
tively, and of the transverse component q⊥ of the projectile
momentum transfer q=Ki−Kf, where Ki (Kf) is the initial
(final) momentum of the incoming particle. In our context

=^ ·q v 0, wherev is a unit vector that defines the direction
of the velocity vector v of the projectile, parallel to the z-axis
of the reference frame with its origin at the center of mass of
the target. The FDCS is related to the prior-form of the
transition amplitude -

^( )( )T qfi by energy conservation, through
the expression
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with Ei (Ef) is the initial (final) energy of the complete system.
For details, see e.g. [36]. It is important to note that when
differential cross sections depend on the transverse comp-
onent of the momentum transfer q⊥ or on the projectile
scattering angle, for example, the NN interaction must be
included in the formulation since it may play a relevant role in
the corresponding calculations, depending on the energies of
the emitted electron and momentum transfer value [39]. On
the other hand, when differential cross sections depending
only on the electron energy and/or angular coordinates are
considered, this interaction is not included since their influ-
ence in the transition amplitude are reduced to a complex
phase factor that gives no contribution to the cross sections
(for details, see e.g. [23, 36]). Invoking the eikonal approx-
imation, the NN interaction can be included in the transition
amplitude r( )if , multiplying it by a phase factor, which for a
pure Coulomb internuclear interaction yields:

 r rr= ¢n( ) ( ) ( ) ( )vi 2if if
2i

with ν=ZPZT/v, ZP, ZT and v being the projectile and resi-
dual-target ion charges and the projectile velocity, respec-
tively, and where r defines the so-called impact parameter
r =( · )v 0 .  r( )if ( r¢ ( )if ) is the transition amplitude with
(without) the NN interaction. Using a two-dimensional
Fourier transform it is possible to find a relation between
 r( )if and -

^( )( )T qfi , i.e. the transition matrices as a function
of the impact parameter r or the transverse component of the
momentum transfer q⊥. Consequently, the transition matrices
with and without the NN interaction can be written as:
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respectively. Applying the inverse Fourier transform in
equation (3) and replacing it in equation (4), results
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The two-dimensional integral over the impact parameter can
be done analytically to finally obtain:
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The last integral in equation (6) is evaluated numerically
using quadratures. As it is well known, the eikonal approx-
imation is valid as long as (i) the projectile suffers very small
deflections in the collision (the so-called straight line
approximation) and (ii) the velocity of the recoil ion remains
small compared to that of the emitted electron. At the high
impact energies used in the present work condition (i) is
always fulfilled. Additionally, because of the large recoil-ion
to electron mass ratio, condition (ii) is always satisfied.

We use non-orthogonal Jacobi coordinates (rP, rT) to
describe the ionization process. These coordinates represent
the position of the active electron with respect to the incoming
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projectile (rP) and the target ion (rT), respectively. RT is also
needed, representing the position of the heavy projectile with
respect to the center of mass (CM) of the subsystem e-T. If we
neglect terms of orders 1/MT and 1/MP, where MT and MP

are the masses of the target ion nucleus and incident heavy
ion, respectively, we can write RT=rT− rP. Within the prior
CDW-EIS model, the transition amplitude can then be com-
puted as:

c c= á ñ- - +∣ ∣ ( )( )T W , 7fi f i i
CDW EIS

where the initial (final) state distorted wave c c+ -( )i f
EIS CDW is

an approximation to the initial (final) state which satisfies the
outgoing-wave (+) (incoming-wave (−)) asymptotic condi-
tions. For the initial state the asymptotic form of the Coulomb
distortion, the so-called eikonal phase, is used in the electron-
projectile interaction together with a semi-analytical Rothan-
Hartree–Fock description for the initial bound-state wave-
function [37]:
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The normalization factors Ni and effective charges ζi are
obtained from [37].

The final-state wavefunction is cast into the form:

c p c=- - - -( ) ( · ) ( ) ( ) ( )CK R r r2 exp i , 11f f T T T P P
CDW 3 2

where -( )C rP P represents the Coulomb distortion of the ejected
electron wavefunction due to the projectile:
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P
is the Sommerfeld parameter, kP is the relative

momentum of the e-P subsystem and N(ν) the usual Coulomb
factor, defined as

n n pn= G -( ) ( ) ( ) ( )N 1 i exp 2 . 13P P P

Additionally, the wavefunction of the ejected electron in field
of the target-residual-ion c-( )rT T can be written as

c p n
n

=
´ - - -

- -( ) ( ) ( · ) ( )
( · ) ( )

N

F k r

r k r

k r

2 exp i

i , 1, i i . 14
T T T T T

T T T T T

3 2

1 1

Here, n =T
Z

k
T

T
and kT are is the Sommerfeld parameter and

the relative momentum of the e-T subsystem, respectively.
Finally, the perturbation potentialWi in equation (7) is defined
by

c c- =+ +( ) ( )H E W , 15i i i i i
EIS EIS

where Hi is the full electronic initial Hamiltonian, neglecting
the total CM motion, and Ei is the total initial energy of the
system in the CM frame. Particularly, Wi is composed of two

differential operators [38], i.e.
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2
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3. Results and discussion

In the present contribution the CDW-EIS approach has been
applied in order to compute FDCS for single ionization of He
atoms by impact of protons p+ and C6+ projectiles at
500 keV amu−1 (v=4.47 a.u.). In addition, for the case of
protons, the FBA is employed as well (for details about the
FBA see e.g. [1]).

In figure 1, theoretical single ionization of He by proton
p+ impact FDCS for electrons emitted with different energies,
namely 50 eV (ve=1.92 a.u.) (solid thin line), 150 eV
(ve=3.32 a.u.) (dashed–dotted line), 250 eV (ve=4.28 a.u.)
(dotted line), 260 eV (ve=4.37 a.u.) (dashed line) and
270 eV (ve=4.45 a.u.) (solid thick line) into the scattering
plane (coplanar geometry), as a function of the polar electron

Figure 1. Theoretical (FBA) FDCS for single ionization of He by
500 keV amu−1 proton impact. Panel (a) FBA without the NN
interaction, panel (b): FBA with NN. The electrons are ejected into
the scattering plane as a function of the polar electron emission angle
θk. The magnitude of the momentum transfer q is fixed at 2.5 a.u.
Solid thin curve: Ek=50 eV, dashed–dotted curve: Ek=150 eV,
dotted curve: Ek=250 eV, dash curve: Ek=260 eV and thick solid
curve: Ek=270 eV.
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emission angle θk, are shown (note that in atomic units the
electron momentum k is equal to its velocity ve). It should be
noted that in the present work, we choose to describe the
collision in a plane defined by a pair of orthogonal coordi-
nates (x, z) considering that θk varies in the interval (0°, 270°)
following the clockwise direction and (0°, −90°) in the
counterclockwise one, with 0° coinciding with the positive
z-axis.

The magnitude of the momentum transfer was chosen to
be q=2.5 a.u. in order to fulfill the energy and momentum
conservation laws. In panel (a) calculations neglecting the NN
interaction are shown. On the contrary, panel (b) presents
FDCS including the NN interaction. In both cases the FBA
is used.

The FDCS of figure 1 present the usual binary peaks,
whose angular positions, as expected, tend to present their
maxima at smaller angles θk as the electron emission energy
increases. This behavior comes from the fact that the
binary peak is expected to appear when q=k with =q

+ e
^

-( )v̂q E

v
k i , where Ek=k2/2 (εi) is the final continuum

(initial bound) state energy of the electron. Thus, as k
increases, for a fixed modulus of q, the longitudinal comp-
onent of k also increases whereas the perpendicular one
decreases and thus θk moves towards smaller angles. For
highly charged projectiles, post-collisional effects, due to the
projectile attraction of the electrons, reorients their directions
and modify the binary collisions as well (a detailed descrip-
tion of this effect can be found in [1], where an extensive
review of published contributions is done). However, this
effect is less noticeable for the binary encounter peaks. No
evidence of the recoil peak is observed under the kinematical
conditions here considered.

The same behavior is observed in both panels of figure 2,
where we show FDCS computed using the CDW-EIS, under
the same kinematical conditions. Additionally, in both panels
of figure 2, we clearly observe now the appearance of a
peaked structure for θk=0°, totally absent in the first order
calculations of figure 1, when the velocity of the ejected
electron is close to the one of the projectile. We can argue that
it corresponds to the two-center mechanism of electron cap-
ture to the continuum (ECC), where the electron ejected from
the target is attracted by the projectile field, moving finally
with a velocity close to the projectile one (see for example
[1, 40, 41]). It is interesting to remark that, as it was shown by
Dettmann et al [42] (see also [1]), the quantum mechanical
reaction associated with the classical two-step Thomasʼs
mechanism [43] gives a negligible contribution to the ECC
except at asymptotic high collision velocities.

Finally, in figure 3 we present the same set of calcula-
tions of figures 1 and 2, but now the projectile is a highly
charged ion (C6+). As expected, the ECC peak is also present
for this collision system. Furthermore, both in figures 2 and 3
it is observed that the binary encounter peak overlaps with the
ECC one as the final ejection velocity tends to the projectile
one. This effect, which is even more noticeable for the C6+

impact, may be attributed to the Z2P increasing with the

projectile charge in a binary encounter between the projectile
and the active electron.

For proton impact, in both FBA and CDW-EIS descrip-
tions and when the NN interaction is included in calculations, a
peak appears at θk;−60°. We must mention that some
structures were also experimentally found for θk=θq (where
θq is the direction of q) and electron energy Ek=5.4 eV at
smaller collision energies for 75 keV protons interacting with
He atoms [44]. However these structures were only reproduced
for high enough transverse momentum transfer, using a
theoretical model where a Born initial wavefunction and a final
continuum one which includes the dynamical correlation of the
electron-projectile and electron-residual target relative motion
and the interaction between the projectile and the residual
target are employed [45]. Qualitative discrepancies with mea-
surements were found for small transverse momentum trans-
fers. A similar situation occurs when the 3DW model is
employed [46]. These authors speculated that a possible origin
of the experimental existence of these structures could come
from a geometrical situation where the residual-target ion stays
between the projectile and the active electron, in such way that
the interaction of the projectile with the residual target is

Figure 2. Theoretical (CDW-EIS) FDCS for single ionization of He
by 500 keV amu−1 proton impact. Panel (a) CDW-EIS without the
NN interaction, panel (b): CDW-EIS with NN. The electrons are
ejected into the scattering plane as a function of the polar electron
emission angle θk. The magnitude of the momentum transfer q is
fixed at 2.5 a.u. Solid thin curve: Ek=50 eV, dashed–dotted curve:
Ek=150 eV, dotted curve: Ek=250 eV, dash curve: Ek=260 eV
and thick solid curve: Ek=270 eV.
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stronger than with the electron. Thus, the transverse momen-
tum transfer is opposite to the one of qe while the longitudinal
component is still in the forward direction. This assumption
was inspired from a classical description of an ionization
mechanism proposed by Fiol and Olson [47] where a Monte
Carlo model was employed to study the ionization of ground
and excited state hydrogen by 3.6MeV u−1 C6+ and Au53+

ions. However, an alternative proposed explanation was that
recoil electrons are shifted to the forward direction by the
attractive potential created by the projectile. In our case we
employ the CDW-EIS model, which is a higher-order theory
where successive interactions between the incoming projectile
with both the electron and the residual target ion are implicitly
taken into account. This is done through the inclusion of dis-
torting factors depending on the projectile-electron potential
and the exponential phase containing the interaction between
the projectile and the residual target ion. Thus, we could
hypothesize that one possible mechanism is the one which
corresponds to a first collision of the projectile with the elec-
tron, being both ejected in different half-planes and in a second

step the projectile is deviated in the same half-plane that the
electron due to its interaction with the residual target [44]. In a
classical image, if as mentioned before we consider that the
electron suffers a first collision with the projectile, emerging
both with the same modulus of the velocity, by energy and
impulse balance laws the light particle will be ejected at
θk=−60°. This electron energy corresponds also to the con-
dition of ECC. The fingerprints of this effect remains also when
the electron energy varies as it is shown in figures 1 and 2.
However, the physical origin of these structures remains still an
open question to discern.

For the C6+ system, the observed peak appearing for
protons at θk;−60° gives now a broad structure for 50 and
150 eV electron emission energies (see figure 3(b)) and a
pronounced shoulder on the left side of the ECC peak for
electron velocities closer to the projectile one. A similar
behavior, associated with the Z2P dependence of the projectile-
electron binary encounter, is also observed on the right side of
the ECC peak.

4. Conclusions

To sum up, we have carried out computations of FDCS for
single ionization of He by 500 keV proton and C6+ impact.
The kinematical conditions are chosen to allow ejected elec-
tron velocities with values close to the projectile impact
velocity. The FBA results show the typical features present in
the FDCS, even for ejected electron velocities very close to
the projectile one. On the contrary, the CDW-EIS computa-
tions present a distinct peaked structure for θk=0° for both
protons and C6+ projectiles. This peak can be clearly attrib-
uted to an ECC mechanism, considering the CDW-EIS
represent a theory that includes higher-order two-center
mechanisms. This peak could be, in principle, experimentally
observed. The kinematical conditions to make it visible,
however, can prevent measuring it, considering, on the one
hand, the small FDCS values, and, on the other hand, the
narrowness of the peak, that would require an angular reso-
lution difficult to reach.
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